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Abstract. We prove Lagrange’s theorem for Hopf monoids in the categoryof connected species. We deduce necessary
conditions for a given subspeciesk of a Hopf monoidh to be a Hopf submonoid: each of the generating series
of k must divide the corresponding generating series ofk in N[[x]]. Among other corollaries we obtain necessary
inequalities for a sequence of nonnegative integers to be the sequence of dimensions of a Hopf monoid. In the
set-theoretic case the inequalities are linear and demand the non negativity of the binomial transform of the sequence.

Résuḿe. Nous prouvons le théorème de Lagrange pour les monoı̈des Hopf dans la catégorie des espèces connexes.
Nous deduisons des conditions nécessaires pour que une sous-espècek d’un monoı̈de de Hopfh soit un sous-monoı̈de
de Hopf: chaque une des séries génératrices dek doit diviser la série génératrice correspondante deh dansN[[x]].
Parmi d’autres corollaires nous trouvons des inegalités nécessaires pour que une suite d’entiers soit la successionde
dimensions d’un monoı̈de de Hopf. Dans le cas ensembliste les inegalités son lináires et exigent que la transformation
binomiale de la suite soit non negative.
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Introduction
Lagrange’s theorem states that for any subgroupK of a groupH , H ∼= K × Q as (left)K-sets, where
Q = H/K. In particular, ifH is finite, |K| divides|H |. Passing to group algebras over a fieldk, we have
thatkH ∼= kK⊗kQ as (left)kK-modules, or thatkH is free as akK-module. Kaplansky [6] conjectured
that the same statement holds for Hopf algebras (group algebras being principal examples). It turns out
that the result does not not in general, as shown by Oberst andSchneider [13, Proposition 10] and [11,
Example 3.5.2]. On the other hand, the result does hold for large classes of Hopf algebras, including
the finite dimensional ones by a theorem Nichols and Zoeller [12], and the pointed ones by a theorem of
Radford [16]. More information can be found in Sommerhäuser’s survey [15].

The main result of this paper (Theorem 7) is a version of Lagrange’s theorem for Hopf monoids in the
category of connected species. (Hopf algebras are Hopf monoids in the category of vector spaces.) An
immediate application is a test for Hopf submonoids (Corollary 12): if any one of the generating series for
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a subspeciesk does not divide the corresponding generating series for theHopf monoidh (in the sense
that the quotient has negative coefficients), thenk is not a Hopf submonoid ofh. A similar test also holds
for connected graded Hopf algebras (Corollary 4). The proofof Theorem 7 (for Hopf monoids in species)
parallels Radford’s proof (for Hopf algebras).

This abstract is organized as follows. In Section 1, we recall Lagrange’s theorem for several classes
of Hopf algebras. In Section 2, we recall the basics of Hopf monoids in species and prove Lagrange’s
theorem in this setting. We conclude in Section 3 with some examples and applications involving the
associated generating series. Among these, we derive necessary conditions for a sequence of nonnegative
integers to be the sequence of dimensions of a connected Hopfmonoid in species.

1 Lagrange’s theorem for Hopf algebras
We begin by recalling a couple of versions of this theorem. (All vector spaces are over a fixed fieldk.)

Theorem 1 LetH be a finite dimensional Hopf algebra over a fieldk. If K ⊆ H is any Hopf subalgebra,
thenH is a free left (and right)K-module.

This is the Nichols-Zoeller theorem [12]; see also [11, Theorem 3.1.5]. We will not make direct use of
this result, but rather the related results discussed below.

A Hopf algebraH is pointedif all its simple subcoalgebras are one dimensional. Equivalently, the
group-like elements ofH linearly span the coradical ofH . Given a subspaceK of H , let

K+ := K ∩ ker(ǫ)

whereǫ : H → k is the counit ofH . Also,K+H denotes the rightH-ideal generated byK+.

