Math 315

1. Use the Gershgorin disc theorem to approximate the eigenvalues of \(A = \begin{bmatrix} 3 & .1 & .1i \\ -.1 & 0 & .1 \\ -.1i & .1 & 2 \end{bmatrix} \).

2. Let \(T \) be the transformation with \(\mathcal{M}(T) = \begin{bmatrix} 20 & -6 & -2 \\ 46 & -8 & -8 \\ 74 & -16 & -11 \end{bmatrix} \).

Find a single eigenpair \((\mathbf{w}, \lambda)\) for \(T \) by first forming the \(T \)-cyclic spaces \(\langle \mathbf{v} \rangle_T \) indicated below, then proceeding in the Axler manner. (Sometimes you’re lucky, sometimes you’re not.)

(a) \(\mathbf{v} = \begin{bmatrix} 2 \\ 4 \\ 7 \end{bmatrix}^T \)

(b) \(\mathbf{v} = \begin{bmatrix} 46 \\ 100 \\ 2 \end{bmatrix}^T \)

(c) \(\mathbf{v} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}^T \)

3. Here we follow the inductive procedure laid out by Axler. In Part 1(a) above, you should have found 1 as an eigenvalue. Now, à la Axler, set \(U = \text{range}(T - 1 \cdot I) \), a two-dimensional space and view \(T - I \) as a map in \(\mathcal{L}(U) \). Repeat the cyclic subspace game as in Problem 1(a), with any vector of your choosing belonging to \(U \). This should enable you to find two complex eigenpairs. (Hopefully a linear combination of what you found in Part 1(b) above.)

Math 488

Submit all of the above, plus the following.

4. A map \(T \in \mathcal{L}(V) \) is \textit{diagonalizable} (for \(V \) dimension \(n \)) if there is an invertible operator \(S \in \mathcal{L}(V) \) such that \(\mathcal{M}(S^{-1}TS) \) is a diagonal matrix. Two operators \(T, T' \) are \textit{simultaneously diagonalizable} if the same \(S \) works for both.

Suppose both \(T \) and \(T' \) have \(n \) distinct eigenvalues. In particular, they are diagonalizable. Prove that \(T \) and \(T' \) are simultaneously diagonalizable if and only if \(TT'(v) = T'T(v) \) for all \(v \in V \). That is, \(T \) and \(T' \) \textit{commute} as operators.

5. Given vectors \(v, w \in V \) (not necessarily finite dimensional) over \(\mathbb{F} \) (not necessarily algebraically closed). Suppose \(T \in \mathcal{L}(V) \) and the \(T \)-cyclic spaces corresponding to \(v, w \) are all finite dimensional, and yield the polynomials \(g_v(z) \) and \(g_w(z) \) à la Axler’s procedure for finding eigenpairs. (a) Prove that \(h = \text{lcm}(g_v, g_w) \) has the property that \(h(T)v = 0 \) and \(h(T)w = 0 \). (b) If \(V \) has dimension \(n \), prove that there is a polynomial \(h \) of degree at most \(n \) with the property that \(h(T)v = 0 \) for all \(v \in V \).