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Abstract

In this note, we show that there is no Hopf algebra structure onQ∞,
the algebra of pseudo-roots of noncommutative polynomials, which
extends the one existing on NSym (one of its famous subalgebras).

1 Introduction

The algebra Qn was introduced in 2001 by Gelfand, Retakh, and Wilson
as a model for factoring noncommutative polynomials [5]. It is a graded,
quadratic algebra with the remarkable property of remaining Koszul despite
having several large free subalgebras (cf. [17] and [14] for two independent
proofs). Because of its natural origins, and because of the combinatorial
nature of its generators and relations, it is interesting to ask whether or not
it is a Hopf algebra.

Here we answer a related question inspired by the famous square of
combinatorial Hopf algebras

NSym
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Sym � � // QSym

studied in great detail by a great many authors (cf. [1, 2, 7, 8, 9, 12, 13] and
the references therein). NSymn, the algebra of noncommutative symmetric
functions in n variables, may be naturally identified as a subalgebra of Qn.
As a first step towards answering the larger question, we show that this
identification cannot be extended to a map of Hopf algebras.

The next section is critical to the argument. It summarizes results in
the theory of noncommutative polynomials and points to why the map Φ :
NSym ↪→ Q∞ chosen later is the natural one. Sections 3 and 4 introduce
the algebras Q∞ and NSym respectively. The final section contains the
calculations showing that Φ is not a Hopf algebra map.

Notation

When convenient, we use the combinatorists’ notation. In particular [n] =
{1, 2, . . . , n}. Also, we will have occasion to denote the collection of subsets
of {1, 2 . . . , n} of cardinality d as

([n]
d

)
, and to write A ∈

([n]
d

)
to mean A is
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a particular subset of [n] of cardinality d. Finally, we write γ |= n when γ
is a composition of n (any sequence of positive integers which sum to n).

Throughout this note, D is a noncommutative field with center F ⊇ Q.

2 Factoring Noncommutative Polynomials

A good reference for the first part of this section is Lam’s book [11]. Let D
be a division ring, and let f ∈ D[t] be a monic polynomial of degree n in
one variable over D. Because D is noncommutative, there is not a unique
way to “evaluate” f at an element x ∈ D.

Example. Over the quaternions, with f(t) = i + jt = i + tj and t 7→ k we
have

i + j(k) = 2i 6= 0 = i + (k)j .

We agree to evaluate f by always first writing it as a left-polynomial

f(t) = a0 + a1t + · · ·+ an−1t
n−1 + tn ,

and then plugging in x

f(x) = a0 + a1x + · · ·+ xn.

Theorem 1. If f ∈ D[t] is a monic polynomial of degree n, then x is a root
of f (that is, f(x) = 0) if and only if there exists a polynomial g of degree
n− 1 such that f(t) = g(t)(t− x).

Note. Remember that you must expand the expression g(t)(t − x) before
evaluating. So if g(t) = b0 + b1t + · · ·+ bn−2t

n−2 + tn−1 then the theorem is
really asserting the equality of f and (b0t + b1t

2 + · · ·+ tn)− (b0x + b1xt +
· · ·+ bn−2xtn−2 + xtn−1).

Expanding on this note, if a polynomial has a factorization f(t) =
g(t)h(t) it is generally not the case that f(x) = g(x)h(x). In particular,
roots of g are not necessarily roots of f .

Example. Over the quaternions, the polynomial f(t) = t2 − (i + j)t− k has
a factorization f(t) = (t− j)(t− i) but exactly one root, x = i.

Theorem 2. Let f(t) = g(t)h(t) be a factorization of f , and suppose x ∈ D
satisfies h(x) = a. If a = 0, then f(x) = g(x)h(x), otherwise, f(x) =
g(axa−1)h(x).

Definition 1. We call the elements yr of D showing up in a factorization
(t−yn)(t−yn−1) · · · (t−y2)(t−y1) of f the pseudo-roots of f , y1 additionally
being an actual root.

In [4] Gelfand and Retakh found a closed-form expression for the pseudo-
roots involving the Vandermonde quasideterminant1.

1For more on the quasideterminant, consult the survey article [3].
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Definition 2. Given elements x1, x2, . . . , xr in a division ring D, the Van-
dermonde quasideterminant V (x1, x2, . . . , xr) is the (1, r)-th quasidetermi-
nant of the Vandermonde matrix:∣∣∣∣∣∣∣∣∣∣

xr−1
1 xr−1

2 · · · xr−1
r

...
...

...
x1

1 x1
2 · · · x1

r

1 1 · · · 1

∣∣∣∣∣∣∣∣∣∣
.