Theorem 2 LetH be a pointed Hopf algebra. IfK ⊆ H is any Hopf subalgebra, thenH is a free left
(and right)K-module. Moreover,H ∼= K ⊗ (H/K+H) as leftK-modules.

The first statement is due to Radford [16, Section 4] and the second (stronger) statement is due to Schnei-
der [14, Remark 4.14]. See Sommerhaüser’s survey [15] for further generalizations.

A Hopf algebraH is gradedif there is given a decomposition

H =
⊕

n≥0

Hn

into linear subspaces that is preserved by all operations. It is connectedif in addition H0 is linearly
spanned by the unit element.

Theorem 3 LetH be a graded connected Hopf algebra. IfK ⊆ H is a graded Hopf subalgebra, thenH
is a free left (and right)K-module. Moreover,

H ∼= K ⊗ (H/K+H)

as leftK-modules and as graded vector spaces.
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Proof: SinceH is connected graded, its coradical isH0 = k, soH is pointed and Theorem 2 applies.
Radford’s proof shows that there exists a graded vector spaceQ such that

H ∼= K ⊗Q

as leftK-modules and as graded vector spaces. (The argument we give in the parallel setting of Theorem 7
makes this clear.) Note thatK+ =

⊕

n≥1 Kn, andK+H andH/K+H inherit the grading ofH . To
complete the proof, it suffices to show thatQ ∼= H/K+H as graded vector spaces. 2

Given a graded Hopf algebraH , letPH(x) ∈ N[[x]] denote itsPoincaŕe series—the formal power series
enumerating the dimensions of its graded components,

PH(x) :=
∑

n≥0

dimHn x
n.

SupposeH is graded connected andK is a graded Hopf subalgebra. In this case, their Poincaré series are
of the form1 + a1x + a2x

2 + · · · with ai ∈ N and the quotientPH(x)/PK(x) is a well-defined power
series inZ[[x]].

Corollary 4 LetH be a connected graded Hopf algebra. IfK ⊆ H is any graded Hopf subalgebra, then
the quotientPH(x)/PK(x) of Poincaŕe series is nonnegative, i.e., belongs toN[[x]].

Proof: By Theorem 3,H ∼= K ⊗ Q as graded vector spaces, whereQ = H/K+H . HencePH(x) =
PK(x)PQ(x) and the result follows. 2

Example 5 Consider the Hopf algebraQSymof quasisymmetric functions in countably many variables,
and the Hopf subalgebraSym of symmetric functions. They are graded connected, so by Theorem 3,
QSymis a free module overSym. Garsia and Wallach prove this same fact for the algebrasQSymn and
Symn of (quasi) symmetric functions inn variables [4]. These are not Hopf algebras whenn is finite, so
Theorem 3 does not yield the result of Garsia and Wallach. Thepapers [4] and [8] provide information on
the spaceQn entering in the decompositionQSymn

∼= Symn ⊗Qn.

2 Lagrange’s theorem for Hopf monoids in species
We first review the notion of Hopf monoid in the category of species, following [2], and then prove
Lagrange’s theorem in this setting. We restrict attention to the case of connected Hopf monoids.

2.1 Hopf monoids in species
The notion of species was introduced by Joyal [5]. It formalizes the notion of combinatorial structure and
provides a framework for studying the generating functionswhich enumerate these structures. The book
[3] by Bergeron, Labelle and Leroux expounds the theory of (set) species.

Joyal’s work indicates that species may also be regarded as algebraic objects; this is the point of view
adopted in [2] and in this work. To this end, it is convenient to work with vector species.

A (vector) speciesis a functorq from finite sets and bijections to vector spaces and linear maps.
Specifically, it is a family of vector spacesq[I], one for each finite setI, together with linear maps
q[σ] : q[I] → q[J ], one for each bijectionσ : I → J , satisfying

q[idI ] = idq[I] and q[σ ◦ τ ] = q[σ] ◦ q[τ ]
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wheneverσ andτ are composable bijections. A speciesq is finite dimensionalif each vector spaceq[I]
is finite dimensional. In this paper, all species are finite dimensional. A morphism of species is a natural
transformation of functors. LetSp denote the category of (finite dimensional) species.

