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Abstract. We prove Lagrange’s theorem for Hopf monoids in the categbepnnected species. We deduce necessary
conditions for a given subspecigsof a Hopf monoidh to be a Hopf submonoid: each of the generating series
of k must divide the corresponding generating seriek @i N[z]. Among other corollaries we obtain necessary
inequalities for a sequence of nonnegative integers to esdlgquence of dimensions of a Hopf monoid. In the
set-theoretic case the inequalities are linear and denhanabin negativity of the binomial transform of the sequence.

Résureé. Nous prouvons le theoréme de Lagrange pour les monoidpsddns la catégorie des especes connexes.
Nous deduisons des conditions nécessaires pour que usxespécd d'un monoide de Hoph soit un sous-monoide

de Hopf: chaque une des séries génératricek deit diviser la série génératrice correspondantédhdiansN[z].
Parmi d’autres corollaires nous trouvons des inegalifegssaires pour que une suite d’entiers soit la succedsion
dimensions d’'un monoide de Hopf. Dans le cas ensemblistadgalités son linaires et exigent que la transformatio
binomiale de la suite soit non negative.
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Introduction

Lagrange’s theorem states that for any subgrupf a groupH, H = K x Q as (left) K-sets, where
Q = H/K. In particular, ifH is finite, | K| divides| H|. Passing to group algebras over a figJdve have
thatkH = kK ®kQ as (left)k K -modules, or thakt H is free as &K -module. Kaplansky [6] conjectured
that the same statement holds for Hopf algebras (group i@gdieing principal examples). It turns out
that the result does not not in general, as shown by ObersSahdeider [13, Proposition 10] and [11,
Example 3.5.2]. On the other hand, the result does hold fgelalasses of Hopf algebras, including
the finite dimensional ones by a theorem Nichols and Zoell2}, [and the pointed ones by a theorem of
Radford [16]. More information can be found in Sommerh@ssrirvey [15].

The main result of this paper (Theorem 7) is a version of Liages theorem for Hopf monoids in the
category of connected species. (Hopf algebras are Hopf idemothe category of vector spaces.) An
immediate application is a test for Hopf submonoids (CargllL2): if any one of the generating series for
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a subspeciek does not divide the corresponding generating series foHt® monoidh (in the sense
that the quotient has negative coefficients), thkes not a Hopf submonoid di. A similar test also holds
for connected graded Hopf algebras (Corollary 4). The pobdheorem 7 (for Hopf monoids in species)
parallels Radford’s proof (for Hopf algebras).

This abstract is organized as follows. In Section 1, we tdarange’s theorem for several classes
of Hopf algebras. In Section 2, we recall the basics of Hophaigds in species and prove Lagrange’s
theorem in this setting. We conclude in Section 3 with sommmgdes and applications involving the
associated generating series. Among these, we derivesaggennditions for a sequence of nonnegative
integers to be the sequence of dimensions of a connectedhtopdid in species.

1 Lagrange’s theorem for Hopf algebras

We begin by recalling a couple of versions of this theorenl. \{@ctor spaces are over a fixed fiéid

Theorem 1 Let H be a finite dimensional Hopf algebra over a figldif X' C H is any Hopf subalgebra,
thenH is a free left (and right)<-module.

This is the Nichols-Zoeller theorem [12]; see also [11, Teen3.1.5]. We will not make direct use of
this result, but rather the related results discussed below

A Hopf algebraH is pointedif all its simple subcoalgebras are one dimensional. Edgiby, the
group-like elements off linearly span the coradical df. Given a subspack of H, let

K, = K Nker(e)
wheree : H — k is the counit ofH. Also, Ky H denotes the right/-ideal generated b ..

Theorem 2 Let H be a pointed Hopf algebra. IK C H is any Hopf subalgebra, theH is a free left
(and right) K-module. Moreovei] =~ K ® (H/K H) as leftK-modules.

