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ABSTRACT OF THE DISSERTATION

A Quasideterminantal Approach to Quantized Flag

Varieties

by Aaron Lauve

Dissertation Director: Vladimir Retakh & Robert L. Wilson

We provide an efficient, uniform means to attach flag varieties, and coordinate rings

of flag varieties, to numerous noncommutative settings. Our approach is to use the

quasideterminant to define a generic noncommutative flag, then specialize this flag to

any specific noncommutative setting wherein an amenable determinant exists.
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Chapter 1

Introduction

1.1 Emergence of noncommutative structures

To varying degrees, physicists have been aware of the need for an honest study of

noncommutative structures for nearly a century. Heisenberg stumbled upon this need

when trying to make sense of the results of light-emission spectra experiments for hy-

drogen atoms [9]. Faddeev and his Leningrad school found the need in developing

an inverse scattering method for quantum field theory [7]. More recently, conformal

field theorists are finding a need for noncommutative structures (cf. the instantons of

Nekrasov-Schwarz and others [13]).

In these cases and many more, the noncommutative structures are rightly viewed

as geometric objects. Using the familiar pairing

{topological spaces X} ↔ {rings R of functions on X} , (1.1)

mathematicians and physicists are developing the subject from the algebraic side. At

least three distinct programs for the study of noncommutative (NC) geometry, (which

I will call NC differential geometry, NC algebraic geometry, and NC Lie theory) are

thriving today.

In NCDG, Alain Connes and others approach noncommutative geometry from the

perspective of real analysis and C∗-algebras—the motivation being the passage from

classical to quantum mechanics in physics [9]. The geometric data is real: you act on

a space of objects X with your operators R, perhaps relaxing the notion of space, and

understand that the operators need not commute.

In NCAG, whose pioneers include Michael Artin and Bill Schelter, one studies gen-

eral noncommutative algebras in a manner suggestive of classic algebraic geometry. The
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geometric data is transfered via the pairing (1.1), i.e.

(Spec R,R-Mod) → (X, line bundles on X) .

The current state of the art is most readily applied to “small” algebras, in a sense

outlined in the AMS bulletin article [44].

In NCLT, one attempts to deform the Lie group/algebra pairing

(G, g) ↔ (OG, U(g))

and get quantum groups.

Remark. This term is a misnomer as by “quantum group” we really mean “quantized

ring of functions on a Lie group or Lie algebra.” First, the abuse of terminology is

symptomatic of the notion of geometry here; as in NCAG, it is transfered via the

pairing (1.1). Second, the author is inclined to reserve this term only for deformations

of K[G] and the like, and indeed we will speak no more of the U(g) story.

The deformation is carried out with respect to some guiding principle; this may come

in the form of R-matrices à la the Faddeev, Reshetikhin, and Takhtajan construction

(cf. Chapter 5) or via the closely related construction of Manin (cf. [35]), which attaches

a quantum group to any pair Ai of quadratic algebras of the form K < x1, . . . , xn > /Ii,

thought of as the polynomials functions on “quantum affine n-space.”

1.2 Contributions of this thesis

The prevailing paradigm is that noncommutative mathematics is harder than commu-

tative mathematics. We trust the viewpoint of I. Gelfand and V. Retakh, who admit

that noncommutative mathematics is different, but argue that it is at least as simple

as commutative mathematics. This dissertation lends some weight to this argument in

the following sense: after some straightforward, albeit lengthy, calculations in Chapter

4, we are able to easily derive a wealth of results in Chapters 5–8.

Specifically, this thesis provides an efficient, uniform means to attach (coordinate

rings of) flag varieties to numerous noncommutative settings. Our approach is to use
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the quasideterminant to define a generic noncommutative flag, then specialize this flag

to any specific noncommutative setting wherein an amenable determinant exists.

Example. The celebrated identity for minors of a 4× 2 matrix A

p12p34 − p13p24 + p23p14 = 0,

and its quantum counterpart

p12p34 − q−1p13p24 + q−2p23p14 = 0,

are both consequences of the quasi-Plücker relation

r3
12r

4
21 + r2

13r
4
31 = 1 .

When compared to the programs outlined in the preceding subsection, this thesis

fits most readily within the third program. It distinguishes itself from the present

literature in that each flag algebra constructed here may be more concretely attached

to a geometric object. A different approach with this same goal, also making use of the

quasideterminant, appears in a recent article of Škoda [43].

1.3 Future directions

In Chapter 6, it becomes evident that the quasideterminantal calculus cannot currently

capture the entire quantum flag—missing a large portion of the q-straightening relations.

It may be the case that new quasideterminant identities are waiting to be discovered,

identities that will bridge the gap between the pre–flag algebra we introduce below

and the quantum flag algebra. On the other hand, it is entirely possible that no

quasideterminantal explanation for this current gap exists. Indeed, some preliminary

computer calculations the author has performed seem to suggest that there are no

genuinely new quasi-Plücker identities to discover. Proving this would be a difficult

and important result. If accomplished, one would be left with explaining why the

quantum setting is special, and under what conditions imposed on a noncommutative

setting similar straightening relations may be expected to appear.
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In another direction, one need only recall the classic fact that every irreducible

representation of GLn appears within the coordinate algebra for F`((1n), n) to see the

importance of studying noncommutative versions of F`(-,-). Toward this goal, a careful

study of the ring of quasi-Plücker coordinates is merited. A modest beginning to this

program appears as Section 7.4.
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Chapter 2

Preliminaries

2.1 Notation

We fix some notation for the remainder of the thesis.

Sets, Subsets, & Sequences

By [n] we mean the set {1, 2, . . . n}. If d ∈ [n], then by
([n]

d

)
we mean the set of all

subsets of [n] of cardinality d. More generally, if S ⊆ [n], then
([n]

S

)
denotes

⋃
s∈S

(
[n]
s

)
.

For example, in this notation the power set P[n] of [n] is given by ∅ ∪
([n]
[n]

)
. By [n]d

we mean the set of all d-tuples (a1, a2, . . . , ad) chosen from [n]; and more generally [n]S

denotes
⋃

s∈S [n]s.

We write γ |= n when γ is a composition of n (any sequence of positive integers summing

to n). In the literature, compositions γ are sometimes allowed to have parts γi = 0

for some i. We will not need these “weak-compositions” here. If γ = (γ1, . . . , γr) is a

composition of n, we denote the number of parts r by p(γ) and we write |γ| = n. A

special subset of [n− 1] associated to γ will be important:

‖γ‖ :=

γ1, γ1 + γ2, . . . ,
∑
j≤i

γj , . . . ,
∑

j≤r−1

γj

 .

Notice that the cardinality of the ‖γ‖ is r − 1.

Operations on Matrices

Let A = (aij) be an n ×m matrix, and fix subsets I ⊆ [n] and J ⊆ [m]. We let AI,J

denote the matrix obtained by deleting rows I and columns J from A; by AI,J we mean

the matrix obtained by keeping only rows I and columns J of A. With slight abuse
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of the just-defined notation, Aij will represent the (n − 1) × (m − 1) sub-matrix of A

obtained by deleting row i and column j. Analogously, we may occasionally write Aij

instead of aij .

When it is clear from the context that I represents row-indices (J represents column-

indices), we let AI (AJ) denote the square matrix obtained from A by taking row-set

I (column-set J) and column-set the first |I| columns of A (row-set the first |J | rows

of A). Finally, if I ∈ [n]d, then by AI we mean the rows (columns) of A indexed by I,

put down in the order in which they appear in the sequence I.

Operations on Sets & Tuples

Fix I ∈
([n]

d

)
and J ∈ [n]d. Sets, e.g. I = {i1, . . . , id}, will always be assumed to have

the property i1 < i2 < . . . < id. Tuples (or sequences), e.g. J = (j1, . . . , jd), naturally,

cannot always be assumed to have this property. For sets or tuples K of length d, we

use |K| to denote d.

Remark. In fact, tuples are compositions, but | - | has different meanings for tuples

and compositions. Unless expressly told to view a sequence A = (a1, . . . , ar) as a

composition, understand A as a “tuple”, with |A| = r, not
∑

i ai.

By tup(I) we mean the sequence (i1, . . . , id) associated to I; similarly, we let set(J)

denote the set built from J by deleting repetitions and putting the remaining elements in

ascending order. Let rect(J) denote the new tuple built from J by putting its elements

in weakly increasing order

Example. set(tup(I)) = I; if J has no repeated elements, then rect(J) = tup(set(J)).

For k 6∈ I, we often write I ∪ k for the set I ∪ {k}. To avoid an abundance of ∪’s

we occasionally write kI or Ik for this same set. For k ∈ I, we may write I \ k, or Ik

for I \ {k}.

Write k ∈ J , if k ∈ set(J) and k 6∈ J otherwise. Analogous to sets, if k = jr for

exactly one 1 ≤ r ≤ d, we write J \k or Jk for the (d−1)-tuple built from J by deleting

jr. Conversely, for K in [n]d or
([n]

d

)
, we write K|J for the tuple (k1, . . . , kr, j1, . . . , jd).

J |K is similarly defined. If k ∈ [n] we abuse notation and write, e.g., k|J for (k)|J .



7

If A,B are two sets or two tuples (|A| not necessarily equal to |B|), we say A

precedes B (written A ≺ B), if ∀a ∈ A, ∀b ∈ B, a < b. In the case A is a set with

subsets A′, A′′ ⊆ A satisfying A = A′∪A′′, we write A = A′∪̇A′′ in the case A′∩A′′ = ∅.

Permutations

Denote the group of permutations of [n] by Sn. If X is another set with n elements, we

will sometimes use SX and sometimes use Sn for the permutations of this set. For σ ∈

Sd, let `(σ) denote the length of σ (the minimum number of adjacent swaps necessary

to put the d-tuple (σ1, σ2, . . . , σd) in increasing order). If a tuple J = (j1, . . . , jd) has no

repeated indices, we may view J as a permutation in one-line notation and understand

`(J) as the minimal number of adjacent swaps necessary to put J in increasing order.

Example. If I = {1, 3, 5, 6, 8, 9} and i = 8, then `(i|Ii) = `((8, 1, 3, 5, 6, 9)) = 4, while

`(iIi) = `(I) = 0.

Ring Constructions

All rings considered in this note are associative and unital. Throughout this thesis,

fields F and skew fields D will always contain Q. For a fixed n, most of our calculations

may be carried out fields with characteristic not dividing n!, but we make no effort to

do so here.