We give two elementary examples that will be useful later.

Example 6 Let E be theexponential species, defined byE[I] = k{∗I} for all I. The symbol∗I denotes
an element canonically associated to the setI (for definiteness, we may take∗I = I). Thus,E[I] is a one
dimensional space with a distinguished basis element. A richer example is provided by the speciesL of
linear orders, defined byL[I] = k{linear orders onI} for all I (a space of dimensionn! when|I| = n).

We use· to denote theCauchy productof two species. Specifically,
(

p · q
)

[I] :=
⊕

S⊔T=I

p[S]⊗ q[T ] for all finite setsI.

The notationS ⊔ T = I indicates thatS ∪ T = I andS ∩ T = ∅. The sum runs over all suchordered
decompositionsof I, or equivalently over all subsetsS of I: there is one term forS ⊔ T and another for
T ⊔ S. The Cauchy product turnsSp into a symmetric monoidal category. The braiding simply switches
the tensor factors. The unit object is the species1 defined by

1[I] :=

{

k if I is empty,

0 otherwise.

A monoidin the category(Sp, ·) is a speciesm together with a morphism of speciesµ : m ·m → m,
i.e., a family of maps

µS,T : m[S]⊗m[T ] → m[I],

one for each ordered decompositionI = S ⊔T , satisfying appropriate associativity and unital conditions,
and naturality with respect to bijections. Briefly, to eachm-structure onS andm-structure onT , there is
assigned anm-structure onS ⊔ T . The analogous object in the categorygVec of graded vector spaces is
a graded algebra.

The speciesE has a monoid structure defined by sending the basis element∗S⊗∗T to the basis element
∗I . ForL, a monoid structure is provided by concatenation of linear orders:µS,T (ℓ1 ⊗ ℓ2) = (ℓ1, ℓ2).

A comonoidin the category(Sp, ·) is a speciesc together with a morphism of species∆ : c → c · c,
i.e., a family of maps

∆S,T : c[I] → c[S]⊗ c[T ],

one for each ordered decompositionI = S ⊔ T , which are natural, coassociative and counital.
ForE, a comonoid structure is defined by sending the basis vector∗I to the basis vector∗S ⊗ ∗T . For

L, a comonoid structure is provided by restricting a total orderℓ on I: ∆S,T (ℓ) = ℓ|S ⊗ ℓ|T .
We assume that our speciesq areconnected, i.e.,q[∅] = k. In this case, the (co)unital conditions for a

(co)monoid force the mapsµS,T and∆S,T to be the canonical identifications if eitherS or T is empty.
A Hopf monoidin the category(Sp, ·) is a monoid and comonoid whose two structures are compatible

in an appropriate sense, and which carries an antipode. In this paper we only consider connected Hopf
monoids. For such Hopf monoids, the existence of the antipode is guaranteed. The speciesE andL, with
the structures outlined above, are two important examples of (connected) Hopf monoids.

For further details on Hopf monoids in species, see Chapter 8of [2]. The theory of Hopf monoids in
species is developed in Part II of this reference; several examples are discussed in Chapters 12 and 13.
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2.2 Lagrange’s theorem for connected Hopf monoids

Given a connected Hopf monoidk in species, we letk+ denote the species defined by

k+[I] =

{

k[I] if I 6= ∅,

0 if I = ∅.

If k is a submonoid of a monoidh, thenk+h denotes the right ideal ofh generated byk+. In other
words,

(k+h)[I] =
∑

S⊔T=I

S 6=∅

µS,T

(

k[S]⊗ h[T ]
)

.

