1. (1 pt) Library/Rochester/setLinearAlgebra14TransfOfRn-ur_la_14_18.pg

Let L be the line in \mathbb{R}^3 that consists of all scalar multiples of the vector $\begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$. Find the orthogonal projection of the vector $v = \begin{bmatrix} 1 \\ 3 \\ 3 \end{bmatrix}$ onto L.

$$\text{proj}_Lv = \begin{bmatrix} \text{answer} \\ \text{answer} \\ \text{answer} \end{bmatrix}.$$

Answer(s) submitted:
-
-
-
-
-
-
-
-
-
- (incorrect)

2. (1 pt) Library/Rochester/setLinearAlgebra21InnerProductSpaces-ur_la_21_9.pg

Let $M_1 = \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}$ and $M_2 = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}$.

Consider the inner product $\langle A, B \rangle = \text{trace}(A^T B)$ in the vector space $\mathbb{R}^{2 \times 2}$ of 2×2 matrices. Use the Gram-Schmidt process to determine an orthonormal basis for the subspace of $\mathbb{R}^{2 \times 2}$ spanned by the matrices M_1 and M_2.

$$\begin{bmatrix} \text{answer} & \text{answer} \\ \text{answer} & \text{answer} \end{bmatrix}.$$

Answer(s) submitted:
-
-
-
-
-
-
-
-
-
- (incorrect)

3. (1 pt) Library/Rochester/setLinearAlgebra21InnerProductSpaces-ur_la_21_4.pg

If $f(x)$ and $g(x)$ are arbitrary polynomials of degree at most 2, then the mapping $\langle f, g \rangle = f(-2)g(-2) + f(0)g(0) + f(3)g(3)$ defines an inner product in P_2.

Use this inner product to find $\langle f, g \rangle$, $\|f\|$, $\|g\|$, and the angle $\alpha_{f,g}$ between $f(x)$ and $g(x)$ for $f(x) = 3x^2 + 6x + 9$ and $g(x) = 3x^2 - 6x - 6$.

$$\langle f, g \rangle = \text{answer}, \quad \|f\| = \text{answer}, \quad \|g\| = \text{answer}, \quad \alpha_{f,g} = \text{answer}.$$

Answer(s) submitted:
-
-
-
-
-
-
-
-
-
-
- (incorrect)

4. (1 pt) Library/Rochester/setLinearAlgebra21InnerProductSpaces-ur_la_21_11.pg

Let $f(x) = -7$, $g(x) = -3x - 6$, and $h(x) = -7x^2$.

Consider the inner product $\langle p(x), q(x) \rangle = \int_0^4 p(x)q(x)dx$ in the vector space $C^0[0,1]$. Use the Gram-Schmidt process to determine an orthonormal basis for the subspace of $C^0[0,1]$ spanned by the functions $f(x)$, $g(x)$, and $h(x)$.

$$\langle f, g, h \rangle = \text{answer}, \quad \|f\| = \text{answer}, \quad \|g\| = \text{answer}, \quad \|h\| = \text{answer}, \quad \alpha_{f,g} = \text{answer}, \quad \alpha_{f,h} = \text{answer}, \quad \alpha_{g,h} = \text{answer}.$$

Answer(s) submitted:
-
-
-
-
-
-
-
- (incorrect)

5. (1 pt) local/Library/Rochester/setLinearAlgebra17DotProductRn-ur_la_17_4.pg

Let W be the subspace of \mathbb{R}^3 spanned by the vectors $\begin{bmatrix} 1 \\ -3 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 6 \\ -15 \\ 4 \end{bmatrix}$. Find the matrix A of the orthogonal projection onto W with respect to the standard basis of \mathbb{R}^3.

$$A = \begin{bmatrix} \text{answer} & \text{answer} & \text{answer} \\ \text{answer} & \text{answer} & \text{answer} \\ \text{answer} & \text{answer} & \text{answer} \end{bmatrix}.$$

Answer(s) submitted:
-
-
-
-
-
-
-
-
-
- (incorrect)
Suppose \(v_1, v_2, v_3 \) is an orthogonal set of vectors in \(\mathbb{R}^3 \). Let \(w \) be a vector in \(\text{Span}(v_1, v_2, v_3) \) such that
\[
\begin{align*}
v_1 \cdot v_1 &= 30, v_2 \cdot v_2 = 99, v_3 \cdot v_3 = 16, \\
w \cdot v_1 &= -30, w \cdot v_2 = -495, w \cdot v_3 = 32, \\
\end{align*}
\]
then \(w = \underline{v_1} + \underline{v_2} + \underline{v_3} \).

\[\text{Answer(s) submitted:} \]
\[\bullet \]
(incorrect)

7. (1 pt) Library/TCNJ/TCNJ_OogonalProjections/problem4.pg
All vectors and subspaces are in \(\mathbb{R}^n \).