Given a ring A, we denote the ring of n× n matrices over A by Mn(A) and the set

of n × m matrices over A by Mn×m(A). We denote the identity matrix here by I or

In and the matrix units by Eij : (Eij)ab = δaiδbj . When we are simultaneously working

with a ring A—with unit 1—and endomorphisms over A, we also write I for the identity

morphism (e.g. I ∈ EndAn ⊗An = In ⊗ In, In ∈ Mn(A)).

Finally, we often conflate expressions E in a ring R with their associated identities

in R/(E). For example, we give the expression

∑
j∈L

(−1)`(L\Λ|Λ)fL\ΛfΛ|J ,∈ F(γ)
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and the relation ∑
j∈L

(−1)`(L\Λ|Λ)fL\ΛfΛ|J = 0 , defining F(γ)

the same name, (YI,J). It should be clear from context to which construct the name is

attached.

Determinants

In the course of this note, we will be considering numerous (noncommutative) deter-

minants and minors of square matrices A = AR,C . For K ⊆ R and L ⊆ C with

|K| = |L| = m, we write [AK,L] or
[
K;L

]
for the (particular, evident by context)

determinant of the matrix AK,L. If it is furthermore evident from context that we are

focusing on the rows (respectively, columns) of A, we may suppress the L (K) in this

notation—typically taking the first m columns (rows) of A in this case.

2.2 Skew fields

2.2.1 Noncommutative localization

In this thesis, the ability to invert an element x of a ring R is of critical importance. To

that end, one would like to work in a field of fractions for R or at least in a localization

of R containing x−1. In the case R is commutative, then the questions of existence,

uniqueness, and construction of these objects are all elementary. Unfortunately, things

get a great deal more complicated in the noncommutative case. For instance, Malcev

[34] constructed a domain which cannot be embedded into any skew field—a not neces-

sarily commutative ring in which every nonzero element has a two-sided inverse. Worse,

even when R can be so embedded, a “minimal” such embedding may not be unique.

One case where things work smoothly is the case R = F 〈X〉, the free F -algebra on a set

X of noncommuting variables. When F is an infinite field of characteristic zero, there

is a unique universal field of fractions, called the free skew field and denoted F<( X>) ,

associated to R [8].

To ensure our ability to invert that which we wish, the quasideterminant calculations

indicated in the next section are all carried out in F<( A>) where A is a collection of n2



9

noncommuting indeterminants arranged in a matrix A = (aij).

2.2.2 Skew-field identities

In the present context, the quasideterminantal calculus may be simply stated as the

study of free skew-field identities. As mentioned in the introduction, it may be the case

that there are no genuinely new skew-field identities involving quasi-Plücker coordinates

waiting to be discovered. The next result suggests that finding such an identity would

not be an easy task, as skew-field identities involving quasideterminants are far from

simple.

Theorem 1 (Reutenauer, [42]). Say an element f ∈ F<( A>) has inversion-height m

if there is an expression for f in terms of A involving m nested inversions, and there is

no such expression involving fewer nested inversions. Then the quasideterminants |A|ij

of A have inversion height n− 1

Compare this with determinants (and all of the noncommutative determinants ap-

pearing in this thesis), which have inversion height zero.

2.3 Quasideterminants

2.3.1 Historical origins

The quasideterminant is a replacement for the determinant for matrices over noncom-

mutative rings R. It was introduced in 1991 by Gelfand and Retakh [15], and extends

the ideas of Heyting [24] from 1928. The quasideterminant—actually quasidetermi-

nants, there are n2 of them, one for each position (i, j) in a matrix A ∈ Mn(R)—is

a recursively constructed rational function that requires invertibility of certain sub-

matrices.1 Hence, it is not always defined; moreover, when it is defined it typically

takes values in a localization of R, not R itself.

1This is a main factor explaining the 60 year gap in their study. Shortly after Heyting’s paper, Ore
[39] strongly criticized any candidate noncommutative determinant which was not a polynomial in the
entries of the matrix.



10

Still, with all of these “faults,” the quasideterminant is a nice replacement for the

determinant: there is a Cramer’s rule for solving linear systems; it is invariant under

elementary row (column) operations; one can build A−1 using the quasideterminant,

analogous to the adjoint/inverse construction in the commutative case. Finally, there is

the heredity property which allows one to take the quasideterminant of a block matrix in

stages. This property—which has no counterpart for the commutative determinant—

is well-suited for induction and is essential for establishing many of the important

quasideterminantal identities.

2.3.2 Current trends

Gelfand and Retakh argue that the quasideterminant should be a main organizing tool

in noncommutative mathematics [17]. Support for this argument is steadily appearing

in the literature [3, 5, 11, 19, 36, 37, 38, 43]. The results of this thesis provide further

strong support for their argument.

The results cited above rely on one or both of the fundamental successes of the

quasideterminantal calculus: an ability to easily and explicitly (i) factor noncommuta-

tive polynomials, and (ii) perform Gaussian elimination on matrices with noncommu-

tative entries. This thesis is concerned with an application of item (ii).

2.3.3 Definition & first properties

As mentioned earlier, the computations in this section will be done in the free skew

field D = F<( aij>) built on a matrix A with distinct noncommuting indeterminant

entries. As the definition will make clear, if we instead work with A over an arbitrary

noncommutative ring R some quasideterminants may not be defined. The reader will

find a more thorough treatment of the quasideterminant and its properties, including

all of the statements below and more, in [18] and [30]. We include two proofs from the

literature as they anticipate some of the new results appearing in this thesis.
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Definition 1 (Quasideterminant, I). An n×n matrix A has in general n2 quasideterminants—

one for each position in A. The (ij)-quasideterminant is defined as follows:

|A|ij = aij −
∑

p6=i,q 6=j

aiq

(
|Aij |pq

)−1
apj .

The quasideterminant is not a generalization of the determinant. Over a commuta-

tive field, the quasideterminant specializes to the ratio of two determinants:

|A|ij = (−1)i+j(detA)/(detAij).

Notation. It will be convenient to denote the (ij)-quasideterminant in another form:∣∣∣∣∣∣∣∣∣∣

...

· · · aij · · ·
...

∣∣∣∣∣∣∣∣∣∣
ij

=

∣∣∣∣∣∣∣∣∣∣

...

· · · aij · · ·
...

∣∣∣∣∣∣∣∣∣∣
.

There is an alternate definition which we will also have occasion to use. Let ξ be

the i-th row of A with the j-th coordinate deleted; and let ζ be the j-th column of A

with the i-th coordinate deleted.

Definition 2 (Quasideterminant, II). For A, ξ, ζ as above, the (ij)-quasideter-

minant is defined as follows:

|A|ij = aij − ξ(Aij)−1ζ.

In attempting to make these two definitions agree, one stumbles upon the first

fundamental fact about quasideterminants,

Theorem 2 (Matrix Inverses). If A−1 is defined over D and (A−1)ji is not equal to

zero, then

(|A|ij)−1 = (A−1)ji, (2.1)

The quasideterminant is extremely well-behaved for being a noncommutative deter-

minant (or rather ratio of two). Consider its behavior under elementary transformations

of columns.

Theorem 3 (Elementary Column Relations). Let A = (aij) be a square matrix.
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• (Column Permutations) Suppose τ ∈ Sn and Pτ is the associated (column) per-

mutation matrix. Then |APτ |p,τq = |A|p,q.

• (Rescaling Columns) Let B be the matrix obtained from A by multiplying its qth

column by ρ on the right. Then

|B|ij =

 |A|ij ρ if j = q

|A|ij if j 6= q and ρ is invertible.

• (Adding to Columns) Let B be the matrix obtained from A by adding column l

(multiplied on the right by a scalar ρ) to column q. Then |B|ij = |A|ij if j 6= q.

With these properties, we may easily deduce

Proposition 4. If A is a square matrix and column q of A is a right-linear combination

of the other columns, then |A|pq = 0 (whenever it is defined).

Proof. Through a sequence of steps A = A(0), . . . , A(t) = B, column-reduce A to a

matrix B: colq(B) = 0; colj(B) = colj(A) (j 6= q). The previous theorem indicates that

at each stage

|A|pq = |A(i)|pq (∀1 ≤ i ≤ t).

Finally, use the second definition of quasideterminant to conclude that |B|pq is indeed

zero.

Theorem 5 (Column Homological Relations). Let A = (aij) be a square matrix.

Then

−|Akj |−1
il · |A|ij = |Aij |−1

kl · |A|kj (∀l 6= j). (2.2)

We will also find a use for the following identity of Krob and LeClerc, which gives

a one-column Laplace expansion of the quasideterminant.

Proposition 6. For A = (aij), the (pq)-quasideterminant has the following expansion:

|A|pq = apq −
∑
i6=p

|Aiq|pl · |Apq|−1
il · aiq (∀l 6= q). (2.3)
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Proof. Using (2.1) and (2.2) we have

1 =
n∑

i=1

|A|−1
iq · aiq

|A|pq = apq +
∑
i6=p

|A|pq · |A|−1
iq · aiq

|A|pq = apq −
∑
i6=p

|Aiq|pl · |Apq|−1
il · aiq.

Theorem 7 (Muir’s Law). Let A = AR,C be a square matrix with row set R and

column set C. Fix R0 ( R and C0 ( C. Say an algebraic, rational expression I =

I(A,R0, C0) involving the quasi-minors
{
|AR′,C′ |rc : |R′| = |C ′|, R′ ⊆ R0, C

′ ⊆ C0

}
is

an identity if the equation I = 0 is valid. Then for any L ⊆ R \ R0 and M ⊆ C \ C0

with |L| = |M |, the expression I ′ built from I by extending all minors |AR′,C′ |rc to

|AL∪R′,M∪C′ |rc is also an identity.

The following quasideterminantal version of Sylvester’s Identity will also prove use-

ful. It expresses the quasideterminant of an n×n matrix in terms of quasideterminants

of (n− 1)× (n− 1) matrices.

Theorem 8 (Sylvester’s Identity). Let A = AR,C be a square matrix. Fix r0, r1 ∈ R

and c0, c1 ∈ C. Then the following identity holds (when all components are defined)

among the quasi-minors of A:

|AR,C |r0,c0 =

∣∣∣∣∣∣ |A
r1,c1 |r0,c0 |Ar1,c0 |r0,c1

|Ar0,c1 |r1,c0 |Ar0,c0 |r1,c1

∣∣∣∣∣∣
= |Ar1,c1 |r0,c0 − |Ar1,c0 |r0,c1 · |Ar0,c0 |−1

r1,c1 · |A
r0,c1 |r1,c0 .

In [17], the reader will find row versions of all the properties listed above, some of

which are used in this thesis without further comment.
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Chapter 3

Noncommutative Flags & Coordinates

3.1 Review of Classical Setting

In this section we work over a field C (cf. [49] for a treatment over any commutative

ring of characteristic p not dividing n!).