Theorem 7 Leth be a connected Hopf monoid in the category of species. Ifk is a Hopf submonoid ofh,
thenh is a free leftk-module. Moreover,

h ∼= k · (h/k+h)

as leftk-modules (and as species).

The proof is given after a series of preparatory results. Ourargument parallels Radford’s proof of
Theorem 2 [16, Section 4]. The main ingredient is a result of Larson and Sweedler [7] known as the
fundamental theorem of Hopf modules [11, Thm. 1.9.4]. It states that if(M,ρ) is a left Hopf module over
K, thenM is free as a leftK-module and in fact is isomorphic to the Hopf moduleK⊗Q, whereQ is the
space ofcoinvariantsfor the coactionρ. Takeuchi extends this result to the context of Hopf monoidsin a
braided monoidal category with equalizers [19, Thm. 3.4]; asimilar result (in a more restrictive setting)
is given by Lyubashenko [9, Thm. 1.1]. As a special case of Takeuchi’s result, we have the following.

Proposition 8 Let m be a left Hopf module over a connected Hopf monoidk in species. There is an
isomorphismm ∼= k · q of left Hopf modules, where

q[I] :=
{

m ∈ m[I] | ρS,T (m) = 0 for S ⊔ T = I, T 6= I
}

.

In particular,m is free as a leftk-module.

Hereρ : m → k ·m denotes the comodule structure, which consists of maps

ρS,T : m[I] → k[S]⊗m[T ],

one for each ordered decompositionI = S ⊔ T .

Given a comonoidh and two subspeciesu,v ⊆ h, theirwedgeis defined by

u ∧ v := ∆−1(u · h+ h · v).

The remaining ingredients needed for the proof are suppliedby the following lemmas.

Lemma 9 Let h be a comonoid in species. Ifu andv are subcomonoids ofh, then: (i) u ∧ v is a
subcomonoid ofh andu+ v ⊆ u ∧ v; (ii) u ∧ v = ∆−1

(

u · (u ∧ v) + (u ∧ v) · v
)

.
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Proof: (i) Proofs of analogous statements for coalgebras, given in[1, Section 3.3], extend to this setting.
(ii) From the definition,∆−1

(

u · (u∧v) + (u∧ v) · v
)

⊆ u∧ v. Now, sinceu∧v is a subcomonoid,

∆(u ∧ v) ⊆
(

(u ∧ v) · (u ∧ v)
)

∩ (u · h+ h · v) = u · (u ∧ v) + (u ∧ v) · v,

sinceu,v ⊆ u ∧ v. This proves the converse inclusion. 2

Lemma 10 Leth be a Hopf monoid in species andk a submonoid. Letu,v ⊆ h be subspecies which
are leftk-submodules ofh. Thenu ∧ v is a leftk-submodule ofh.

Proof: Sinceh is a Hopf monoid, the coproduct∆ : h → h · h is a morphism of lefth-modules, where
h acts onh ·h via∆. Hence it is also a morphism of leftk-modules. By hypothesis,u ·h+h ·v is a left
k-submodule ofh · h. Hence,u ∧ v = ∆−1(u · h+ h · v) is a leftk-submodule ofh. 2

Lemma 11 Leth be a Hopf monoid in species andk a Hopf submonoid. Letc be a subcomonoid ofh
and a leftk-submodule ofh. Then(k ∧ c)/c is a leftk-Hopf module. 2

We are nearly ready for the proof of the main result. First, recall thecoradical filtrationof a connected
comonoid in species [2,§8.10]. Given a connected comonoidc, define subspeciesc(n) by

c(0) = 1 and c(n) = c(0) ∧ c(n−1) for all n ≥ 1.

We then have
c(0) ⊆ c(1) ⊆ · · · ⊆ c(n) ⊆ · · · c and c =

⋃

n≥0

c(n).

Proof of Theorem 7: We show that there is a speciesq such thath ∼= k · q as leftk-modules. As in the
proof of Theorem 3, one then argues thatq ∼= h/k+h.