The first statement is due to Radford [16, Section 4] and tbergk(stronger) statement is due to Schnei-
der [14, Remark 4.14]. See Sommerhatiser’s survey [15Litinér generalizations.
A Hopf algebraH is gradedif there is given a decomposition

H:@Hn

n>0

into linear subspaces that is preserved by all operationgs donnectedf in addition Hy is linearly
spanned by the unit element.

Theorem 3 Let H be a graded connected Hopf algebraKfC H is a graded Hopf subalgebra, thd#h
is a free left (and right)<X-module. Moreover,

H~K® (H/K,H)

as left K-modules and as graded vector spaces.
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Proof: SinceH is connected graded, its coradicalig = k, so H is pointed and Theorem 2 applies.
Radford’s proof shows that there exists a graded vectorespastich that

H2K®Q

as leftK-modules and as graded vector spaces. (The argument wadiveparallel setting of Theorem 7
makes this clear.) Note th&, = @, K, andK H and H/KH inherit the grading offf. To
complete the proof, it suffices to show t@at~ H/K  H as graded vector spaces. O

Given a graded Hopf algeb¥d, let P (x) € N[z] denote itdPoincaié series—the formal power series
enumerating the dimensions of its graded components,

Pu(z) = Z dim H,, z".
n>0

Supposé€H is graded connected atid is a graded Hopf subalgebra. In this case, their Poincaiéssare
of the form1 + ayx + az2? + - - - with a; € N and the quotienPy (z)/Pr (z) is a well-defined power
series inZ[x].

Corollary 4 Let H be a connected graded Hopf algebraKfC H is any graded Hopf subalgebra, then
the quotientP; (x)/Px () of Poincai series is nonnegative, i.e., belong®Nx].

Proof: By Theorem 3,H = K ® @ as graded vector spaces, whéfe= H/KH. HencePy(z) =
P (x) Pg(x) and the result follows. O

Example 5 Consider the Hopf algeb@Symof quasisymmetric functions in countably many variables,
and the Hopf subalgebr@ym of symmetric functions. They are graded connected, so byEme 3,
QSymis a free module oveSym Garsia and Wallach prove this same fact for the alge@@gm, and
Sym, of (quasi) symmetric functions in variables [4]. These are not Hopf algebras whds finite, so
Theorem 3 does not yield the result of Garsia and Wallach.pBlpers [4] and [8] provide information on
the space),, entering in the decompositiad@Sym, = Sym, ® Q.

2 Lagrange’s theorem for Hopf monoids in species

We first review the notion of Hopf monoid in the category of gips, following [2], and then prove
Lagrange’s theorem in this setting. We restrict attentotihe case of connected Hopf monoids.

2.1 Hopf monoids in species

The notion of species was introduced by Joyal [5]. It formedithe notion of combinatorial structure and
provides a framework for studying the generating functiwhg&ch enumerate these structures. The book
[3] by Bergeron, Labelle and Leroux expounds the theory eff) (species.

Joyal's work indicates that species may also be regardeljelraic objects; this is the point of view
adopted in [2] and in this work. To this end, it is conveniendork with vector species.

A (vector) speciess a functorq from finite sets and bijections to vector spaces and linegrsma
Specifically, it is a family of vector spaceg], one for each finite sef, together with linear maps
qlo] : q[I] — q[J], one for each bijection : I — J, satisfying

qlids] =idgy; and qlo o 7] = qo] o q[7]
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whenever andr are composable bijections. A specigss finite dimensionaif each vector spacq|!]
is finite dimensional. In this paper, all species are finitaehsional. A morphism of species is a natural
transformation of functors. L&p denote the category of (finite dimensional) species.

We give two elementary examples that will be useful later.

Example 6 Let E be theexponential specieslefined byE[I] = k{x;} for all I. The symbok; denotes
an element canonically associated to thelsgor definiteness, we may take = I). Thus,E[I] is a one
dimensional space with a distinguished basis element. feriexample is provided by the speclesf
linear orders defined byLL[I] = k{linear orders orf } for all I (a space of dimension! when|I| = n).