3.1.1 Flags

We recall the classical notion of flags, whose generalization will be the main focus of

this thesis. Fix a vector space V ' Cn and a composition γ = (γ1, . . . , γr) of n.

Definition 3. A flag Φ of shape γ is an increasing chain of subspaces of V ,

Φ : (0) = W0 ( W1 ( · · · ( Wr = V ,

satisfying dimC (Wi/Wi−1) = γi. For fixed V and γ, we let F`(γ) denote the collection

of all flags in V of shape γ.

Notation. Two important special cases are when γ = (1n) and γ = (d, n − d). The

former is the collection of full flags, dim Wi = i, 1 ≤ i ≤ n. We write F`(γ) as F`(n) in

this case. The latter is the Grassmannian, i.e. the collection of d-dimensional subspaces

of V We write F`(γ) as Gr(d, n) in this case.

If we fix a basis B∗ = (f1, . . . , fn) for V ∗, we may represent a flag Φ as a ma-

trix as follows. (i) Choose a basis (w1, . . . , wγ1) for W1. (ii) Extend this to a basis

(w1, . . . , wγ1 , wγ1+1, . . . , wγ1+γ2) for W2. (iii) Repeat until you have completed the se-

quence to a basis w = (w1, . . . , w|γ|) of V . (iv) define the matrix A = A(Φ,w) = (aij)

by putting aij = fi(wj). Then A is the collection of column vectors [w1|w2| · · · |wn]

with coordinatization provided by B.
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γ1

γ2

...
γr



g1 ∗ ∗ ∗

0 g2 ∗ ∗

0 0
. . . ∗

0 0 0 gr


Figure 3.1: An upper block-triangular matrix, with gi ∈ GLγi(C) and “∗” arbitrary.

The choice of basis for Φ was not unique, so neither is the matrix A. However, we

do know exactly when two matrices A,B represent the same Φ ∈ F`(γ).

Lemma. Given Φ,w, and A(w). w′ is another basis for Φ if and only if A(w′) = A(w)·g

for some g ∈ GLn(C) of the form

For fixed γ, the collection of such g ∈ GLn is called a parabolic subgroup. We will

denote this subgroup of GLn by P+
γ , the “+” standing for “upper block-triangular”

matrices. We may now replace the above definition with a new one.

Definition 4. Given a composition γ |= n, we have F`(γ) = GLn(C)/ ∼, where A ∼ A′

if ∃g ∈ P+
γ s.t. A′ = Ag.

Next, we outline how to view F`(γ) as a subvariety of some projective variety.

3.1.2 Determinants & Coordinates

The determinant of a square matrix X will be a main organizing tool in what follows. In

addition to the well-known alternating property, the determinant has another property

the reader should be familiar with:

Proposition 9 (Laplace’s Expansion). Let X = (xij)1≤i,j≤m. Suppose that p, p′ are

fixed positive integers with p+ p′ = m, and that J = (j1, . . . , jm) is a fixed derangement

of the columns of X. Then

∣∣X∣∣ = (−1)`(J)
∑

(−1)−`(i1···ipi′1···i′p′ )
∣∣X{i1,...,ip},{j1,...,jp}

∣∣ · ∣∣X{i′1,...,i′
p′},{jp+1,...,jm}

∣∣
where the sum is over all partitions of [m] into two increasing sets i1 < · · · < ip and

i′1 < · · · < i′p′.
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Below we will take (j1, . . . , jm) = (1, . . . ,m), so what’s written above is the expan-

sion of the determinant down the first p columns of X. Alternatively, one may expand

along the first p rows of X.

Recall the definition of ‖γ‖ given in Chapter 2: letting γ[i] denote the truncated

composition (γ1, . . . , γi), we had ‖γ‖i = |γ[i]|. Now consider the map ηi : F`(γ) →

P(C
( n
|γ[i]|

)
) which sends A(Φ) to the

(
n

|γ[i]|
)
-tuple of all minors one can possibly make from

the first
∑

j≤i γj columns of A. This tuple is rightly viewed as projective coordinates

because (i) it misses 0, and (ii) it’s only defined up to nonzero scalars:

(i) As A has full rank, there must exist one minor of size
∑

j≤i γj which is nonzero.

(ii) We need ηi(Ag) ≡ ηi(A) for g ∈ P+
γ , but the former equals ηi(A) · (

∏
j≤i det gj)

(cf. the depiction of g in Figure 3.1).

We put all of these maps together to build a map η : F`(γ) → P(γ) := P( n
γ1

)−1 ×

· · · × P
( n
|γ[r−1]|

)−1
. This map is called the Plücker embedding.1 Note that we stop at

r − 1. This is because there is nothing to gain by including the final factor (P0).

Represent a point π ∈ P(γ) by its coordinates π = (pI)I∈( [n]
‖γ‖)

. When π belongs to

the image of η —i.e. when ∃A ∈ GLn(C) with (writing |I| = d) pI = detAI,[d] for all

I ∈
( [n]
‖γ‖
)
—we say the {pI} are the Plücker coordinates of A.

The image of η is particularly nice, it is given by quadratic relations among the

coordinates pI .

Proposition 10. Suppose γ |= n, and A(Φ) ∈ F`(γ). For all subsets I = {i1, . . . , is+u}

and J = {j1, . . . , jt−u} of [n] and for all 1 ≤ u satisfying s ≥ t and s, t ∈ ‖γ‖, we have

the Young symmetry relations (YI,J)(u):

0 =
∑
Λ⊆I
|Λ|=u

(−1)`(I\Λ|Λ)pI\ΛpΛ|J . (3.1)

Remark. Here, we have extended the definition of pI from I ∈
([n]

d

)
to I ∈ [n]d at the

1For a geometric proof of this statement, see [21]; for an algebraic proof, see [14].
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expense of adding the obvious alternating relations (AK):

∀K ∈ [n]d pK =

 0 if K has repeated indices

(sgnσ)pset(K) otherwise, when σ “straightens” K

In its straightened form, we denote the right-hand side of (3.1) by (Y∗
I,J). A similar

formula holds among quantum- and quasi-minors as well. In all cases, the proof uses

Laplace’s expansion.

Proof. Consider the determinant presented below.∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ai1,1 · · · ai1,s ai1,1 · · · ai1,t

...
...

...
...

ais+u,1 · · · ais+u,s ais+u,1 · · · ais+u,t

0 · · · 0 aj1,1 · · · aj1,t

...
...

...
...

0 · · · 0 ajt−u,1 · · · ajt−u,t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

On the one hand, it’s zero: clear the top-right block using the top-left block and discover

a “hollow matrix” (one with a block of zeros which meets the diagonal). On the other

hand, using Laplace’s expansion, we that the determinant is exactly (YI,J).

Equation (3.1) actually characterizes the image of η in P(γ): if π ∈ P(γ) satisfies

(3.1∗) for all allowable choices I, J , then π ∈ η(F`(γ)) (cf. [14]). This is stated in terms

of coordinate functions fI (with fI(π) = pI) in Hodge’s “Basis Theorem” [26]:

Theorem 11. In the homogeneous coordinate ring OP(γ) := C[fI | I ∈
( [n]
‖γ‖
)
], a homo-

geneous polynomial F is zero on the image of η if only if F belongs to the ideal of OP(γ)

generated by (YI,J∗) for all allowable choices I, J ⊆ [n].

3.1.3 Coordinate Algebra

Informed of the previous theorem, we may make the following definition.

Definition 5 (Flag Algebra). The flag algebra F(γ), i.e., the homogeneous coor-

dinate ring of the flag variety F`(γ), is the commutative C-algebra with generators{
fI | I ∈ [n]‖γ‖

}
and relations (AK) and (YI,J) for allowable choices I, J, K.
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3.2 Noncommutative Flags

Much of the preceding section may be generalized from C to division rings D with

center F ⊇ Q. We spell out this generalization in the present and the two subsequent

sections.

Definition 6. A ring R is said to have (right) invariant basis number if Rn ' Rm (as

right R-modules) implies n = m.

In particular, any two minimal spanning sets of a finitely generated free module MR

have the same cardinality rkM , which we call the (right, R-)rank of M . There is a

characterization (cf. [31]) of IBN that is not left-right specific. In particular, a ring R

has left IBN iff it has right IBN. So we may drop the modifier and speak of whether or

not R has IBN.

The following key properties are easy to show.

Lemma. For any division ring D (not necessarily containing Q), and the right D-module

V = VD = Dn, we have:

• D has IBN, and the traditional basis elements {ei = 01 + . . .+1i + . . .+0n} form

a basis for V = Dn.

• Elements v =
∑

j ejvj in V may be represented as column vectors [v1, . . . , vn]T ,

with D acting by multiplication from the right.

• Suppose T ∈ EndVD, i.e. ∀v, v′ ∈ V, ∀d ∈ D, T (v + v′d) = T (v) + T (v′)d.

Then the action of T may be given by matrix multiplication from the left. If

T (ej) =
∑n

i=1 eitij , then

T (v) =


t11 · · · t1n

...
. . .

...

tn1 · · · tnn




v1

...

vn


We return to the case where the center F of D contains Q. Analogous results are

obviously true for the left D-module V = DV = Dn. We will develop notions of left
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and right flags simultaneously. As will soon be evident, the essential difference between

the two theories is whether we consider rows or columns of a matrix.

Fix VD = Dn and a composition γ = (γ1, . . . , γr) of n.

Definition 7. A (right) flag Φ of shape γ is an increasing chain of (right) D-submodules

of V ,

Φ : (0) = W0 ( W1 ( · · · ( Wr = V ,

satisfying rk (Wi/Wi−1) = γi. For fixed γ, we let F`(γ) = F`(VD, γ) denote the collec-

tion of all flags in VD of shape γ.

Notation. As in the commutative case, we write F`(n) and Gr(d, n) for F`((1n)) and

F`(d, n− d) respectively.

If we fix the standard basis B = (e1, . . . , en) for Dn, we may represent a flag Φ

as a matrix as follows. (i) Choose a basis (w1, . . . , wγ1) for W1. (ii) Extend this to a

basis (w1, . . . , wγ1 , wγ1+1, . . . , wγ1+γ2) for W2. (iii) Repeat until you have completed the

sequence to a basis w = (w1, . . . , w|γ|) of V . (iv) Write wj =
∑

i eiai,j for 1 ≤ i, j ≤ n,

aij ∈ D. (v) Build the matrix A = A(Φ,w) = (aij). Then A is the collection of column

vectors [w1|w2| · · · |wn] with coordinatization provided by B.

The choice of basis for Φ was not unique, so neither is the matrix A. However, we

do know exactly when two matrices A,B represent the same Φ ∈ F`(γ).