Define a sequencek(n) of subspecies ofh by

k(0) = k and k(n) = k ∧ k(n−1) for all n ≥ 1.

Eachk(n) is a subcomonoid and a leftk-submodule ofh. This follows from Lemmas 9 and 10, by
induction onn. Then, by Lemma 11, for alln ≥ 1 the quotient speciesk(n)/k(n−1) is a left Hopf
k-module. Therefore, by Proposition 8, eachk(n)/k(n−1) is a free leftk-module.

We claim that there exists a sequence of speciesqn (n ≥ 0) such that

k(n) ∼= k · qn

as leftk-modules (so that eachk(n) is a free leftk-module). Moreover, theqn can be chosen so that

q0 ⊆ q1 ⊆ · · · ⊆ qn ⊆ · · ·

and the above isomorphisms are compatible with the inclusionsqn−1 ⊆ qn andk(n−1) ⊆ k(n). This
may be proven by induction onn.

Finally, sinceh is connected,h(0) = 1 ⊆ k = k(0), and by induction,h(n) ⊆ k(n) for all n ≥ 0.
Hence,

h =
⋃

n≥0

h(n) =
⋃

n≥0

k(n) ∼=
⋃

n≥0

k · qn
∼= k · q where q =

⋃

n≥0

qn.

Thus,h is free as a leftk-module. 2
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3 Applications and examples
3.1 A test for Hopf submonoids

Two important power series associated to a (finite dimensional) speciesq are itsexponential generating
seriesEq(x) andtype generating seriesTq(x). They are given by

Eq(x) =
∑

n≥0

dimq[n]
xn

n!
and Tq(x) =

∑

n≥0

dimq[n]Sn
xn,

where
q[n]Sn

= q[n]/k{v − σv | v ∈ q[n], σ ∈ Sn}.

Both are specializations of thecycle index seriesZq(x1, x2, . . . ); see [3,§1.2] for definitions. Specifically,

Eq(x) = Zq(x, 0, . . . ) and Tq(x) = Zq(x, x
2, . . . ).

The cycle index series is multiplicative under Cauchy product: if h = k · q, thenZh(x1, x2, . . . ) =
Zk(x1, x2, . . . )Zq(x1, x2, . . . ); see [3,§1.3]. Thus, the same is true forEq(x) andTq(x).

LetQ≥0 denote the nonnegative rational numbers. A consequence of Theorem 7 is the following.

Corollary 12 Let h andk be connected Hopf monoids in species. Ifk is either a Hopf submonoid or
a quotient Hopf monoid ofh, then the quotientZh(x1, x2, . . . )/Zk(x1, x2, . . . ) of cycle index series is
nonnegative, i.e., belongs toQ≥0[[x1, x2, . . . ]]. Likewise for the quotientsEh(x)/Ek(x) andTh(x)/Tk(x).

Given a connected Hopf monoidh in species, we may use Corollary 12 to determine if a given species
k may be a Hopf submonoid (or a quotient Hopf monoid).

Example 13 A partition of a setI is an unordered collection of disjoint nonempty subsets ofI whose
union isI. The notationab.c is shorthand for the partition

{

{a, b}, {c}
}

of {a, b, c}.
LetΠ be the species of set partitions, i.e.,Π[I] is the vector space with basis the set of all partitions of

I. LetΠ′ denote the subspecies linearly spanned by set partitions with distinct block sizes. For example,

Π[{a, b, c}] = k
{

abc, a.bc, ab.c, a.bc, a.b.c
}

and Π′[{a, b, c}] = k
{

abc, a.bc, ab.c, a.bc
}

.

The sequences(dimΠ[n])n≥0 and (dimΠ′[n])n≥0 appear in [17] as A000110 and A007837, respec-
tively. We have

EΠ(x) = exp
(

exp(x)− 1
)

= 1 + x+ x2 +
5

6
x3 +

5

8
x4 + · · ·

and

EΠ′(x) =
∏

n≥1

(

1 +
xn

n!