We use to denote the&Cauchy producof two species. Specifically,

(p-a)ll]:= @ plS]@q[T] forallfinite setsl.

sSurT=I1
The notationS LT = I indicates thatS UT = I andS N'T = §. The sum runs over all suahrdered
decompositionsf I, or equivalently over all subsetsof I: there is one term fof L 7" and another for
T U S. The Cauchy product turrp into a symmetric monoidal category. The braiding simplytshés
the tensor factors. The unit object is the spetielefined by

1] = k ifIis e_mpty,

0 otherwise.
A monoidin the categorySp, -) is a speciesn together with a morphism of specigs m - m — m,
i.e., a family of maps
s : m[S| @ m[T] — m[I],

one for each ordered decompositibe- S LT, satisfying appropriate associativity and unital coruai§,
and naturality with respect to bijections. Briefly, to eanbstructure onS andm-structure oril’, there is
assigned amn-structure onS LI T'. The analogous object in the categghyec of graded vector spaces is
a graded algebra.

The specie®& has a monoid structure defined by sending the basis elerpent to the basis element
7. ForL, a monoid structure is provided by concatenation of linedets: g ({1 ® ¢2) = ({1, ¢2).

A comonoidn the category(Sp, -) is a specieg together with a morphism of speciés: ¢ — ¢ - c,
i.e., a family of maps

Agr:c[l] = c[S] @ c[T],
one for each ordered decompositiba- S LI 7", which are natural, coassociative and counital.

For E, a comonoid structure is defined by sending the basis vegttarthe basis vectots ® . For
L, a comonoid structure is provided by restricting a totakofbn I: Ag r(¢) = £|s @ {|7.

We assume that our speciggreconnectegi.e.,q[f)] = k. In this case, the (co)unital conditions for a
(co)monoid force the magss, r andAg ¢ to be the canonical identifications if eith&ror T" is empty.

A Hopf monoidn the categorySp, -) is a monoid and comonoid whose two structures are compatible
in an appropriate sense, and which carries an antipode.idmpé#per we only consider connected Hopf
monoids. For such Hopf monoids, the existence of the anéifduaranteed. The speci@éandL, with
the structures outlined above, are two important examglésoonected) Hopf monoids.

For further details on Hopf monoids in species, see Chaptéi{8]. The theory of Hopf monoids in
species is developed in Part Il of this reference; sevemahgies are discussed in Chapters 12 and 13.
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2.2 Lagrange’s theorem for connected Hopf monoids
Given a connected Hopf monoaldin species, we lek . denote the species defined by

won- i 412

If k is a submonoid of a monoid, thenkh denotes the right ideal di generated bk.. In other
words,

(kih)[I]= > pusr(k[S] @ h[17)).

Theorem 7 Leth be a connected Hopf monoid in the category of specidsidfa Hopf submonoid di,
thenh is a free leftk-module. Moreover,

h=k- (h/k, h)

as leftk-modules (and as species).

The proof is given after a series of preparatory results. &gument parallels Radford’s proof of
Theorem 2 [16, Section 4]. The main ingredient is a result afsbn and Sweedler [7] known as the
fundamental theorem of Hopf modules [11, Thm. 1.9.4]. ltestahat if(M, p) is a left Hopf module over
K, thenM is free as a lefl{-module and in fact is isomorphic to the Hopf modilex (), whereQ is the
space oftoinvariantsfor the coactiorp. Takeuchi extends this result to the context of Hopf monoids
braided monoidal category with equalizers [19, Thm. 3.4imailar result (in a more restrictive setting)
is given by Lyubashenko [9, Thm. 1.1]. As a special case o€tiaki’s result, we have the following.

Proposition 8 Let m be a left Hopf module over a connected Hopf morioiith species. There is an
isomorphismm = k - q of left Hopf modules, where

qll] :={memll]| psr(m)=0forSUT =1,T #1}.

In particular, m is free as a lefk-module.