Lemma. w and w′ represent the same flag Φ iff their associated matrices A,A′ satisfy

A′ = A · g for some g ∈ GLn(D) taking the form in Figure 3.1.

For fixed γ, we also call the collection of such g ∈ GLn(D) a (right-) parabolic

subgroup, and denote it by P+
γ . Lower block-triangular matrices of analogous shape

will play the role of parabolic subgroup for left D-modules; we denote this set by P−
γ .

After this lemma, we may replace the previous flag definition with a new one.

Definition 8. Given a composition γ |= n, we have F`(VD, γ) = GLn(D)/(∼), where

A ∼ A′ iff ∃g ∈ P+
γ s.t. A′ = Ag.

Repeating the above discussion for DV = Dn, we arrive at the analogous important



20

Definition 9. Given a composition γ |= n, F`(DV, γ) = (∼)\GLn(D), where A ∼ A′

iff ∃g ∈ P−
γ s.t. A′ = gA.

3.3 Quasi-Plücker Coordinates

Following the classic model, we would like to coordinatize our noncommutative F`(γ).

Obviously, the determinant is no longer available to us. In [17], Gelfand and Retakh

give evidence that certain ratios of quasideterminants are the proper substitute.

As we have already mentioned, one difficulty encountered while working with quaside-

terminants is that they are not always defined. Another is that even when they are, they

give seemingly undue weight to a specific row-column pair. The following proposition

and definitions go a long way toward eliminating these problems.

Proposition 12. Fix an n×n matrix A over a noncommutative ring, and fix i, j ∈ [n],

M ∈
(

[n]
m−1

)
, and L ∈

(
[n]
m

)
. As s ranges over L, those left and righ ratios appearing

below which are defined share a common value.

|AL,iM |−1
si |AL,jM |sj |AiM,L|is|AjM,L|−1

js

Definition 10 (Left/Column Coordinates). Fix two integers 1 ≤ d < m. Let B be

a d×m matrix over D whose rows (columns) are indexed by R (C). Let i, j ∈ C and

K ⊆ C. Assume |K| = d − 1 and i 6∈ K. The left quasi-Plücker coordinate associated

to (i, j, K) is given by

pK
ij = pK

ij (B) = |BR,iK |−1
si |BR,jK |sj .

Definition 11 (Right/Row Coordinates). Fix two integers 1 ≤ d < m. Let B′ be

an m× d matrix over D whose rows (columns) are indexed by R (C). Let i, j ∈ R and

K ⊆ R. Assume |K| = d− 1 and j 6∈ K. The right quasi-Plücker coordinate associated

to (i, j, K) is given by

rK
ij = rK

ij (B′) = |B′
iK,C |is|B′

jK,C |−1
js .

The coordinates are called “column” or “row” coordinates for obvious reasons. The

labels “left” and “right” come from their invariance under an action of GLd(D). The

following important result was first formulated in [17]
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Proposition 13. Suppose g ∈ GLd(D). Then, in the notation of the preceding defini-

tions,

pK
ij (g ·B) = pK

ij (B) and rK
ij (B′ · g) = rK

ij (B′) .

The proof amounts to showing that, between the two quasi-minors involved, the

action of g cancels. Compare Theorem 3 for the essential ingredients of the proof.

We apply these constructions to our problem of coordinatizing flags by taking m = n,

d ∈ ‖γ‖, and viewing B (B′) as the first d rows (columns) of A(Φ). We take left or

right quasi-Plücker coordinates in accordance with whether we view A as a member of

F`(DV, γ) or F`(VD, γ).

As defined, the functions pK
ij and rK

ij , should receive rectangular-matrix inputs.

When there are more rows (columns) in a given A than pK
ij (rK

ij ) can naturally handle,

we follow the implicit instruction to take only the first |K| + 1 rows (columns) of A.

This will allow us to drastically simplify exposition in the sequel. For the remainder of

the section, we discuss in detail only one member of the pair.

As a result of Theorem 13, we will have no embedding into a projective space, as

our coordinates are not projective invariants of A, but true invariants. We may view

our set of coordinates as a subset of DN (N = |
( [n]
‖γ‖
)
|) only loosely: (i) for a given A,

not all of the coordinates will be defined; (ii) the left and right D actions on DN do

not correspond to any well-defined action on the Φ which A represents. What remains

true is that, in the following sense, {rK
ij | |K| + 1 ∈ ‖γ‖} still characterizes F`(γ): no

greater collection of quasi-Plücker coordinates is invariant under P+
γ ; if f is a function

on A which is P+
γ invariant, then f is a rational function in this collection of rK

ij (cf.

Theorem 16).

Working toward a statement analogous to Theorem 11, we start with the following

results:

Proposition 14. Let A = (aij) be an n×n matrix of formal, noncommuting variables.

In the expressions B = AI below, interpret I as rows or columns as needed. Then the

following identities hold in F<( A>) :

• Fix M ∈ [n]d (d < n) with distinct entries. If i, j ∈ [n] with i 6∈ M , then putting
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B = A(i|j|M), we have

pM
ij (B) and rM

ji (B) do not depend on the ordering of M .

• Fix M ∈
([n]

d

)
(d < n − 2). If i, j, k ∈ [n] \ M , then putting B = Ai∪j∪k∪M , we

have

pk∪M
ij (B) pi∪M

jk (B) pj∪M
ki (B) = −1

and

rj∪M
ik (B) ri∪M

kj (B) rk∪M
ji (B) = −1 .

• Fix M ∈
([n]

d

)
(d < n). If i, j ∈ [n] with i 6∈ M , then putting B = Ai∪j∪M , we

have

pM
ij (B) =

 0 if j ∈ M

1 if i = j
and rM

ji (B) =

 0 if j ∈ M

1 if i = j

• Fix M ∈
([n]

d

)
(d < n − 1). If i, j, k ∈ [n] with i, j 6∈ M , then putting B =

Ai∪j∪k∪M , we have

pM
ij (B)pM

jk(B) = pM
ik (B) and rM

kj (B)rM
ji (B) = rM

ki (B)

The fundamental identity holding among the quasi-Plücker coordinates appears be-

low; it is the analog of (3.1). It was first observed (in the case of Grassmannians) in

[16] under the name “quasi-Plücker relations.”

Theorem 15 (Quasi-Plücker Relations). Let A be an n × n matrix of formal,

noncommuting variables. Fix L,M ∈ [n] with s = |L| ≥ |M |+ 1 = t and |L|, |M |+ 1 ∈

‖γ‖. Fix i ∈ [n] \M . The following identities hold in F<( A>)

∑
j∈L

pM
ij (A) · pL\j

ji (A) = 1 . (3.2)

∑
j∈L

r
L\j
ij (A) · rM

ji (A) = 1 . (3.3)

We abbreviate these relations as (Pi,L,M ). When it is not clear from context whether

we refer to the left or right version, we add an indicator, e.g. (lPi,L,M ). As in the

commutative case, they will be proven with a certain Laplace expansion.
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Proof. We prove formula (3.3). If I ⊆ [n] with |I| = d, we let AI denote AI,[d]. Also,

we write M = {m2, . . . ,mt} and L = {l1, . . . , ls} to simplify some coming indices. Fix

q ∈ [t]. We compute the quasideterminant appearing below in two different ways.∣∣∣∣∣∣∣∣∣∣∣∣∣

|Ai∪M |iq ai1 ai2 · · · ais

|Al1∪M |l1q ai1 al12 · · · al1s

...
...

...

|Als∪M |lsq ai1 als2 · · · alss

∣∣∣∣∣∣∣∣∣∣∣∣∣
First, let us name the pieces of the matrix above. Let ξ = [ξ0, . . . , ξs]

T be the first

column appearing above, let B denote the remaining columns, and let C = [ξ|B] denote

the entire matrix.

Method 1 (Using Proposition 4). This quasideterminant is zero, because the first column

of C is a linear combination of its next t columns. For starters, notice that:

ξ0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ai1 · · · aiq · · · ait

am21 · · · am2q · · · am2t

...
...

...

amt1 · · · amtq · · · amtt

∣∣∣∣∣∣∣∣∣∣∣∣∣
= aiq −

∑
v 6=q

aiv

t∑
k=2

∣∣(Ai∪M )iq
∣∣−1

mkv
· amkq.

Computing all of the coordinates of ξ at once, we have

ξ = colq(B)− col1(B) ·
t∑

k=2

∣∣(Ai∪M )iq
∣∣−1

mk1
· amkq − · · ·

− colt(B) ·
t∑

k=2

∣∣(Ai∪M )iq
∣∣−1

mkt
· amkq

=
t∑

j=1

colj(B) · λj ,

for some λj ∈ F<( A>) , what we meant to show.

Method 2 (Using Proposition 6). This quasideterminant has a Laplace expansion in
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terms of quasi-Plücker coordinates:

0 = ξ0 −
s∑

j=1

|Ai∪(L\lj)|ip · |Alj∪(L\lj)|
−1
ljp · ξj (∀p)

ξ0 =
s∑

j=1

|Ai∪(L\lj)|ip · |Alj∪(L\lj)|
−1
ljp · ξj

1 =
s∑

j=1

|Ai∪(L\lj)|ip · |Alj∪(L\lj)|
−1
ljp · |Alj∪M |ljq · |Ai∪M |−1

iq

1 =
∑
j∈L

r
L\j
ij · rM

ji .

3.4 Toward a Coordinate Algebra

One would like a definition of the following sort: the (right-) flag algebra in the non-

commutative setting is the algebra with generators rM
ij and relations those described

above in Propositions 14 and 15). The current state of the noncommutative theory does

not contain an analog of the Basis Theorem. However, there does exist the following

very compelling prelude:

Theorem 16. Let A = (aij) be an n × n matrix with formal, noncommuting entries

and suppose f = f(aij) is a rational function over the free skew-field D = F<( A>) . If

f(Ag) = f(A) for all g ∈ P+
γ (D), then f is a rational function in the quasi-Plücker

coordinates rM
ij (A), |M |+ 1 ∈ ‖γ‖.

A Grassmannian version of this theorem appears in [17]. The proof is a consequence

of noncommutative Gaussian Elimination and a simple application of the noncommu-

tative Sylvester’s Identity (Theorem 8) and induction. We illustrate the theorem with

a 3× 3 example, γ = (2, 1).

Sketch of Proof. Using only elements of P+
γ , we may transform A into

1 0 0

a21a
−1
11 |A{1,2},{1,2}|22 |A{1,2},{1,3}|23

a31a
−1
11 |A{1,3},{1,2}|32 |A{1,3},{1,3}|33

 ,
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and into 
1 0 0

a21a
−1
11 1 0

a31a
−1
11 |A{1,3},{1,2}|32|A{1,2},{1,2}|−1

22 |A{1,2,3},{1,2,3}|33

 .