)

= 1 + x+
1

2
x2 +

2

3
x3 +

5

24
x4 + · · · .

If a Hopf monoid structure onΠ existed for whichΠ′ were a Hopf submonoid, then the quotient of
their exponential generating series would be nonnegative,by Corollary 12. However, we have

EΠ(x)
/

EΠ′(x) = 1 +
1

2
x2 −

1

3
x3 +

1

2
x4 −

11

30
x5 + · · · ,
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so no such structure exists. In [2,§12.6], a Hopf monoid structure onΠ is defined. By the above, there is
no way to embedΠ′ as a Hopf submonoid.

We remark that the type generating series quotient for the pair of species in Example 13 is positive:

TΠ(x) = 1 + x+ 2x2 + 3x3 + 5x4 + 7x5 + 11x6 + 15x7 + · · · ,

TΠ′(x) = 1 + x+ x2 + 2x3 + 2x4 + 3x5 + 4x6 + 5x7 + · · · ,

TΠ(x)
/

TΠ′(x) = 1 + x2 + 2x4 + 3x6 + 5x8 + 7x10 + · · · .

This can be understood by appealing to the Hopf algebraSym. A basis for itsnth graded piece is indexed
by integer partitions, soPSym(x) = TΠ(x). Moreover,TΠ′(x) enumerates the integer partitions with odd
part sizes andSymdoes indeed contain a Hopf subalgebra with this Poincaré series. It is the algebra of
Schur-Q functions. See [10, III.8]. ThusTΠ(x)

/

TΠ′(x) is nonnegative by Corollary 4.

3.2 A test for Hopf monoids
Let (an)n≥0 be a sequence of nonnegative integers witha0 = 1. Does there exist a connected Hopf
monoidh with dimh[n] = an for all n? The next result provides conditions that the sequence(an)n≥0

must satisfy for this to be the case.

Corollary 14 (The (ord/exp)-test) For any connected Hopf monoid in speciesh,
(

∑

n≥0

dimh[n]xn
)/(

∑

n≥0

dimh[n]

n!
xn

)

∈ N[[x]].

Proof: We make use of theHadamard productof Hopf monoids [2, Corollary 8.59]. The exponential
speciesE is the unit for this operation.

Consider the canonical morphism of Hopf monoidsL ։ E; it maps any linear orderℓ ∈ L[I] to the
basis element∗I ∈ E[I] [2, Section 8.5]. The Hadamard product then yields a morphism of Hopf monoids

L× h ։ E× h ∼= h.

By Corollary 12,EL×h(x)/Eh(x) ∈ N[[x]]. SinceEL×h(x) =
∑

n≥0 dimh[n]xn, the result follows. 2

Let an = dimh[n]. Corollary 14 states that the ratio of the ordinary to the exponential generating
function of the sequence(an)n≥0 must be nonnegative. This translates into a sequence of polynomial
inequalities, the first of which are as follows:

5a3 ≥ 3a2a1, 23a4 + 12a2a
2
1 ≥ 20a3a1 + 6a22.

In particular, not every nonnegative sequence arises as thesequence of dimensions of a Hopf monoid.

3.3 A test for Hopf monoids over E
Our next result is a necessary condition for a Hopf monoid in species to contain or surject onto the
exponential speciesE.

Given a sequence(an)n≥0, its binomial transform(bn)n≥0 is defined by

bn :=
n
∑

i=0

(

n

i

)

(−1)i an−i.
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Corollary 15 (The E-test) Supposeh is a connected Hopf monoid that either contains the speciesE or
surjects ontoE (in both cases as a Hopf monoid). Letan = dimh[n] andan = dimh[n]Sn

. Then the
binomial transform of(an)n≥0 must be nonnegative and(an)n≥0 must be nondecreasing.

