Written Assignment #5

1/ Find centers and radii of discs:
\[C_1 = (3, 0) \quad r_1 = \sqrt{1^2 + 1^2} = 2 \]
\[C_2 = (0, 0) \quad r_2 = \sqrt{1^2 + 1^2} = 2 \]
\[C_3 = (2, 0) \quad r_3 = \sqrt{1^2 + 1^2} = 2 \]

Since discs are disjoint, may guess the center points at the possible eigenvalues: \(\lambda = 3, 0, 2 \)

2/ (a) \(\mathbf{v} = [2 \, 4 \, 7]^T, \quad \mathbf{Tv} = [24 \, 7]^T. \) Ah! So \(\mathbf{v} \) is an eigenvector with eigenvalue \(\lambda = 4 \). (The cyclic game stops right away.)

(b) \(\mathbf{v} = \left[\begin{array}{c} 23 \\ 50 \\ 82 \end{array} \right]^T, \quad \mathbf{Tv} = \left[\begin{array}{c} -4 \\ 2 \\ 0 \end{array} \right] \) and \(\langle \mathbf{v}, \mathbf{Tv} \rangle \) lin. indep.

\[T^2 \mathbf{v} = \left[-92 \quad -200 \quad 328 \right] \quad \text{and} \quad \langle \mathbf{v}, \mathbf{Tv}, T^2 \mathbf{v} \rangle \text{ lin. dependent!} \]

\[T^2 \mathbf{v} = -4 \mathbf{v} + \mathbf{0} \quad \text{so} \quad g(2) = (2 + 2i)(2 - 2i) \]

(c) Here, \(\langle \mathbf{v}, \mathbf{Tv}, T^2 \mathbf{v} \rangle \) are lin. indep. Can't possibly have \(\langle \mathbf{v}, \ldots, T^3 \mathbf{v} \rangle \) lin. indep. since we are in \(\mathbb{R}^3 \).

\[T^3 \mathbf{v} = 4 \mathbf{v} - 4T \mathbf{v} + T^2 \mathbf{v} \quad \text{so} \quad g(2) = (2 - 1)(3^2 + 4) \]

\[g(T) \mathbf{v} = (T - 1)(T^2 + 4) \mathbf{v} = (T - 1) \left[\begin{array}{c} 23 \\ 50 \\ 82 \end{array} \right] \]

\[\mathbf{v} = \left[\begin{array}{c} 23 \\ 50 \\ 82 \end{array} \right] \] has eigenvalue \(\lambda = 1 \), but we already knew this, since it's a multiple of the \(\mathbf{v} \) in part (a).
Let us find a basis for $\text{range}(T-I)$. Pick two vectors "at random":

$$V_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad V_3 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$
Then $\hat{v}_2 = \begin{bmatrix} 19 \\ 74 \end{bmatrix}$, $\hat{v}_3 = \begin{bmatrix} -9 \\ -16 \end{bmatrix}$.
... look indep. to me!

Since T has distinct eigenvalues, each eigenspace is one dimensional.
Hence $\dim(\text{null}(T)) = 1$; hence $\dim(\text{range}(T)) = 2$.

(Aside: why I'm looking for two vectors)

How does T act on these? call them w_2 & w_3, and $E = \text{basis} (w_2, w_3)$.

$$Tw_2 = \begin{bmatrix} -44 \\ -86 \\ -144 \end{bmatrix} \quad & \quad Tw_3 = \begin{bmatrix} 34 \\ -72 \\ 24 \end{bmatrix}, \quad \text{or} \quad \begin{cases} Tw_2 = \frac{-8}{7} w_2 + \frac{26}{7} w_3 \\ Tw_3 = \frac{-10}{7} w_2 + \frac{8}{7} w_3 \end{cases}$$

Thus $M(T|_E) = \begin{bmatrix} -\frac{8}{7} & -\frac{10}{7} \\ \frac{26}{7} & \frac{8}{7} \end{bmatrix}$.
On this smaller space, we are supposed to apply induction to find some basis \hat{E} with $M(T|_{\hat{E}})$ upper-triangular.

But let's just keep going.

$$w = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad A w = \begin{bmatrix} -\frac{8}{7} \\ \frac{26}{7} \end{bmatrix}, \quad A^2 w = \begin{bmatrix} -4 \\ 0 \end{bmatrix}, \quad \text{so} \quad \hat{g}(z) = z^2 + 4 \text{ is important.}$$

$$A^2 w + \hat{g} \cdot A w + 4 \cdot w = 0$$

$$\hat{g}(A) w = (A + 2i)(A - 2i) w = (A^2 - 4i^2) w = \begin{bmatrix} -\frac{8}{7} - 2i \\ \frac{26}{7} \end{bmatrix} = 0 \quad \therefore \quad \begin{bmatrix} -\frac{8}{7} - 2i \\ \frac{26}{7} \end{bmatrix} \text{ is an eigenvector with eigenvalue } -2i.$$

Similarly, $\hat{g}(A) w = (A - 2i)(A + 2i) w = (A^2 + 4i^2) w = 0$, so this gives final eigenpair:

$$A \cdot \begin{bmatrix} -\frac{8}{7} + 2i \\ \frac{26}{7} \end{bmatrix} = T \cdot \begin{bmatrix} \frac{-8}{7} + 2i \\ \frac{26}{7} \end{bmatrix}$$