Continuing Gaussian Elimination via elements of Pγ , we reach the matrix
1 0 0

0 1 0

r∅31 − r1
32r

∅
21 r1

32 1

 .

Consequently, f is a rational function in the Plücker coordinates rM
ij of A. However,

not all M appearing satisfy the hypotheses of the theorem; e.g. the symbol r∅31 is not

allowed because in this case, |M | + 1 6∈ ‖γ‖ = {2}. We have a little more work to do.

From Proposition 14 and Theorem 15, we see that

r∅31 − r1
32r

∅
21 = r2

31(r
2
13r

∅
31 − r2

13r
1
32r

∅
21)

= r2
31(r

2
13r

∅
31 + r3

12r
∅
21)

= r2
31 ,

so we are left with the reduced form of A looking like
1 0 0

0 1 0

r2
31 r1

32 1

 .

In short, if γ = (γ1, . . . , γr), columns |γ[i−1]| + 1 through |γ[i]| of the reduced form of

A will consist of an identity matrix (of size γi) atop a collection of right quasi-Plücker

coordinates of size γi, 1 ≤ i ≤ r.

Bearing in mind the absence of a Basis Theorem, we nevertheless state

Definition 12 (Ring of Quasi-Plücker Coordinates). The (right-) noncommuta-

tive flag algebra Q(γ), the ring of right quasi-Plücker coordinates, is the F -algebra with

generators
{

rM
ij | M ⊆ [n] and i, j ∈ [n] s.t. j 6∈ M, |M |+ 1 ∈ ‖γ‖

}
and relations given

in Proposition 14 and Theorem 15.

We return to the study of this interesting algebra in a later chapter.
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Chapter 4

Amenable Determinants

Fix D,n, V = Dn, γ |= n, and F`(γ) (= F`(VD, γ) or = F`(DV, γ)) as in the previous

chapter. Here we spell out some minimal conditions one may impose on a determinant

Det in order to build Grassmannians and flags via the quasideterminant. In the next

chapter, we discuss where to find amenable determinants “in nature”, e.g. associated

to certain algebras of RTT type.

q-generic flags. First, consider an algebra A(n) on n2 generators tij over a field F—

ignoring the relations for now. Put all generators together in a matrix T . We view the

tij as coordinate functions characterizing some set X inside Dn2
. Let us call X the set

of q-generic matrices over D for A(n). Next, we define the q-generic flags over D for

A(n) as those points Φ ∈ F`(γ) s.t. the equivalence class
[
A(Φ)

]
has a representative

in X.

q-generic flag algebras. Finally, we view the (row/column) Det minors of T in A(n)

as coordinates for (right/left) q-generic flags. Sticking to our analogy with the classic

case, we would like to define the homogeneous coordinate ring, the noncommutative

“flag algebra,” for the q-generic points of F`(γ) abstractly in terms of generators and

relations. The results of this chapter go a long way toward cataloging those relations.

4.1 Definition & First Properties

Definition 13. Let Det be a map from square sub-matrices of T to A(n). Write

Det TR,C = [TR,C ] for short. We will say Det is an adequate determinant if there are

functions1 Ir, Ix,Kr,Kx : P[n] × P[n] → F \ {0} associated to Det satisfying (∀R, C ∈

1I for Inverse, K for Kommuting, r for row, and x for xolumn.
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P[n], |R| = |C|):

1. (∀r ∈ R, c ∈ C) [Tr,c] = trc.

2. (∀r, r′ ∈ R)
∑

c∈C trc
Ix({c},C)
Ir({r′},R) [(TR,C)r′c] = [TR,C ] · δrr′

or

(∀c, c′ ∈ C)
∑

r∈R
I′x({c},C)

I′r({r},R)
[(TR,C)rc]trc′ = [TR,C ] · δcc′ .

3. (∀r ⊆ R)(∀c ⊆ C) [TR,C ][TR\r,C\c] = Kx(C\c,C)
Kr(R\r,R) [TR\r,C\c][TR,C ].

Remark. Property 1 together with property 2 or 2′ give a Laplace expansion for Det.

Property 2 gives a way to move between 2 and 2′, so we will make no use of 2′ in the

sequel. With our method, one may get partial results assuming properties 2 and 2′

alone (without properties 1 and 2), but they are somewhat unsatisfactory. The reader

may keep this idea in mind during the coming proofs to see what limited statements

may be made in this case.

Definition 14. Suppose X, Y are two subsets of P[n]. Let X ×∅ Y denote those pairs

(A,B) ∈ X × Y satisfying A ∩ B = ∅. Call a function f :
(
[n]
1

)
×∅ P[n] → F \ {0}

measuring if it satisfies: (i) f({a}, B ∪ C) = f({a}, B)f({a}, C) for {a}, B, C pairwise

disjoint; (ii) f({a}, ∅) = 1.

Remark. This notion abstracts the function `, measuring the length of a permutation.

We abuse notation and write f(a,B) for f({a}, B). We may extend measuring functions

to act on P[n] ×∅ P[n] by demanding f(A,B) =
∏

a∈A f(a,B). Alternatively, we

may extend f to act on
(
[n]
1

)
× P[n] by taking f(a,B) = f(a,B \ a). We put these

two extensions together by letting f(A,B) =
∏

a∈A f(a,B) =
∏

a∈A f(a,B \ a) for

(A,B) ∈ P[n]× P[n].

Definition 15. Let Det be a map from square sub-matrices of T to A(n). Write

Det TR,C = [TR,C ] for short. We will say Det is an amenable determinant if there are

measuring functions Ir, Ix,Kr,Kx : P[n]× P[n] → F \ {0} associated to Det satisfying:

1. (∀r, c ∈ [n]) [Tr,c] = trc.

2. (∀r, r′ ∈ R)
∑

c∈C trc
Ix(c,C)
Ir(r′,R) [(TR,C)r′c] = [TR,C ] · δrr′ .
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3. (∀R′ ⊆ R)(∀C ′ ⊆ C) [TR,C ][TR′,C′ ] = Kx(C′,C)
Kr(R′,R) [TR′,C′ ][TR,C ].

Beginning from the generic noncommutative flag F`(γ), and its quasi-Plücker co-

ordinates, we build flag algebras F(γ) for noncommutative algebras A(n) possessing

amenable determinants. Taken together, we call (A(n),Det) an amenable pair.

Several remarks are in order.

• We will need to be able to invert TR,C for many different R,C ⊆ [n]. From here

on out, we pass to a larger ring T (n), some noncommutative localization of A(n),

if necessary, to assume that (∀R,C) (∀ 1 ≤ k, l,≤ |R|) ((TR,C)−1)kl is defined

in T (n) and nonzero.

• We could make do with less; in the next two sections, we work with adequate

determinants. Amenable determinants are adequate, so the results proven there

hold in this more restrictive setting. We will need the amenable property only

in Section 4.4, where a “q-commuting” property is proven (compare Theorems 19

and 21).

• The amenable property isn’t necessary to define homogeneous coordinate rings for

flags and Grassmannians. Noncommutative settings with adequate determinants

also have such coordinate algebras; the coordinate functions there simply won’t

satisfy the strong version of the q-Commuting property. Indeed something even

weaker than adequate is necessary. We only need [TR,C ] to satisfy the conditions

of Definition 13 for those R,C ∈
( [n]
‖γ‖
)

in order to build flag coordinates for F`(γ)

over T (n). In the sequel we spend no further effort in this direction.

• All the examples the authors knows of determinants which are adequate are also

amenable.2

• Measuring or not, it is immediate that the functions K∗ for amenable determinants

2Actually, the Yangians don’t fit into this notion of amenable at all. However, an analogous notion,
call it spectral-parameter (SP) amenable works in this setting, and indeed the Yangian determinant is
SP-amenable, not merely “SP-adequate.” We’ll see this in due time.
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must satisfy, for all A,B ∈
([n]

d

)
and for all 1 ≤ d ≤ n,

Kr(A,A) = Kx(B,B) . (4.1)

For property 3 of the definition reads [TA,B][TA′,B′ ] = 1 · [TA′,B′ ][TA,B] when

A′ = A,B′ = B.

Proposition 17. If T has an adequate determinant Det T = [T ], then [T ] has an

expansion in terms of quasideterminants.

Proof. Indeed, any [TR,C ] has such an expansion for any R,C ⊆ [n] (|R| = |C|). We

employ Theorem 2, which says |X|−1
ij and (X−1)ji are equal when both exist. Let SC,R

be the |R| × |R| matrix (scr) given by scr = Ix(c,C)
Ir(r,R) [(TR,C)rc]. Obviously, condition (2)

of Definition 13 implies that

|TR,C |−1
rc = (SC,R)cr[TR,C ]−1.

Consequently, using condition (2), we have

|TR,C |rc =
Ir(r, R)
Ix(c, C)

[TR,C ][(TR,C)rc]−1

=
Ir(r, R)
Ix(c, C)

Kr(Rr, R)
Kx(Cc, C)

[(TR,C)rc]−1[TR,C ] ,

or

[TR,C ] =
Ix(c, C)
Ir(r, R)

|TR,C |r,c[TRr,Cc ] (4.2)

=
Ix(c, C)
Ir(r, R)

Kx(Cc, C)
Kr(Rr, R)

[TRr,Cc ]|TR,C |rc . (4.3)

Let R = [n] be all the rows of T , and let I = (i1, i2, . . . , in) be a derangement of [n].

Put R(k) = R \ {i1, . . . , ik−1}. Define C, J , and C(k) similarly. Repeatedly applying

the above identity to TR(k),C(k) we may deduce

[T ] =

(
n∏

k=1

Ix(jk, C
(k))

Ir(ik, R(k))

)
× |T |i1,j1 |T i1,j1 |i2,j2 · · · |tin,jn |in,jn

and

[T ] =

(
n∏

k=1

Ix(jk, C
(k))

Ir(ik, R(k))

)(
n∏

k=1

Kx(C(k+1), C(k))
Kr(R(k+1), R(k))

)
×

|tin,jn |in,jn · · · |T i1,j1 |i2,j2 |T |i1,j1

and any number of identities in between the two.
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What we really care about is not a full factorization of Det but rather just (4.2) and

(4.3). These allow us to replace quasi-Plücker coordinates with ratios of Det minors.

Specifically, (4.2) demonstrates a passage from rM
ij to [TiM,[p]][TjM,[p]]−1, while (4.3)

demonstrates a passage from pM
ij to [T[p],iM ]−1[T[p],jM ]. We record these key identities

now for future reference.