Herep : m — k - m denotes the comodule structure, which consists of maps
psr : m(I] = k[S] © m(T],
one for each ordered decompositibe= S LI T'.
Given a comonoid and two subspecias, v C h, theirwedges defined by
uAv:i=A"'(u-h+h-v).
The remaining ingredients needed for the proof are suppljetie following lemmas.

Lemma 9 Let h be a comonoid in species. if andv are subcomonoids di, then: () u Avisa
subcomonoid ok andu+v CuAv; (i) uAv=A"1(u- (uAvV)+(uAV)-V).
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Proof: (i) Proofs of analogous statements for coalgebras, givgh iection 3.3], extend to this setting.
(i) From the definition A= (u- (uAv) + (uAv) - v) C uAv. Now, sinceu A v is a subcomonoid,

AuAv)C((uAv)-(uAv))N(u-h+h-v)=u-(uAv)+(uAV)-vV,
sinceu, v C u A v. This proves the converse inclusion. O

Lemma 10 Leth be a Hopf monoid in species atkda submonoid. Leti,v C h be subspecies which
are leftk-submodules df. Thenu A v is a leftk-submodule oh.

Proof: Sinceh is a Hopf monoid, the coprodudt : h — h - h is a morphism of lefh-modules, where
h acts onh - h via A. Hence it is also a morphism of ldétmodules. By hypothesis,- h + h - v is aleft
k-submodule oh - h. Henceu A v = A7 (u-h + h - v) is a leftk-submodule oh. O

Lemma 11 Leth be a Hopf monoid in species akda Hopf submonoid. Let be a subcomonoid df
and a leftk-submodule oh. Then(k A c¢)/c is a leftk-Hopf module. O
We are nearly ready for the proof of the main result. Firstalithecoradical filtrationof a connected
comonoid in species [28.10]. Given a connected comoneiddefine subspecies,,) by
co =1 and C(n) = C€(0) N\ C(n—1) foralln > 1.

We then have
C(0) QC(l) c... gC(n) C---c and c= U C(n)-
n>0

Proof of Theorem 7: We show that there is a specigsuch thath = k - q as leftk-modules. As in the
proof of Theorem 3, one then argues tha® h/k h.
Define a sequende™ of subspecies di by

k@ =k and k™ =k Ak foralln>1.

Eachk(™ is a subcomonoid and a lgit-submodule oth. This follows from Lemmas 9 and 10, by
induction onn. Then, by Lemma 11, for alh > 1 the quotient specieR(™ /k(*~1 is a left Hopf
k-module. Therefore, by Proposition 8, edctt) /k("~1) is a free leftk-module.

We claim that there exists a sequence of spagie: > 0) such that

k(™ ~k.q,
as leftk-modules (so that eadtl™ is a free leftk-module). Moreover, the,, can be chosen so that
Q<aqg C---Cg, S

and the above isomorphisms are compatible with the inahssig_; C q, andk(”~Y C k(™. This
may be proven by induction on
Finally, sinceh is connectedh gy = 1 C k = k(®, and by inductionh,, € k™ foralln > 0.

Hence,
h = Uh(n): Uk(")g Uk-qn%lvq where q = an-

n>0 n>0 n>0 n>0
Thus,h is free as a lefk-module. O
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3 Applications and examples
3.1 A test for Hopf submonoids

Two important power series associated to a (finite dimemdj@peciesy are itsexponential generating
serieséq(x) andtype generating seri€g; (x). They are given by
, " . n
Eqlx) = Z dim q[n] ) and Tq(z) = Z dimq[n]s, =",
n>0 n>0
where
aln]s, = q[n]/k{v—ov | v € q[n], o € Sp}.

Both are specializations of thigcle index serie€q (x1, 22, . . . ); see [3§1.2] for definitions. Specifically,
Eq(x) = Z4(2,0,...) and  T4(2) = Z4(z,22,...).