Definition 3 (Gelfand-Retakh, [4]). If f [t] is a monic polynomial of
degree n with n roots x1, . . . , xn then we say that the roots are independent
if V (xi1 , xi2 , . . . , xir) is defined for all 1 ≤ r ≤ n and all orderings (i1, . . . in)
of the roots.

Theorem 3 (Gelfand-Retakh, [4]). If f has independent roots x1, . . . , xn,
then the pseudo-roots are given by the formulas:

y1 = x1

y2 = V (x1, x2)x2V (x1, x2)−1

...
yn = V (x1, x2, . . . , xn)xnV (x1, x2 . . . , xn)−1.

In their paper, they go on to prove a noncommutative Vieta theorem.

Theorem 4. The following rational functions in the variables x1, . . . , xn

are symmetric with respect to the Sn action on the x indices:

e1 = yn + yn−1 + · · ·+ y1 (1)
... (2)

er =
∑

ir>···>i1

yir · · · yi2yi1 (3)

... (4)
en = ynyn−1 · · · y2y1. (5)

They conjecture that these are truly the elementary noncommutative
symmetric functions. In other words, if g is a rational function in the xi

which is symmetric, then it is a polynomial in the er. This important con-
jecture is proven by Wilson in [19]. Equally important to this note, he proves
that the yr, and hence the er, are algebraically independent.

3 The algebra Q∞

When the roots x1, . . . xn above are independent, we may change the order of
the roots and get another (full) set of pseudo-roots. In particular, we should
replace the symbol yr by something like y(i1,...,in),r. . . reserving y1, . . . , yn for
the fixed ordering (1, 2, . . . , n).
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Theorem 5 (G-R-W, [5]). The symbols y(i1,...,in),r do not depend on the
last n− r roots, and do not depend on the ordering of the first r − 1 roots.

So we settle on the notation y{i1,...,ir−1},ir for the collection of all pseudo-
roots associated to a polynomial f .

Unlike the set {yr | 1 ≤ r ≤ n}, the set {yA,i | A ∈
(

[n]
r−1

)
, i ∈ [n] \ A}

is not algebraically independent (not even linearly independent over Q). In
[5], Gelfand, Retakh, and Wilson introduce the algebra Qn as a model for
the relationships between the pseudo-roots of polynomials of degree n.

Definition 4. Let Qn be the algebra over Q with generators {xA,i | A ∈(
[n]
r−1

)
, 1 ≤ r ≤ n, i ∈ [n] \A} and relations

xA∪i,j + xA,i = xA∪j,i + xA,j ; (6)
xA∪i,j · xA,i = xA∪j,i · xA,j . (7)

for i 6= j and i, j 6∈ A. Let Q∞ denote the direct limit of these algebras, the
algebra with generators {xA,i | A ⊆ N, i ∈ N \A} and relations given by (6)
and (7).

Note that for any fixed ordering (i1, . . . , in) of [n], the subalgebra gener-
ated by x∅,i1 , x{i1},i2 , . . . , x{i1,i2,...,in−1},n is relation-free, as Wilson’s theorem
dictates. Note also that equation (6), plus induction, allows us to throw away
generators of the form xA,i when maxA 6< i. Eliminating these generators
and relation (6), we see that Qn is a quadratic algebra.

We introduce some notation to simplify the computations to come. Let
yr be shorthand for the generator x{1,2,...,r−1},r, and let e1, . . . , en denote
the elements of Qn given by equations (1) through (5). Finally, when A =
{a1 < a2 < · · · < ar}, let X(A) = x∅,a1

+ x{a1},a2
+ · · · + x{a1,a2,...,ar−1},ar

.
In particular, X([n]) = e1; put X(∅) = 0.

For the argument in Section 5, we will need to know a bit more about
Qn.

A basis for Qn:

1. The symbols {X(A) | A ⊆ [n]} generate Qn.

2. Suppose A ∈
(
[n]
r

)
and 0 ≤ j ≤ r. We define A(j) := {a1, a2, . . . , ar−j};

i.e. A with its last j entries deleted.

3. Given A ∈
(
[n]
r

)
and 1 ≤ j ≤ r, write (A : j) for the sequence

(A(0), A(1), . . . , A(j−1)).

4. Suppose Bi = (Ai : ji), 1 ≤ i ≤ s be a collection of sequences of
this type. Let =(B1, . . . , Bs) denote the concatenation of these se-
quences, B = (A1, . . . , A

(j1−1)
1 , A2, . . .). Let us call such a concatena-

tion a string, and let wtB = j1 + · · ·+ js and `(B) = s.