Proposition 18. Fix M ∈
( [n]
d−1

)
and i, j ∈ [n] \M . Then for all L ∈

([n]
d

)
pM

ij (TL,ijM ) =
Ix(i, iM)Kx(M, iM)
Ix(j, jM)Kx(M, jM)

[TL,iM ]−1[TL,jM ] (4.4)

rM
ij (TijM,L) =

Ir(i, iM)
Ir(j, jM)

[TiM,L][TjM,L]−1 (4.5)

The row and column situations mirror each other. In the coming sections, when

faced with a proposition containing statements about both, we’ll demonstrate only one.

4.2 Weak q-Commuting Relations

We are now ready to prove the first important result concerning adequate determinants.

Theorem 19. Suppose R,C index the rows and columns of T . The following identities

hold among the indicated Det minors of T .

• Suppose K ⊆ R and L ⊆ C satisfy |K| = |L|+ 1 = m. Then for all a, b ∈ C \ L,

[TK,bL][TK,aL] = − Ix(a, abL)Ix(b, bL)Kx(L, bL)
Ix(b, abL)Ix(a, aL)Kx(L, aL)

· [TK,aL][TK,bL] . (4.6)

• Suppose K ⊆ R and L ⊆ C satisfy |K|+ 1 = |L| = m. Then for all i, j ∈ R \K,

[TjK,L][TiK,L] = −Ir(j, jK)Ir(i, ijK)Kr(jK, ijK)
Ir(i, iK)Ir(j, ijK)Kr(iK, ijK)

· [TiK,L][TjK,L] . (4.7)

Remark. In the statement of the theorem, m is not specified. The proof below suggests

that m < n, but if there is an adequate determinant for T (n + 1), as well as for T (n),

then we recover the case m = n. This possibility should cause no concern. We say

“weak” because we’ll show a more elaborate version later. We say “q” because the

current discussion is an attempt to generalize the quantum determinant setting, where

the q-commuting theorem says certain minors commute up to a power of q, cf. (6.5).
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Proof. (column-minors proof) We must work with slightly larger matrices than those

indicated in the statement of the theorem. To this end, we let K+ = K ∪ k+ for

k+ ∈ R \K, and let K− = K \ k− for k− ∈ K.

We use (4.3) and (2.2) to demonstrate (4.6):

|TK+,abL|−1
k+,a · |TK+,abL|k+,b = −|TK,aL|−1

k−,a · |TK,bL|k−,b

(lhs) =
(

Ix(a, abL)
Ir(k+,K+)

· [TK,bL][TK+,abL]−1

)
×(

Ir(k+,K+)
Ix(b, abL)

· [TK+,abL][TK,aL]−1

)
=

Ix(a, abL)
Ix(b, abL)

· [TK,bL][TK,aL]−1

(rhs) = −
(

Ix(a, aL)
Ir(k−,K)

Kx(L, aL)
Kr(K−,K)

· [TK,aL]−1[TK−,L]
)
×(

Ir(k−,K)
Ix(b, bL)

Kr(K−,K)
Kx(L, bL)

· [TK−,L]−1[TK,bL]
)

=
Ix(a, aL)Kx(L, aL)
Ix(b, bL)Kx(L, bL)

· [TK,aL]−1[TK,bL] .

Equating the two sides and clearing denominators completes the proof.

In the case of amenable determinants, the coefficients in the statement of the the-

orem take on a simpler form. For example, Ix(a,abL)
Ix(a,aL) = Ix(a, b). When we extend this

weak q-commuting property in Section 4.4, the measuring property of I∗ and K∗ will

be essential.

4.3 Young Symmetry Relations

Our next result is equally important toward the goal of building flags and Grassman-

nians for A(n). Before we reach the statement, another word about the alternating

property of Det. When {i}, {j},M are pairwise disjoint subsets of [n], the statement

rM
ji =

Ir(j, jM)
Ir(i, iM)

[TjM ][TiM ]−1

and the corresponding statement involving left flag coordinates are true statements.

That is both sides are defined and (by what has come before) equal. However, when
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j ∈ M , the left-hand side above is zero, while the right-hand side may not be. This will

not present a problem in this section, because (by the alternating property for quaside-

terminants) we may simply drop the zero terms before making the translation from

quasi-Plücker coordinates to quantum Plücker coordinates. We pick up the alternating

thread again in Chapter 6.

Theorem 20. Fix two integers 1 ≤ s ≤ r < n. The following relations hold among the

indicated Det minors of T .

• (Row Relations) For all K, M ⊆ [n] with |K| = r + 1, |M | = s− 1 we have:

0 =
∑

k∈K\M

Ir(k, kM)
Ir(k, K)Kr(K \ k, K)

· [TK\k,[r]][TkM,[s]] . (4.8)

• (Column Relations) For all K, M ⊆ [n] with |K| = r + 1, |M | = s− 1 we have:

0 =
∑

k∈K\M

Ix(k, K)
Ix(k, kM)Kx(M,kM)

· [T[s],kM ][T[r],K\k] . (4.9)

Proof. (row-minors proof) We begin with (3.3). From our data (K, M), we build data

(i, L,M) to use (rPi,L,M )—i.e. (3.3). Let i = minK, L = K \ i, and let M be the same

across the two instances.

1 =
∑
k∈L

r
L\k
ik rM

ki

=
∑

k∈L\M

r
L\k
ik rM

ki

=
∑

k∈L\M

|TiLk,[r]|ic|TL,[r]|−1
kc · |TkM,[s]|kc′ |TiM,[s]|−1

ic′ .

Applying (4.5), we may rewrite this last equality as

1 =
∑

k∈L\M

Ir(i, iLk)
Ir(k, kLk)

Ir(k, kM)
Ir(i, iM)

[TiLk,[r]][TkLk,[r]]
−1 · [TkM,[s]][TiM,[s]]

−1 .
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Using (4.7), this becomes

1 =
∑

k∈L\M

(
−Ir(k, kLk)Ir(i, ikLk)

Ir(i, iLk)Ir(k, ikLk)
Kr(kLk, ikLk)
Kr(iLk, ikLk)

)
×

Ir(i, iLk)
Ir(k, kLk)

Ir(k, kM)
Ir(i, iM)

[TkLk,[r]]
−1[TiLk,[r]][TkM,[s]][TiM,[s]]

−1

= −
∑

k∈L\M

(
Ir(k, kM)
Ir(i, iM)

Ir(i, ikLk)
Ir(k, ikLk)

Kr(kLk, ikLk)
Kr(iLk, ikLk)

)
×

[TkLk,[r]]
−1[TiLk,[r]][TkM,[s]][TiM,[s]]

−1

Now move to the left-hand side all things independent of k and get

Ir(i, iM)
Ir(i,K)Kr(K \ i,K)

·[TK\i,[r]][TiM,[s]] = −
∑

k∈K\i\M

Ir(k, kM)
Ir(k, K)Kr(K \ k, K)

·[TK\k,[r]][TkM,[s]] ,

or

0 =
∑

k∈K\M

Ir(k, kM)
Ir(k, K)Kr(K \ k, K)

· [TK\k,[r]][TkM,[s]] .

4.4 q-Commuting Relations

Here we make our first use of the measuring properties of the functions I∗ and K∗

associated to Det.

Definition 16. Given i, j ∈ [n], consider the expressions

λj = λj(i) = −Ix(i, j)Kx(j, i)
Ix(j, i)

.

ρj = ρj(i) = − Ir(i, j)
Ir(j, i)Kr(i, j)

.

As indicated in the notation, we consider these as functions of one variable (namely, i)

with one parameter (j). Given J, I ⊆ [n] with J ∩ I = ∅ and |J | ≤ |I|, we say J can’t

distinguish I as columns (as rows) if λj (ρj) is constant on I for each j ∈ J . We extend

this definition to pairs (I, J) with I ∩ J 6= ∅ by saying J can’t distinguish I if λj (ρj)

is constant for all j ∈ J \ I as a function on I \ J .
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Remark. This definition becomes much more transparent when applied to the specific

determinants introduced in the next chapter. It will amount to the existence of a certain

partition J ′∪̇J ′′ of J so that J ′ ≺ I ≺ J ′′ (cf. Chapter 2 for notation). For now, write

λJ for the product
∏

j∈J λj evaluated at some i ∈ I (defining ρJ similarly).

The following theorem is the main result of this section. For a cleaner statement,

we collect all the notation here before we begin. Fix J ∈
(
[n]
s

)
and I, K ∈

(
[n]
r

)
with

s ≤ r. Let K̄ be the first s elements of K, and let K̂ = K \ K̄. Fix M,L ∈
(
[n]
t

)
.

Suppose additionally that I, J, M are pairwise disjoint, and that L ∩K = ∅.

Theorem 21 (q-Commuting Relations). Let Det be an amenable determinant with

associated measuring functions I∗ and K∗. For all I, J, K,L,M ∈ P[n] as above with

1 ≤ s ≤ r ≤ n and 0 ≤ t ≤ n− r we have

• If J can’t distinguish I as columns, then

[TK̄L,JM ][TKL,IM ] =
λJKr(K̄,K)

Kx(J, I)
· Kx(M,J)Kr(L, K̂)

Kx(M, I)
[TKL,IM ][TK̄L,JM ] (4.10)

• If J can’t distinguish I as rows, then

[TJM,K̄L][TIM,KL] =
ρJKr(J, I)
Kx(K̄,K)

· Kr(M, I)
Kr(M,J)Kx(L, K̂)

[TIM,KL][TJM,K̄L] (4.11)

We begin by investigating a property of K∗ that will prove essential. Next, we

introduce two key propositions that will serve as the base case for an induction proof.

Finally, we prove the q-commuting property for amenable determinants.

Proposition 22 (Key Properties of K∗). If Det is an amenable determinant then

there exists a constant θ ∈ F \ {0} such that for all i, j ∈ [n], i 6= j

Kx(i, j)Kx(j, i) = θ and Kr(i, j)Kr(j, i) = θ . (4.12)

In particular, for all A ∈ P[n],

Kx(A,A) = θ(
|A|
2 ) and Kr(A,A) = θ(

|A|
2 ) . (4.13)

Proof. We recall the observation that, if Det is an amenable determinant, then—

measuring or no—the functions K∗ satisfy Kr(A,A) = Kx(B,B) for all A,B ∈
([n]

d

)
and for all 1 ≤ d ≤ n.
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Consider the case when A = {i, j}. The measuring property implies Kr(A,A) =

Kr(i, ij)Kr(j, ij) = Kr(i, j)Kr(j, i); and that this last expression is independent of i and

j. Call this constant θ. One similarly concludes that Kx(i, j)Kx(j, i) = θ.