Check the true statements below:

- A. The orthogonal projection \(\hat{y} \) of \(y \) onto a subspace \(W \) can sometimes depend on the orthogonal basis for \(W \) used to compute \(\hat{y} \).
- B. If \(y \) is in a subspace \(W \), then the orthogonal projection of \(y \) onto \(W \) is \(y \) itself.
- C. If the columns of an \(n \times p \) matrix \(U \) are orthonormal, then \(UU^T y \) is the orthogonal projection of \(y \) onto the column space of \(U \).
- D. If \(z \) is orthogonal to \(u_1 \) and \(u_2 \) and if \(W = \text{Span}\{u_1, u_2\} \), then \(z \) must be in \(W^\perp \).
- E. For each \(y \) and each subspace \(W \), the vector \(y - \text{proj}_W(y) \) is orthogonal to \(W \).

\[\text{Answer(s) submitted:} \]
\[\bullet \]
(incorrect)

8. (1 pt) Library/TCNJ/TCNJ_OogonalProjections/problem8.pg
Find the minimal distance from the point \(P = \begin{bmatrix} -10 \\ -4 \\ -8 \end{bmatrix} \) to the plane \(V \) of \(\mathbb{R}^3 \) spanned by \(\begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix} \) and \(\begin{bmatrix} 2 \\ -4 \\ 1 \end{bmatrix} \).

The minimal distance is \underline{\underline{}}.

\[\text{Answer(s) submitted:} \]
\[\bullet \]
(incorrect)

9. (1 pt) Library/TCNJ/TCNJ_OogonalProjections/problem5.pg
All vectors and subspaces are in \(\mathbb{R}^n \).

Check the true statements below:

- A. If \(y = z_1 + z_2 \), where \(z_1 \) is in a subspace \(W \) and \(z_2 \) is in \(W^\perp \), then \(z_1 \) must be the orthogonal projection of \(y \) onto \(W \).
- B. The best approximation to \(y \) by elements of a subspace \(W \) is given by the vector \(y - \text{proj}_W(y) \).
- C. In the Orthogonal Decomposition Theorem, each term \(\hat{y} = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \ldots + \frac{y \cdot u_p}{u_p \cdot u_p} u_p \) is itself an orthogonal projection of \(y \) onto a subspace of \(W \).
- D. If an \(n \times p \) matrix \(U \) has orthonormal columns, then \(U^TUx = x \) for all \(x \) in \(\mathbb{R}^n \).
- E. If \(W \) is a subspace of \(\mathbb{R}^n \) and if \(y \) is in both \(W \) and \(W^\perp \), then \(y \) must be the zero vector.

\[\text{Answer(s) submitted:} \]
\[\bullet \]
(incorrect)

10. (1 pt) Library/TCNJ/TCNJ_LenghOrthogonality/problem1.pg
All vectors are in \(\mathbb{R}^n \).

Check the true statements below:

- A. If the distance from \(u \) to \(v \) is equal to the distance from \(u \) to \(-v \), then \(u \) and \(v \) are orthogonal.
- B. If vectors \(v_1, \ldots, v_p \) span a subspace \(W \) and if \(x \) is orthogonal to each \(v_j \) for \(j = 1, \ldots, p \), then \(x \) is in \(W^\perp \).
- C. For a square matrix \(A \), vectors in \(\text{Col}A \) are orthogonal to vectors in \(\text{Nul}A \).
- D. \(v \cdot v = \|v\|^2 \).
- E. For any scalar \(c \), \(u \cdot (cv) = c(u \cdot v) \).

\[\text{Answer(s) submitted:} \]
\[\bullet \]
(incorrect)

11. (1 pt) Library/TCNJ/TCNJ_LenghOrthogonality/problem6.pg
Find the angle \(\alpha \) between the vectors \(\begin{bmatrix} 2 \\ -2 \end{bmatrix} \) and \(\begin{bmatrix} 2 \\ -1 \end{bmatrix} \).

\[\alpha = \underline{\underline{}}. \]

\[\text{Answer(s) submitted:} \]
\[\bullet \]
(incorrect)