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History of Lagrange’s Theorem

Pre-History: Finite Groups

Theorem (Lagrange, 1770)

If K ,H are finite groups with K ⊆ H, then |K | divides |H|.

Even better: Fix a field k. In language of algebras and modules, we have:
∃C ⊆ H (coset representatives) satisfying

kH ≃ kK ⊗ kC

as kK modules, i.e., kH is a free left kK -module.

`

kK action on kK ⊗ kC given by a ∗ (b ⊗ c) := (ab) ⊗ c.

´
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History of Lagrange’s Theorem

History: Hopf Algebras

Conjecture (Kaplansky, 1973)

If K ,H are Hopf algebras with K ⊆ H, then H is a free left K-module.

Special case: group algebras H = kG , which are Hopf algebras under
the coproduct ∆(g) = g ⊗ g for all g ∈ G .

Worth noting: if H is finite dimensional, then dimK divides dimH.

Aaron Lauve (TAMU) Lagrange’s Theorem 14 June 2010 3 / 17



History of Lagrange’s Theorem

History: Hopf Algebra Results

Theorem (Oberst–Schneider, 1974)

There are infinite dimensional counter-examples K ⊆ H to Kaplansky’s
conjecture.

(even when H is relatively nice: commutative, cocommutative and cosemisimple)

Theorem (Nichols–Zoeller, 1989)

If K ⊆ H are finite dimensional Hopf algebras then H is a free left
K-module, i.e.,

H ≃ K ⊗ C

for some coset representatives C .
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History of Lagrange’s Theorem

History: Hopf Algebra in Combinatorics

finite dimensional . . . . . . . . . . infinite dimensional

?

H =
⊕

n≥0

Hn

Hn is finite dimensional; basis indexed by combinatorial structures on [n]

product and coproduct describe ways to “join” and “break” these structures

Theorem (Radford, 1977)

If K ⊆ H are graded Hopf algebras with H0 ⊆ K, then H is a free left
K-module.
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History of Lagrange’s Theorem

New Result: Hopf Monoids in Species

Theorem (Aguiar–L, 2010)

If K,H are Hopf monoids in the category (Sp, ·) of linear species, with
K ⊆ H, then H is a free left K-module.

Proof: Follow Radford.

Key ingredients:

a fundamental theorem for Hopf modules in (Sp, ·)

properties of the wedge P ∧ Q of two comonoids in (Sp, ·)
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Species of Combinatorial Structures

Species: Definition (Joyal)

A species of combinatorial structures is a functor

P :
(

finite sets and bijections
)

−→
(

vector spaces
)

.

A species P consists of:

a vector space P[I ] for each finite set I ;

a linear isomorphism
P[σ] : P[I ] → P[J]

for each bijection σ : I → J.

Worth noting: Let n = {1, 2, . . . , n}. For each n ≥ 1, Sn acts on P[n].

Write P[n]Sn
for the quotient by this action.
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Species of Combinatorial Structures

Species: Examples

1 The species L of linear orders, e.g.,

L[{a, s, x}] = spank

{

[a, s, x ], [s, a, x ], [s, a, x ], [s, x , a], [x , a, s], [x , s, a]
}

2 The species Π of set partitions., e.g.,

Π[{a, s, x}] = spank

{

{{a, s, x}}, {{a}, {s, x}}, . . . , {{a}, {s}, {x}}
}

3 The species Y of (labeled, rooted) planar binary trees, e.g.,

Y[{a, s}] = spank

{

a
s , s

a , a
s , s

a

}
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Species of Combinatorial Structures

Species: Monoidal Structure

The category Sp of linear species is a monoidal category under the
Cauchy Product, (P,Q) P · Q, defined by

(

P · Q
)

[I ] :=
⊕

S⊔T=I

P[S ] ⊗ Q[T ] .

Compare: in the category gVec of graded vector spaces, “·” is the
tensor product:

(

V · W
)

i
:=

⊕

s+t=i

Vs ⊗ Wt .