Finally, for A = {a1, a2, . . . , ad}, we have

Kx(A,A) = Kr(A,A)

=
d∏

i=1

Kr(ai, A) =
d∏

i=1

Kr(ai, A
i)

=
∏
i6=j

Kr(ai, aj)Kr(aj , ai)

= θ(
d
2), as needed.

Proposition 23. Let Det be an amenable determinant. Suppose I ⊆ [n] and j ∈ [n]\ I

are such that {j} can’t distinguish I. Then—writing |I| = r—for all K ∈
(
[n]
r

)
and for

all k ∈ K we have:

• [Tj,k][TI,K ] = ρj · Kr(j,I)
Kx(k,K) [TI,K ][Tj,k] ,

• [Tk,j ][TK,I ] = λj · Kr(k,K)
Kx(j,I) [TK,I ][Tk,j ] .

Proof. (row-minors proof) Writing the quasi-Plücker relation rPj,I,∅ for TjI,K in terms

of Det minors, we have

1 =
∑
i∈I

Ir(j, jIi)
Ir(i, iIi)

Ir(i, i)
Ir(j, j)

[TjIi,K ][TI,K ]−1[Ti,k][Tj,k]−1 ,

or

[Tj,k] =
∑
i∈I

Ir(j, Ii)
Ir(i, Ii)

[TjIi,K ][TI,K ]−1[Ti,k] ,

using the measuring property of Ir.

Remark. If K = {k1, . . . , kr} then as stated (and proven, cf. Theorem 15) the identity

rPj,I,∅ above involves coordinates rIi

ji (TjI,K) and r∅ji(TjI,k1), while we have used an

arbitrary k in the second factor. This modified identity is also true, with the same

proof.



36

We have already established that [Tj∪I\i,K ] and [TI,K ] q-commute (Theorem 19).

Clearing the denominator to the left, we get

[TI,K ][Tj,k] =
∑
i∈I

(
− Ir(i, Ii)Ir(j, I)Kr(I, jI)

Ir(j, Ii)Ir(i, jIi)Kr(jIi, jI)

)
×

Ir(j, Ii)
Ir(i, Ii)

[Tj∪I\i,K ][Ti,k]

=
1

ρjKr(j, I)

{∑
i∈I

Kr(i, Ii) · Ir(j, Ii)
Ir(i, Ii)

[TjIi,K ][Ti,k]

}
. (4.14)

If instead we use property (2) of Det to clear denominators to the right, we get

[Tj,k][TI,K ] =
∑
i∈I

(
Kr(i, Ii)
Kx(k, K)

)
· Ir(j, Ii)
Ir(i, Ii)

[TjIi,K ][Ti,k]

=
1

Kx(k, K)

{∑
i∈I

Kr(i, Ii)
Ir(j, Ii)
Ir(i, Ii)

[TjIi,K ][Ti,k]

}
. (4.15)

Comparing (4.14) and (4.15), we conclude that [Tj,k] and [TI,K ] q-commute as desired.

Proposition 24. Let Det be an amenable determinant. Suppose J ∈
(
[n]
s

)
and I ∈

(
[n]
r

)
satisfy I ∩J 6= ∅ and s ≤ r. Then for all K̄ = {k1, . . . , ks} and K = K̄∪{ks+1, . . . , kr},

and for all M ∈ [n] \ (I ∪ J) and L ∈ [n] \K with 1 ≤ |L| = |M | = t ≤ n− r, we have:

• If [TJ,K̄ ][TI,K ] = X · [TI,K ][TJ,K̄ ] for some X = XK̄,K
I,J in F \ {0}, then

[TJM,K̄L][TIM,KL] =
Kr(M, I)

Kr(M,J)Kx(L,K \ K̄)
·X · [TIM,KL][TJM,K̄L] . (4.16)

• If [TK̄,J ][TK,I ] = Y · [TK,I ][TK̄,J ] for some Y = Y I,J
K̄,K

in F \ {0}, then

[TK̄,J ][TK,I ] =
Kx(M,J)Kr(L,K \ K̄)

Kx(M, I)
· Y · [TK,I ][TK̄,J ] . (4.17)

Proof. (row-minor proof) The statement is a consequence of Muir’s Law (Theorem 7).

It will be convenient to begin from the modified equation

[TI,K ]−1[TJ,K̄ ] = X · [TJ,K̄ ][TI,K ]−1 . (4.18)

To ease notation, let K̂ = K \ K̄. Also, for any A = {a1, . . . , ap} ⊆ [n] let A(k) =

{ak, . . . , ap} and A((k)) denote {a1, . . . , ap−k+1} (i.e. delete the first k − 1 or last k − 1

elements of A respectively). When k > p understand A(k) and A((k)) to be empty.
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We use Proposition 17 to write [TJ,K̄ ] and [TI,K ] in terms of quasideterminants. We

peel off row-indices from the head of the list, and column-indices from the tail of the

list. Now, (4.18) becomes:

(lhs) =
({∏r

`=1 Ix(kr+1−`,K
((`)))Kx(K((`+1)),K((`)))∏r

`=1 Ir(i`, I(`))Kr(I(`+1), I(`))

}
×

|Tir,kr |ir,kr · · · |TIi1 ,Kk1 |i2,k2 |TI,K |i1,k1

)−1

×({∏s
`=1 Ix(ks+1−`, K̄

((`)))Kx(K̄((`+1)), K̄((`)))∏s
`=1 Ir(j`, J (`))Kr(J (`+1), J (`))

}
×

|Tjs,ks |js,ks · · · |TJj1 ,K̄k1 |j2,k2 |TJ,K̄ |j1,k1

)
.

(rhs) = X ·
({∏s

`=1 Ix(ks+1−`, K̄
((`))∏s

`=1 Ir(j`, J (`))

}
×

|TJ,K̄ |j1,k1 |TJj1 ,K̄k1 |j2,k2 · · · |Tjs,ks |js,ks

)
×({∏r

`=1 Ix(kr+1−`,K
((`)))∏r

`=1 Ir(i`, I(`))

}
×

|TI,K |i1,k1 |TIi1 ,Kk1 |i2,k2 · · · |Tir,kr |ir,kr

)−1

.

Take M = {m1, . . . ,mt}, and apply Muir’s Law to get

(lhs) =
βK̄

J

βK
I

(
|TIM,KL|−1

i1,k1
· · · |TirM,krL|−1

ir,kr

)
×(

|TjsM,ks |js,ks · · · |TJM,K̄L|j1,k1

)
(rhs) = X ·

β̃K̄
J

β̃K
I

(
|TJM,K̄L|j1,k1 · · · |TjsM,ksL|js,ks

)
×(

|TirM,krL|−1
ir,kr

· · · |TIM,KL|−1
i1,k1

)
.

Here β, β̃ just replace the products detailed above. Focusing on the left-hand side for

a moment, we may multiply and divide by quasi-minors of TM,L to get

βK̄
J

βK
I

(
|TIM,KL|−1

i1,k1
· · · |TirM,krL|−1

ir,kr
·
{
|TM,L|−1

m1,l1
· · · |Tmt,lt |−1

mt,lt

})
×({

|Tmt,lt |mt,lt · · · |TM,L|m1,l1

}
· |TjsM,ksL|js,ks · · · |TJM,K̄L|j1,k1

)
.

Now, multiplying and dividing by the β corresponding to (J ∪ M, K̄ ∪ L) and (I ∪
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M,K ∪ L) we may reinterpret the left-hand side as Det minors:

(lhs) =
βK̄

J

βK
I

βK∪L
I∪M

βK̄∪L
J∪M

[TIM,KL]−1[TJM,K̄L] .

Similarly, the right-hand side becomes

(rhs) = X ·
β̃K̄

J

β̃K
I

β̃K∪L
I∪M

β̃K̄∪L
J∪M

[TJM,K̄L][TIM,KL]−1 .

It is left to consider the expression

Y0 =

(
βK̄

J

βK
I

βK∪L
I∪M

βK̄∪L
J∪M

)−1

·
β̃K̄

J

β̃K
I

β̃K∪L
I∪M

β̃K̄∪L
J∪M

and hope that Y0 simplifies to the advertised Y .

We focus first on the β, β̃ pieces involving J , call this Y0,J , then we move on to

Y0 = Y0,JY0,I . Writing out Y0,J in terms of I∗,K∗, we have

Y0,J =
β̃K̄

J

βK̄
J

·
βK̄∪L

J∪M

β̃K̄∪L
J∪M

=

Qs
`=1 Ix(ks+1−`,K̄

((`)))Qs
`=1 Ir(j`,J(`))Qs

`=1 Ix(ks+1−`,K̄((`)))Kx(K̄((`+1)),K̄((`)))Qs
`=1 Ir(j`,J(`))Kr(J(`+1),J(`))

×

Qs
`=1 Ix(ks+1−`,LK̄((`)))Kx(LK̄((`+1)),LK̄((`)))

Qt
`=1 Ix(lt+1−`,L

(`))Kx(L((`+1)),L((`)))Qs
`=1 Ir(j`,MJ(`))Kr(MJ(`+1),MJ(`))

Qt
`=1 Ir(m`,M(`))Kr(M(`+1),M(`))Qs

`=1 Ix(ks+1−`,LK̄((`)))
Qt

`=1 Ix(lt+1−`,L((`)))Qs
`=1 Ir(j`,MJ(`))

Qt
`=1 Ir(m`,M(`))

.

First, note that the factors involving only M,L will also appear in Y0,I (and with

opposite numerator-denominator parity!). Also K̄((`)) = K((`+r−s)), so some of the Kx

factors appearing here also appear in Y0,I (again with opposite parity). Let us write

Ỹ0,J for the quantity Y0,J with these factors suppressed. Next, we use the measuring

property to arrive at a simpler expression:

Ỹ0,J =
∏s

`=1 Ir(j`, J
(`))Kr(J (`+1), J (`))∏s

`=1 Ir(j`, J (`))
·

∏s
`=1 Ir(j`,MJ (`))∏s

`=1 Ir(j`,MJ (`))Kr(MJ (`+1),MJ (`))

=
∏s

`=1 Kr(J (`+1), J (`))∏s
`=1 Kr(MJ (`+1),MJ (`))

=
Kr(M,M)−s∏s

`=1 Kr(J (`+1),M)Kr(M,J (`))
.
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Repeating these simplifications for Y0,I we arrive at

Y0 = Y0,J · Y0,I = Ỹ0,J · Ỹ0,I

=
Kr(M,M)−s∏s

`=1 Kr(J (`+1),M)Kr(M,J (`))
Kr(M,M)r

∏r
`=1 Kr(I(`+1),M)Kr(M, I(`))

Kx(L,L)r−s
∏r−s

`=1 Kx(K((`+1)), L)Kx(L,K((`)))

=
∏r

`=1 Kr(I(`+1),M)Kr(M, I(`))∏s
`=1 Kr(J (`+1),M)Kr(M,J (`))

∏r−s
`=1 Kx(K((`+1)), L)Kx(L,K((`)))

.