The cycle index series is multiplicative under Cauchy paidif h = k - g, thenZ2y,(z1,z9,...) =
Z(z1,22,...) Zq(z1,22,...); see [381.3]. Thus, the same is true 6 (z) and7q(x).
Let Q¢ denote the nonnegative rational numbers. A consequendesairém 7 is the following.

Corollary 12 Leth andk be connected Hopf monoids in speciesk i either a Hopf submonoid or
a quotient Hopf monoid df, then the quotiengy, (z1, z2,...)/ 2k (x1, 22, ... ) of cycle index series is
nonnegative, i.e., belongs@-q[z1, z2, . .. ]. Likewise for the quotients, (z)/Ex (z) and Ty (z)/ Tk ().

Given a connected Hopf monoldin species, we may use Corollary 12 to determine if a givegispe
k may be a Hopf submonoid (or a quotient Hopf monoid).

Example 13 A partition of a set/ is an unordered collection of disjoint nonempty subset$ ahose
union isI. The notatiorub c is shorthand for the partitiofi{a, b}, {c}} of {a,b,c}.

LetIT be the species of set partitions, iH[I] is the vector space with basis the set of all partitions of
1. LetII’ denote the subspecies linearly spanned by set partitichsdigtinct block sizes. For example,

II[{a,b,c}] = k{abc, a.be,ab.c,a.bc,ab c} and II'[{a,b,c}] = ]1<{abc7 a.be,ab.c,a bc}.

The sequenceg§lim II[n]),>o and (dimII'[n]),>o appear in [17] as A000110 and A007837, respec-
tively. We have

) )
En(z) =exp(exp(z) — 1) =1+az+2° + 6353 + §$4 + ...

and

a” 1 2 5
v () = 1+—)=1 e S S SR
() g(+”!) ta gt sa’ 4 et
If a Hopf monoid structure oI existed for whichll’ were a Hopf submonoid, then the quotient of
their exponential generating series would be nonnegdtiv€orollary 12. However, we have
1, 11

1 1
En(z)/mw(x) =1+ 51:2 - §x3 + 3%~ %135 +-
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S0 no such structure exists. In 2,2.6], a Hopf monoid structure df is defined. By the above, there is
no way to embedI’ as a Hopf submonoid.
We remark that the type generating series quotient for tireopapecies in Example 13 is positive:

T(z) = 14z + 222 +32% + 524 + 725 + 1128 + 1527 + - - -,
T (x) = 142+ 2% + 223 + 22% +32° + 425 + 527 4 -+
Tn(m)/an(m) = 1+22+22* +32% + 528 + 7210+ .

This can be understood by appealing to the Hopf alg&yra A basis for itsnth graded piece is indexed
by integer partitions, s®sym(z) = Tr(z). Moreover, T () enumerates the integer partitions with odd
part sizes andymdoes indeed contain a Hopf subalgebra with this Poincaréssdt is the algebra of
Schur€) functions. See [10, 11.8]. Thu@'n(m)/Tn, (x) is nonnegative by Corollary 4.
3.2 A test for Hopf monoids

Let (ar)n>0 be a sequence of nonnegative integers with= 1. Does there exist a connected Hopf
monoidh with dim h[n] = a,, for all n? The next result provides conditions that the sequéngg,>o
must satisfy for this to be the case.

Corollary 14 (The (ord/exp)-test) For any connected Hopf monoid in specles

(Z dim h[n] m")/(Z dlmT}'l[n] x”) € N[zJ.

n7

Proof: We make use of theladamard producof Hopf monoids [2, Corollary 8.59]. The exponential
specied is the unit for this operation.

Consider the canonical morphism of Hopf monaclds~ E; it maps any linear ordef € L[I] to the
basis element; € E[I][2, Section 8.5]. The Hadamard product then yields a momplisHopf monoids

Lxh—»Exh=h.