Now, $A \cdot \begin{bmatrix} -\frac{8}{7} + 2i \\ \frac{26}{7} \end{bmatrix} \equiv T \cdot \begin{bmatrix} \frac{-8}{7} + 2i \\ \frac{26}{7} \end{bmatrix}$

So we're done.
Basis $\hat{E} = \begin{bmatrix} \frac{2}{7} \\ \frac{9}{7} \end{bmatrix}$.
$x_1 = (\frac{-8}{7} + 2i) w_2 + (\frac{26}{7}) w_3 = \begin{bmatrix} -44 + 38i \\ -86 + 92i \end{bmatrix}$

$$x_2 = (\frac{-8}{7} - 2i) w_2 + (\frac{26}{7}) w_3 = \begin{bmatrix} -44 - 38i \\ -86 - 92i \end{bmatrix}$$

$$x_3 = (\frac{-8}{7} - 2i) w_2 + (\frac{26}{7}) w_3 = \begin{bmatrix} -144 + 148i \\ -144 - 148i \end{bmatrix}$$

This basis satisfies $M(T)_{\hat{E}}$ is upper-triangular.
\(A/ (\Rightarrow) \) Put \(S^{-1} T S = D_1 \) and \(S^{-1} T' S = D_2 \) for some diagonal matrices \(D_1, D_2 \).

Easy to see that \(D_1, D_2 = D_2 P_1 \).

Then \(T T' = SD_1 S^{-1} S D_2 S^{-1} = SD_2 S^{-1} S D_1 S^{-1} = SD_2 S^{-1} S D_2 S^{-1} = T' T \) \(\square \)

\((\Leftarrow) \) Note that \(T' \) preserved the eigenspaces of \(T \):

if \(T v = \lambda v \), then \(T(T'v) = T'(Tv) = T' \lambda v = \lambda (T'v) \).

So \(T'v \) is another eigenvector with eigenvalue \(\lambda \). But each eigenspace is
one-dimensional, since we were given that \(T, T' \) had distinct eigenvalues, so \(T'v \) is a multiple of \(v \).

i.e., \(v \) is also an eigenvector for \(T' \).

Given a basis \(S = \{v_1, v_2, \ldots, v_n\} \) of eigenvectors for \(T \), we have

\[T \cdot S = S \cdot D_1 \quad \text{for some diagonal matrix } D_1 \text{ of eigenvalues of } T \text{, depending on the diagonal.} \]

and also, by your work,

\[T' \cdot S = S \cdot D_2 \quad \text{for some other diagonal matrix.} \]

\(B/ (a) \) If \(\mathbf{h} = \mathbf{lcm}(g_1, g_2) \), then \(h(x) = p_1(x) g_1(x) = p_2(x) g_2(x) \) for some \(p_1, p_2 \in \mathbb{P}(\mathbb{F}) \).

Thus \(\begin{cases} h(T)v = p_1(T)g_1(T)v = p_1(T)(0) = 0, \\ h(T)w = p_2(T)g_2(T)w = p_2(T)(0) = 0. \end{cases} \)

(b) First apply the Axler method to find a basis \(\{v_1, v_2, \ldots, v_n\} \) for which \(T \) is given by an upper-triangular matrix.

We may assume that like numbers appear consecutively on the diagonal.

[Note:] we must pass to algebraic closure of \(\mathbb{F} \), to do this!!]

[Note 2: reread the proof to see why... if you haven't found all the \(\lambda \)'s yet, after \(k \) steps, then peel more of those \(\lambda \)'s, before hunting for next value.]

Suppose there are \(r \) distinct eigenvalues, appearing \(\lambda_1, \ldots, \lambda_r \), \(d_i \) times (i.e., \(\lambda_i \)). Relabel the \(\{v_1, v_2, \ldots, v_n\} \) to \(\{v_1, v_2, \ldots, v_{d_1}, \ldots, v_{d_2}, \ldots\} \).

Lemma: \((T-\lambda_i)^{d_i}v_j = 0 \) \(\forall i \leq j < d_i \) (\(\forall i \)).
Formal proof would go by induction.

Here's "why", though: e.g. \[
\begin{align*}
(T-\lambda_1)^3 V_{11} &= (T-\lambda_1)^2 \left((T-\lambda_1)V_{11}\right) = (T-\lambda_1)^2 (0) = 0 \\
(T-\lambda_1)^3 V_{12} &= (T-\lambda_1)^2 \left(\lambda V_{12} + a_{12,11} V_{11}\right) - (\lambda V_{12}) \\
&= (T-\lambda_1)^2 (a_{12,11} V_{11}) = (T-\lambda_1) (0) = 0 \\
(T-\lambda_1)^3 V_{13} &= (T-\lambda_1)^2 (a_{12,12} V_{11} + a_{12,12} V_{12}) = 0
\end{align*}
\]

Finally, \[(T-\lambda_1)^d_1 (T-\lambda_2)^d_2 \cdots (T-\lambda_r)^d_r V_{ij} = 0 \quad Vi_j \quad \text{(by simply rearranging in which order you apply these operators.)} \]

\[
 g(z) = \prod_{i=1}^{r} (z-\lambda_i)^{d_i} \quad \text{is a poly. of degree } r \text{ that kills everything. (Nevermind if smaller polys do the same thing.)}
\]