More plainly, in this setting, we must have the following inequalities:

a1 ≥ a0, a2 ≥ 2a1 − a0, a3 ≥ 3a2 − 3a1 + a0, . . .

andan ≥ an−1 for all n ≥ 1.

Proof: SinceEE(x) = exp(x), the quotientEh(x)/EE(x) is given by

b0 + b1x+ b2
x2

2
+ b3

x3

3!
+ · · · ,

where(bn)n≥0 is the binomial transform of(an)n≥0. It is nonnegative by Corollary 12. Replacing
exponential for type generating functions yields the result for (an)n≥0, sinceTE(x) = 1

1−x . 2

We make a further remark regarding connectedlinearizedHopf monoids. These are Hopf monoids of
a set theoretic nature. See [2,§8.7] for details. Briefly, there are set mapsµA,B(x, y) and∆A,B(z) that
produce single structures (written(x, y) 7→ x · y andz 7→ (z|A, z/A), respectively), which are compatible
at the level of set maps and which produce a Hopf monoid in species when linearized. It follows that if
h is a linearized Hopf monoid, then there is a unique morphism of Hopf monoids fromh ontoE. Thus,
Corollary 15 provides a test for existence of a linearized Hopf monoid structure onh.

Example 16 We return to the speciesΠ′ of set partitions into distinct block sizes. We might ask if this
can be made into a linearized Hopf monoid in some way (after Example 13, this wouldnot be as a Hopf
submonoid ofΠ). With an andbn as above, we have:

(an)n≥0 = 1, 1, 1, 4, 5, 16, 82, 169, 541, . . . ,

(bn)n≥0 = 1, 0, 0, 3, −8, 25, −9, −119, 736, . . . .

ThusΠ′ fails theE-test and the answer to the above question is negative.

3.4 A test for Hopf monoids over L
Let h be a connected Hopf monoid in species. Letan = dimh[n] andan = dimh[n]Sn

. Note that the
analogous integers for the speciesL of linear orders arebn = n! andbn = 1. Now suppose thath contains
L or surjects ontoL as a Hopf monoid. An obvious necessary condition for this situation is thatan ≥ n!
andan ≥ 1. Our next result provides stronger conditions.

Corollary 17 (The L-test) Supposeh is a connected Hopf monoid that either contains the speciesL or
surjects ontoL (in both cases as a Hopf monoid). Ifan = dimh[n] andan = dimh[n]Sn

, then

an ≥ nan−1 and an ≥ an−1 (∀n ≥ 1).

Proof: It follows from Corollary 12 that bothEh(x)/EL(x) andTh(x)/TL(x) are nonnegative. These
yield the first and second set of inequalities, respectively. 2
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Before giving an application of the corollary, we introducea new Hopf monoid in species. Acomposi-
tion of a setI is an ordered collection of disjoint nonempty subsets ofI whose union isI. The notation
ab|c is shorthand for the composition

(

{a, b}, {c}
)

of {a, b, c}.
Let Pal denote the species of set compositions whose sequence of block sizes is palindromic. So, for

instance,

Pal[{a, b}] = k
{

ab, a|b, b|a
}

and

Pal[{a, b, c, d, e}] = k
{

abcde, a|bcd|e, ab|c|de, a|b|c|d|e, . . .
}

.

The latter space has dimension171 = 1 + 5
(

4
3

)

+
(

5
2

)

3 + 5! anddimPal[5]S5
= 4 for the four types of

palindromic set compositions shown above.
Given a palindromic set compositionπ = π1| · · · |πr, we view it as a tripleπ = (π−, π0, π+), where

π− is the initial sequence of blocks,π0 is the central block if this exists (if the number of blocks isodd)
and otherwise it is the empty set, andπ+ is the final sequence of blocks. That is,

π− = π1| · · · |π⌊r/2⌋, π0 =

{

π⌊r/2⌋+1 if r is odd,

∅ if r is even,
π+ = π⌈r/2+1⌉| · · · |πr.