By Corollary 12 1.xn(7)/En(x) € N[z]. Sincefrxn(z) =, 5, dimh[n] 2", the result follows. O

Leta,, = dimh[n]. Corollary 14 states that the ratio of the ordinary to theosmtial generating
function of the sequencg:, ),>o must be nonnegative. This translates into a sequence ofioiial
inequalities, the first of which are as follows:

a3 > 3asai, 23a4 + 12@2@% > 20aszaq + 6a§.
In particular, not every nonnegative sequence arises aetheence of dimensions of a Hopf monoid.

3.3 A test for Hopf monoids over E

Our next result is a necessary condition for a Hopf monoidpecges to contain or surject onto the
exponential specieg.
Given a sequende:, ), >0, its binomial transform(b,, ) > is defined by

by, = zn: <7Z> (1) ap_s.

i=0
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Corollary 15 (The E-test) Supposé is a connected Hopf monoid that either contains the spdgies
surjects ontdE (in both cases as a Hopf monoid). ket = dim h[n] anda,, = dim h[n|s, . Then the
binomial transform ofa,,),,>0 Must be nonnegative artd,, ),,>o must be nondecreasing.

More plainly, in this setting, we must have the following dualities:
ai > ag, as > 2a1 — ag, as > 3as — 3a1 + ag, ...

anda,, > a,_ foralln > 1.
Proof: Sincefg(z) = exp(z), the quotienty, (z)/Ex(z) is given by

2 3

x T
bo +b1$+b2? + b3

where (b, )n>0 is the binomial transform ofa,),>0. It is nonnegative by Corollary 12. Replacing
exponential for type generating functions yields the refsul(@,, ), >0, sinceTg(z) = 1% O

x

We make a further remark regarding connedieearizedHopf monoids. These are Hopf monoids of
a set theoretic nature. See [B.7] for details. Briefly, there are set mapsg 5 (z,y) andA 4 5(z) that
produce single structures (writtén, y) — x -y andz — (z|a, z/4), respectively), which are compatible
at the level of set maps and which produce a Hopf monoid inispe&ehen linearized. It follows that if
h is a linearized Hopf monoid, then there is a unique morphisiMapf monoids fromh ontoE. Thus,
Corollary 15 provides a test for existence of a linearizegiHnonoid structure oh.

Example 16 We return to the specidd’ of set partitions into distinct block sizes. We might asknifst
can be made into a linearized Hopf monoid in some way (aftantpe 13, this woulahot be as a Hopf
submonoid oflT). With a,, andb,, as above, we have:

(an)n>0 = 1,1, 1, 4, 5, 16, 82, 169, 541,...,

(bp)n>0 = 1,0, 0, 3, —8, 25, —9, —119, 736, ... .

ThusIT’ fails the E-test and the answer to the above question is negative.

3.4 A test for Hopf monoids over L

Let h be a connected Hopf monoid in species. kgt= dim h[n] anda,, = dimh|n|s,. Note that the
analogous integers for the speclesf linear orders aré,, = n! andb,, = 1. Now suppose thai contains
L or surjects ontd. as a Hopf monoid. An obvious necessary condition for thisasion is that,, > n!
anda,, > 1. Our next result provides stronger conditions.

Corollary 17 (The L-test) Supposé is a connected Hopf monoid that either contains the spdcies
surjects ontd. (in both cases as a Hopf monoid).df = dim h{n] anda,, = dim h[n]g, , then

an > nap—1 and a, >a,—1 (Vn>1).

Proof: It follows from Corollary 12 that bott€y, (x) /& (z) and Tn(z)/Tw(x) are nonnegative. These
yield the first and second set of inequalities, respectively O
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Before giving an application of the corollary, we introduceew Hopf monoid in species. @omposi-
tion of a set! is an ordered collection of disjoint nonempty subset$ afhose union id. The notation
ab c is shorthand for the compositidifa, b}, {c}) of {a, b, c}.

Let Pal denote the species of set compositions whose sequencecifdites is palindromic. So, for
instance,

Pall{a,b}] =k{ab, a b, ba}
and
Pal[{a,b,c,d,e}] = k{abcde, abcdle, abcde, abclde, ... }

The latter space has dimensiofil = 1+ 5(3) + (3)3 + 5! anddim Pal[5]s, = 4 for the four types of
palindromic set compositions shown above.