We can speak of monoids, comonoids, bimonoids, and Hopf monoids
in each category.
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Species of Combinatorial Structures

Species: Hopf Monoids

A Hopf monoid (P, µ,∆) in (Sp, ·) consists of:

a species P;

for each ordered decomposition S ⊔ T = I , maps

µS,T : P[S ] ⊗ P[T ] → P[I ] and ∆S,T : P[I ] → P[S ] ⊗ P[T ] ;

additional maps (unit, counit, antipode);

various compatibility axioms, including the following . . .
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Species of Combinatorial Structures

Species: Compatibility of µ and ∆

Fix decompositions S ⊔ T = I = S ′ ⊔ T ′. Let A,B ,C ,D be as below.

S

T

S ′ T ′

A B

C D

Then the following diagram commutes.

P[A] ⊗ P[B ] ⊗ P[C ] ⊗ P[D] P[A] ⊗ P[C ] ⊗ P[B ] ⊗ P[D]

P[S ] ⊗ P[T ] P[I ] P[S ′] ⊗ P[T ′]

1⊗tw⊗1
∆A,B⊗∆C ,D

µS,T ∆S′,T ′

µA,C⊗µB,D

(expresses compatibility between “join” and “break” for the combinatorial structures)
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Species of Combinatorial Structures

Species: Hopf Monoids

Examples:

1 The species L of linear orders

L[S ] ⊗ L[T ]
µ

−→ L[I ]

ℓ1 ⊗ ℓ2 7−→ ℓ1|ℓ2

(extend by letting S precede T )

L[I ]
∆
−→ L[S ] ⊗ L[T ]

ℓ 7−→ ℓ|S ⊗ ℓ|T

(restrict the ordering of I )

2 The species Π of set partitions

Π[S ] ⊗Π[T ]
µ

−→ Π[I ]

π1 ⊗ π2 7−→ π1 ∪ π2

(the union partitions I )

Π[I ]
∆
−→ Π[S ] ⊗ Π[T ]

π 7−→ π|S ⊗ π|T

(intersect blocks of π with S and T )
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Using the New Result

Back to the New Result: Enumerative Corollary

Fix a species P.

Define the exponential and ordinary generating series by

EP(x) =
∑

n≥0

(

dimP[n]
) xn

n!
and PP(x) =

∑

n≥0

(

dimP[n]Sn

)

xn .

Corollary (via Joyal)

If K ⊆ H are Hopf monoids in (Sp, ·) then there is a subspecies C ⊆ H

and a left K-module isomorphism H ≃ K · C. In particular,

EH(x) = EK(x) EC(x) and PH(x) = PK(x)PC(x) .

(A similar result holds in (gVec, ·) by Radford’s theorem.)
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Using the New Result

Back to the New Result: Application

Test for Hopf submonoids:

1 Define Π
e by Π

e[I ] :=

{

Π[I ], if |I | is even,

0, otherwise.

EΠe(x) ∤ EΠ(x)

2 Define Π
ob by Π

ob[I ] := spank

{

partitions of I into odd # of blocks
}

.

E
Πob(x) ∤ EΠ(x)

(so no Hopf submonoid can exist)

(so no Hopf submonoid can exist)
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Using the New Result

Back to the New Result: Applications

Test for Hopf submonoids & subalgebras:

3 Note that EΠ(x) divides EL(x). Perhaps there is a Hopf map Π →֒ L

between species?

4 Put Λ :=
{

integer partitions
}

and Λe :=
{

integer partitions of even #s
}

.
Recall that kΛ possesses a Hopf structure (the Hopf algebra of
symmetric functions).

PkΛe(x) ∤ PkΛ(x)

(see [Aguiar–Mahajan], Thm. 12.57)

(so no Hopf subalgebra can exist)
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Using the New Result

Back to the New Result: Caveat Emptor

There are many factorization results in the Hopf literature.
(The fundamental theorem of Hopf modules is an example.)

Divisibility of generating series does not guarantee Hopf subalgebras.

I’ll leave you with a speculative one just for fun. . .

Let kD denote the span of Dyck paths (certain monomials of even length)
inside H = k〈x , y〉. There is a natural Hopf algebra structure on H.
Moreover, EkD(x) divides EH(x).

Might there be a Hopf subalgebra of Dyck paths?
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Using the New Result

Thank You
(and happy hunting!)
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