GivenS ⊆ I, let
π|S := π1 ∩ S |π2 ∩ S | · · · |πr ∩ S ,

where empty intersections are deleted. Thenπ|S is a composition ofS. It is not always the case thatπ|S
is palindromic. Let us say thatS is admissiblefor π when it is, i.e.,

#
(

πi ∩ S
)

= #
(

πr+1−i ∩ S
)

for all i = 1, . . . , r.

In this case, bothπ|S andπ|I\S are palindromic.
We now define product and coproduct operations onPal. Fix a decompositionI = S ⊔ T .

Product. Given palindromic set compositionsπ ∈ Pal[S] andσ ∈ Pal[T ], we put

µS,T (π ⊗ σ) :=
(

π−|σ−, π0 ∪ σ0, σ+|π+
)

.

In other words, we concatenate the initial sequences of blocks of π andσ in that order, merge their
central blocks, and concatenate their final sequences in theopposite order. The result is a palindromic
composition ofI. For example, withS = {a, b} andT = {c, d, e, f},

(a|b)⊗ (c|de|f) 7→ a|c|de|f |b.

Coproduct. Given a palindromic set compositionτ ∈ Pal[I], we put

∆S,T (τ) :=

{

τ |S ⊗ τ |T if S is admissible forπ,

0 otherwise.

For example, withS andT as above,

ad|b|e|cf 7→ 0 and e|abcd|f 7→ (ab)⊗ (e|cd|f).

These operations endowPal with the structure of Hopf monoid, as may be easily checked.
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Example 18 We ask ifPal contains (or surjects onto) the Hopf monoidL. Both Hopf monoids are
cocommutative and not commutative. Writingan = dimPal[n], we have:

(an)n≥0 = 1, 1, 3, 7, 43, 171, 1581, 8793, 108347, . . . .

Every linear order is a palindromic set composition with singleton blocks. Thusan ≥ n! for all n and the
question has some hope for an affirmative answer. However,

(an − nan−1)n≥1 = 0, 1, −2, 15, −44, 555, −2274, 38003, . . . ,

soPal fails theL-test and the answer to the above question is negative.

3.5 Examples of nonnegative quotients

We comment on a few examples where the quotient power seriesEh(x)/Ek(x) is not only nonnegative
but is known to have a combinatorial interpretation as a generating function.

Example 19 Consider the Hopf monoidΠ of set partitions. It containsE as a Hopf submonoid via the
map that sends∗I to the partition ofI into singletons. We have

EΠ(x)/EE(x) = exp
(

exp(x)− x− 1
)

,

which is the exponential generating function for the numberof set partitions into blocks of size strictly
bigger than1. This fact may also be understood with the aid of Theorem 7, asfollows. TheI-component
of the right idealE+Π is linearly spanned by elements of the form∗S · π whereI = S ⊔ T andπ is a
partition ofT . Now, since∗S = ∗{i} · ∗S\{i} (for anyi ∈ S), we have thatE+Π[I] is linearly spanned
by elements of the form∗{i} · π wherei ∈ I andπ is a partition ofI \ {i}. But these are precisely the
partitions with at least one singleton block.

Example 20 LetΣ be the Hopf monoid of set compositions defined in [2, Section 12.4]. It containsL as
a Hopf submonoid via the map that views a linear order as a composition into singletons. This and other
morphisms relatingE, L, Π andΣ, as well as other Hopf monoids, are discussed in [2, Section 12.8].

The sequence(dimΣ[n])n≥0 is A000670 in [17]. We have

EΣ(x) =
1

2− exp(x)
.

Moreover, it is known from [18, Exercise 5.4.(a)] that

1− x

2− exp(x)
=

∑

n≥0

sn
n!

xn

wheresn is the number ofthresholdgraphs with vertex set[n] and no isolated vertices. Together with
Theorem 7, this suggests the existence of a basis forΣ/L+Σ indexed by such graphs.
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