Given a palindromic set composition= 7, --- 7., we view it as a tripler = (7, 7", 71), where
7~ is the initial sequence of blocks? is the central block if this exists (if the number of block®d)
and otherwise it is the empty set, and is the final sequence of blocks. That is,

™ =T Tr/2)s nt = T(r/2417 " Tr-

- = L0 — ) Tlr/2)41 if T is odd,
0 if r is even,

GivenS C I, let
mlgi=m NS NS - mNS,

where empty intersections are deleted. Thénis a composition of. It is not always the case thafs
is palindromic. Let us say that is admissiblefor 7 wheniitis, i.e.,

#(ﬂ'i QS) = #(W7-+1_i n S) foralli=1,...,r.

In this case, botlr|s andr |\ ¢ are palindromic.
We now define product and coproduct operation®ah Fix a decompositiod = S LI T
Product. Given palindromic set compositiomse Pal[S] ando € Pal[T], we put

psr(r®@o) = (7r_ o, m0Uc® ot 7r+).

In other words, we concatenate the initial sequences ofkblof 7 and o in that order, merge their
central blocks, and concatenate their final sequences ioghesite order. The result is a palindromic
composition off. For example, with6' = {a, b} andT = {c,d, e, [},

(a'b) ® (c/de|f) — alc/de| fb.

Coproduct. Given a palindromic set compositienc Pal[I], we put

T|s ® 7|7 if S is admissible forr,
Agr(T) == i
0 otherwise.
For example, withS andT as above,
adbelcf—0 and eabed f— (ab) ® (elced f).

These operations endd®al with the structure of Hopf monoid, as may be easily checked.
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Example 18 We ask if Pal contains (or surjects onto) the Hopf mondid Both Hopf monoids are
cocommutative and not commutative. Writing = dim Pal[n], we have:

(an)nso0 = 1, 1, 3, 7, 43, 171, 1581, 8793, 108347, ... .

Every linear order is a palindromic set composition withgéton blocks. Thus,, > n! for all n and the
question has some hope for an affirmative answer. However,

(an = NGp_1)n>1 = 0, 1, =2, 15, —44, 555, —2274, 38003,...,
soPal fails theL-test and the answer to the above question is negative.

3.5 Examples of nonnegative quotients

We comment on a few examples where the quotient power s&gi@s/Ex(x) is not only nonnegative
but is known to have a combinatorial interpretation as a geimg function.

Example 19 Consider the Hopf monoifil of set partitions. It containk as a Hopf submonoid via the
map that sends; to the partition off into singletons. We have

&n(z)/Ee(x) = exp(exp(z) —x — 1),

which is the exponential generating function for the humtfeset partitions into blocks of size strictly
bigger thanl. This fact may also be understood with the aid of Theorem Tglamsvs. Thel-component
of the right idealE_ IT is linearly spanned by elements of the fosm- 7 wherel = SU T andr is a
partition of 7. Now, sincexs = ;3 - *g\ sy (for any: € S), we have thak, II[/] is linearly spanned
by elements of the formy;, - = wherei € I andr is a partition of/ \ {i}. But these are precisely the
partitions with at least one singleton block.

Example 20 Let 3 be the Hopf monoid of set compositions defined in [2, Sect#A]L It containd. as

a Hopf submonoid via the map that views a linear order as a ositipn into singletons. This and other

morphisms relatin@, L, IT andX, as well as other Hopf monoids, are discussed in [2, Secfd8].1
The sequencélim X[n]),, >0 is AO00670 in [17]. We have

1

Moreover, it is known from [18, Exercise 5.4.(a)] that
1—=2 Sn n
- N o
- >4
2 — exp(x) s

wheres,, is the number ofhresholdgraphs with vertex sdi] and no isolated vertices. Together with
Theorem 7, this suggests the existence of a basix fdr, X indexed by such graphs.
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