5. Writing X(B) for the product X(A1) · · ·X(A(j1−1)
1 ) · · ·X(A(js−1)

s ) we
have:
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Theorem 6 (G-R-W, [5]). The set of all symbols X(B), `(B) = s, where
ji ≤ |Ai| for all i, and for all 2 ≤ i ≤ s, we have either |Ai| 6= |Ai−1| − ji−1

or Ai * Ai−1 is a basis for Qn.

In other words, X(B) is not an element of our basis if and only if there
exists 2 ≤ i ≤ s such that Ai ⊆ Ai−1 and |Ai| = |Ai−1| − ji−1. More
important for this note, we have the

Corollary. Qn is a graded, quadratic algebra with symbols X(A) all having
degree one, and the ith graded piece spanned by those symbols X(B) allowed
above satisfying wtB = i.

Note that yr = X([r])−X([r − 1]) is homogeneous of degree one. We’ll
denote the ith graded piece of Qn by Qn,i. Critical to the argument in
Section 5 is the fact that

Qn ⊗Qn =
⊕

(i,j)∈N2

Qn,i ⊗Qn,j .

4 The algebra NSym

The algebra NSym (over Q) has an interesting history. It is isomorphic [10]
to one of the earliest Hopf algebras ever studied: the universal enveloping
algebra of the free Lie algebra with countably many generators [16]. It is
isomorphic [13] to the sum of Solomon’s descent algebras [18] of type A.
Neither of these explain its name. For that, let us recall the commutative
algebra of symmetric functions Sym.

Definition 5. Sym is the collection of all functions f on N variables which
may be written as a polynomial in the elementary symmetric functions:

Λ1 = x1 + x2 + · · ·
Λ2 = x1x2 + x1x3 + · · ·+ x2x3 + · · ·

...
Λr =

∑
i1<···<ir

xi1 · · ·xir

...

This commutative Q-algebra, freely generated by the Λr, has a bialgebra
structure given by putting ∆(Λr) =

∑
i+j=r Λi ⊗ Λj (where Λ0 = 1). As it

is a connected, graded bialgebra, it is automatically a Hopf algebra2. In this
note, we show that Φ : NSym ↪→ Q∞ is not a bialgebra map, so further
discussion of antipodes will be omitted.

With Section 2 and the discussion after definition 5 in mind, the following
definition is now motivated.

2Under these conditions, one may uniquely define an antipode s as follows. For p in
the first graded piece, put s(p) = −p as you are obliged to do for primitive elements.
For higher graded pieces, the definition is forced upon you by the coalgebra grading and
induction.
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Definition 6. The algebra of noncommutative symmetric functions NSym
is the free noncommutative Q-algebra with generators zi indexed by N (z0

being identified with the unit in NSym). It is a connected, graded Hopf
algebra with coalgebra structure (∆, ε) given by ∆(zr) =

∑
i+j=r zi ⊗ zj and

ε(zr) = δ0r.

In [6], the authors develop the theory of NSym in parallel to the the-
ory of Sym. They use the quasideterminant to prove analogs of assorted
theorems for Sym which have determinantal proofs. Similar to the com-
mutative version it has several important bases (complete and monomial
symmetric functions, Schur functions, etc). The study of the structure con-
stants for (co)multiplication with respect to these bases is a growing industry
[1, 12, 15].

5 The Embedding

Let NSym(n) denote the Hopf subalgebra generated by {z0, . . . , zn}. The
algebra NSym is a direct limit of the algebras NSym(n). In what follows,
we concentrate not on the map Φ : NSym ↪→ Q∞, but on the map Φn :
NSym(n) ↪→ Qn for a fixed n.

As defined, NSym(n) is a free algebra on generators z1, . . . , zn , which
we may call the “noncommutative symmetric functions on n variables.” As
we mentioned above, e1, . . . , en are noncommutative symmetric functions
on n variables. We let Φn(zr) = er ∈ Qn, and show that this is not a
bialgebra map.

First, note that Φ is an injective algebra map since the er are alge-
braically independent in Qn. Second, note that the image Φ(NSym) is
contained in the subalgebra of Qn generated by the pseudo-roots y1, . . . , yn.
Call this subalgebra P(n).

Theorem 7. There is no bialgebra structure on Qn which extends the bial-
gebra structure on NSym(n).

Corollary. There is no Hopf algebra structure on Q∞ which extends the
Hopf algebra structure on NSym.

Proof. Let (∆, ε) be the coalgebra structure on NSymn. We assume the ex-
istence of a coalgebra structure (∆̃, ε̃) on Qn making Φ a coalgebra map. We
needn’t look past the generators of P(n) to reach a contradiction. Calcula-
tions will be presented for the case n = 3 to make the exposition palatable.

The counit map on the generators yr:

1. ε(z3) = 0 and Φ(z3) = e3 = y3y2y1 implies at least one of the yr must
satisfy ε̃(yr) = 0 (P(3) is free algebra, in particular, a domain), say
it’s y3.

2. ε(z2) = 0 and Φ(z2) = e2 = y3y2 + y3y1 + y2y1. After the assumption
on y3 above, we are left with ε̃(y2y1) = 0. Suppose ε̃(y2) = 0.
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3. ε̃(z1) = 0 and Φ(z1) = y3 + y2 + y1 implies that y1 is killed by ε̃ too.

4. Finally, relations (6) and (7) imply that ε̃(xA,i) = 0 for all generators
xA,i of Qn

The comultiplication map on the generators yr:

1. We begin in complete generality, putting

∆̃(yr) =
∑
s≥0

∑
i+j=s

∑
|B|=i,

|B′|=j

C(r)B,B′X(B)⊗X(B′).

2. Then, by the grading on Q3 ⊗ Q3, (ε̃ ⊗ 1)∆̃(yr) = yr = (1 ⊗ ε̃)∆̃(yr)
implies

(a) C(r)∅,B′ = CB,∅ = 0 when |B|, |B′| 6= 1,

(b)
∑

|B|=1 CB,∅X(B) = yr,

(c)
∑

|B′|=1 C(r)∅,B′X(B′) = yr,

3. Conclude: ∆̃(yr) = 1⊗yr +yr⊗1+fr, where fr is a linear combination
of symbols X(B)⊗X(B′) belonging to

⊕
(i,j)≥(1,1)Q3,i ⊗Q3,j .

More explicitly, I’m claiming X({1, 2})⊗y1 may appear in ∆̃(y2), but terms
like 1⊗ 1, 1⊗X({1}), and y3y1 ⊗ 1 won’t.

We will show that there is no definition of ∆̃ that satisfies Φ ◦ ∆z2 =
∆̃ ◦ Φ(z2) = ∆̃e2. First we’ll need to compute ∆̃e1. We know that ∆z1 =
z1 ⊗ 1 + 1⊗ z1, so we must have

∆̃(e1) = e1 ⊗ 1 + 1⊗ e1

= (y3 + y2 + y1)⊗ 1 + 1⊗ (y3 + y2 + y1),
∆̃(y3 + y2 + y1) = (1⊗ y3 + y3 ⊗ 1 + f3) + (1⊗ y2 + y2 ⊗ 1 + f2)

+ (1⊗ y1 + y1 ⊗ 1 + f1).

This implies
f1 + f2 + f3 = 0, (8)

an equation taking place in
⊕

(i,j)≥(1,1)Q3,i ⊗Q3,j .
Now we consider ∆̃(e2). As the image of Φ(∆z2), it must satisfy

1⊗ e2 + e1 ⊗ e1 + e2 ⊗ 1 = ∆̃(e2)
= ∆̃(y3y2 + y3y1 + y2y1)
= (1⊗ y3 + y3 ⊗ 1 + f3)(1⊗ y2 + y2 ⊗ 1 + f2)

+(1⊗ y3 + y3 ⊗ 1 + f3)(1⊗ y1 + y1 ⊗ 1 + f1)
+(1⊗ y2 + y2 ⊗ 1 + f2)(1⊗ y1 + y1 ⊗ 1 + f1)

= 1⊗ e2 + e1 ⊗ e1 + e2 ⊗ 1 + (?),
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where (?), appearing below, must be zero.

f3∆̃y2+∆̃y3f2+f3∆̃y1+∆̃y3f1+f2∆̃y1+∆̃y2f1−y3⊗y3−y2⊗y2−y1⊗y1 = 0.
(9)

Using equation (8) to simplify equation (9) we get

(−f1)(y1 ⊗ 1 + 1⊗ y1 + f1)
+ (y3 ⊗ 1 + 1⊗ y3 + f3)(−f3)

+ (f3)(y2 ⊗ 1 + 1⊗ y2 + f2)
+ (y2 ⊗ 1 + 1⊗ y2 + f2)(f1) = y3 ⊗ y3 + y2 ⊗ y2 + y1 ⊗ y1.

Now, each term on the left belongs to
⊕

(i,j)>(1,1) Q3,i ⊗ Q3,j while each
term on the right belongs to Q3,1 ⊗ Q3,1. So both must be zero. But the
expression on the right (writing Xi for X([i])) is equal to

X3 ⊗ (X3 −X2) + X2 ⊗ (2X2 −X3 −X1) + X1 ⊗ (2X1 −X2) ,

which is clearly nonzero. A contradiction.
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