In the last step, we used the key property of K∗ noted in (4.1). Finally, we can

radically simplify this expression for Y0 by appealing to Proposition 22. Note, e.g.,

that Kr(I(`+1),M)Kr(M, I(`)) = Kr(I(`+1),M)Kr(M, i`)Kr(M, I(`+1)). In terms of θ,

this equals θ(r−`)tKr(M, i`). Repeating this calculation for all products above, we see

that

Y0 =
Kr(M, I)

Kr(M,J)Kx(L, K̂)
.

And so we conclude that Y0 = Y , as desired.

We are now ready for the proof of the main theorem.

Proof of Theorem 21. Proposition 24 allows us to first consider the case M = L = ∅,

and pass to the general case afterward. We proceed by induction on s, the base case

having been handled in Proposition 23.

(row-minors proof) Given J = {j1, . . . , js}, I = {i1, . . . , ir}, K = {k1, . . . , kr}, and

K̄ = {k1, . . . , ks} as in the statement of the theorem, we introduce some convenient

notation. Let Ĵ = J \ j1 and K̂ = K \ K̄. Also, we write k̄ = ks and let ˆ̄K = K̄ \ k̄.

Finally, we introduce an abuse of this “hat” notation: we let Î = I\i when the particular

i on which the notation depends is clear from context. Now consider the quasi-Plücker

coordinate identity rPj1,I,Ĵ applied to the matrix TI∪J,K . In terms of Det minors, it

reads

1 =
∑
i∈I

Ir(j1, j1I
i)

Ir(i, iIi)
Ir(i, iĴ)

Ir(j1, j1Ĵ)
[Tj1Ii,K ][TI,K ]−1[TiĴ ,K̄ ][Tj1Ĵ ,K̄ ]−1 ,

or

[TJ,K̄ ] =
∑
i∈I

Ir(j1, Î)
Ir(i, Î)

Ir(i, Ĵ)
Ir(j1, Ĵ)

[Tj1Î,K ][TiÎ,K ]−1[TiĴ ,K̄ ] . (4.19)
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By the weak q-commuting property of adequate determinants, we may write

[Tj1Î,K ][TiÎ,K ]−1 = −Ir(j1, i)Kr(i, j1Î)
Ir(i, j1)Kr(j1, iÎ)

[TiÎ,K ]−1[Tj1Î,K ]

=
1

ρj1Kr(j1, I)
· Kr(i, Î)[TiÎ,K ]−1[Tj1Î,K ] . (4.20)

Alternatively, induction and Proposition 24 allow us to write

[TiÎ,K ]−1[TiĴ ,K̄ ] = [TiÎ,k̄Kk̄ ]−1[T
iĴ ,k̄ ˆ̄K

]

=
ρĴKr(Ĵ , Î)

Kx( ˆ̄K, K k̄)

Kr(i, Î)

Kr(i, Ĵ)Kx(k̄, K k̄ \ ˆ̄K)
· [T

iĴ ,k̄ ˆ̄K
][TiÎ,k̄Kk̄ ]−1 .

Focusing on the coefficient, we have

(coeff) =
ρĴKr(Ĵ , Î)

Kx( ˆ̄K, K k̄)
· Kr(Ĵ , i)

θs−1
· Kr(i, Î)
Kx(k̄, K̂)

=
ρĴKr(Ĵ , I)

Kx( ˆ̄K, K k̄)
· 1

Kx( ˆ̄K, k̄)Kx(k̄, ˆ̄K)
· Kr(i, Î)
Kx(k̄, K̂)

=
ρĴKr(Ĵ , I)

Kx( ˆ̄K, K)

Kr(i, Î)
Kx(k̄, K)

=
ρĴKr(Ĵ , I)
Kx(K̄,K)

· Kr(i, Î) ,

or

[TiÎ,K ]−1[TiĴ ,K̄ ] =
ρĴKr(Ĵ , I)
Kx(K̄,K)

· Kr(i, Î)[TiĴ ,K̄ ][TiÎ,K ]−1 . (4.21)

Using (4.20) and (4.21) to simplify (4.19), we see that

ρj1Kr(j1, I)[TI,K ][TJ,K̄ ] =
∑
i∈I

Kr(i, Î)[Tj1Î,K ][TiĴ ,K̄ ]

Kx(K̄,K)
ρĴKr(Ĵ , I)

[TJ,K̄ ][TI,K ] =
∑
i∈I

Kr(i, Î)[Tj1Î,K ][TiĴ ,K̄ ] .

Equating the left-hand sides above completes the proof.

4.5 Pre–Flag Algebras

After the preceding sections, we may make the following definition

Definition 17 (Pre–Flag Algebra). Given a composition γ |= n, and a noncom-

mutative algebra A(n) with amenable determinant Det, the left pre–flag algebra F̃(γ)
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associated to A(n) is the F -algebra with generators
{

f̃I | I ∈
([n]

d

)
, d ∈ ‖γ‖

}
and re-

lations given by (4.9) and (4.10). The right pre–flag algebra is denoted by the same

symbol, given the same generators, and given relations (4.8) and (4.11).

Remark. More should be said. The equations alluded to in the definition involve minors

of the form [TR,C ]. When we are considering left (column) flags, we write f̃I for the

“coordinate function” [T[d],I ] (assuming |I| = d); when we are considering right (row)

flags, we write f̃I for the coordinate function [TI,[d]].

Remark. Still more should be said. In Theorem 21, we deal with two triples of in-

dices. . . the important sets (J, I, M) and some behind-the-scenes sets (K̄,K,L). Take

|J | = r, |I| = s, and |M | = t. The only choice for the behind-the-scenes sets

which agrees with the convention “take the first d rows (columns)” is to put L = [t],

K̄ ∪ L = [r + t], and L ∪K = [s + t]. Unfortunately, it is necessary to make a choice

because the behind-the-scenes coefficients K∗ really don’t disappear (though they may

be made simpler up to a power of θ):

K∗(K̄, L)K∗(L, K̂) = K∗(K̄, K̄)K∗(K̄, K̂)K∗(L, K̂)

= q(
|K̄|
2 )K∗(K̄L, K̂)

= q(
|K̄|
2 )−(|K̄L|

2 )K∗(K̄L, K̂)K∗(K̄L, K̄L)

= q−rt−(t
2)K∗([r + t], [s + t]).

In any particular (amenable) noncommutative setting, these relations may not ex-

haust the identities that the minors of T satisfy. For instance, most determinants have

some kind of (row or column) “alternating” property which was not quite assumed in

the definition of amenable determinant. Indeed, the existence of such a property is typ-

ically the source of the adjoint property which we do assume for amenable determinants

(Definition 13.(2 & 2′)).

If the determinant is alternating, one may make the Young symmetry identity look

much cleaner by: (i) letting the generators be indexed by [n]‖γ‖ instead of by
( [n]
‖γ‖
)
;

(ii) rewriting I∗(i, J)f̃i∪J as f̃i|J . This is a minor change, producing an isomorphic

algebra. However, more significant gaps may exist. As we will see in Chapter 6, the
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quantum flag of Taft and Towber has some relations of a novel character. It is an open

question whether or not there are quasideterminantal identities which explain these

extra relations.

We will pick up this discussion again in a later chapter. For now, we turn our

attention to finding amenable determinants.
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Chapter 5

Sources of Amenable Determinants

The majority of this chapter amounts to a cataloging of amenable determinants which

arise via the R-matrix formalism. The balance, Sections 5.1 and 5.8, comprises an

overview of the R-matrix formalism and a new example of an amenable determinant

that does not come from an R-matrix. The reader will forgive the terse explanations

and lack of motivations in the coming sections, as giving even one of these algebras

a just treatment could double the length of this thesis. Excellent sources for more

information include the books by Chari and Pressley [7] and Kassel [28]. The former

stresses the physics point-of-view alluded to in the introduction.

5.1 R-Matrices and Determinants

5.1.1 The FRT construction

Fix a field F and a finite dimensional vector space V = FN . Let τ ∈ EndV ⊗ V be

the “twist” map sending ei ⊗ ej to ej ⊗ ei (∀i, j). The following theorem of Faddeev,

Reshetikhin, and Takhtadzhyan is fundamental for the results of this chapter.

Theorem 25 (F-R-T, [41]). Let F, V be as above, and fix C ∈ EndV ⊗ V . There

exists a bialgebra A(C,N) = A together with a linear map ∆V : V → A⊗ V such that

(i) the map ∆V equips V with the structure of left-comodule over A,

(ii) the map τ ◦ C becomes a comodule map with respect to this structure,

(iii) if A′ is another bialgebra coacting on V via a linear map ∆′
V such that condition

25 is satisfied, then there exists a unique bialgebra morphism f : A → A′ such
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that

∆′
V = (f ⊗ IV ) ◦∆V .

The bialgebra A(C,N) is unique up to isomorphism.

Let {ei | 1 ≤ i ≤ N} be the standard basis for V . If C is defined by

C(ei ⊗ ej) =
∑

1≤m,n≤N

cmn
ij em ⊗ en

(think multiplication on the right by the matrix (ccol
row)), then the bialgebra of the

theorem is as follows.

(Co- Structures) The coalgebra map on A(C,N) and the comodule map on V are the

standard structures placed on the ring of matrix functionals M(n):

∆(tji ) =
∑

1≤k≤N

tki ⊗ tjk and ε(tji ) = δij ,

while

∆V ei =
∑

1≤k≤N

tji ⊗ ej .

(Algebra Structure) The algebra structure is defined so as to make (∆V⊗V ◦ (τC)) and

((τC) ◦∆V⊗V ) agree on V ⊗ V .

Notation. Suppose X, Y, {Zk | 1 ≤ k ≤ m} are F -modules. Then Z = Z1 ⊗ · · · ⊗ Zm

is another one, as is the set Z̃ built by replacing Zi with X and Zj with Y . Given

any f ∈ EndX and g ∈ EndY , we may extend f and g to be endomorphisms of Z̃ by

concatenating with the identity map:

fi := (IZ1 ⊗ · · · ⊗ IZi−1 ⊗ f ⊗ IZi+1 ⊗ · · · ⊗ IZm) ∈ EndZ.

Define gj similarly. Also, if h ∈ EndX ⊗ Y , we write hij for the obvious endomorphism

of Z constructed analogously.

Now, consider the free algebra A0 = F 〈tji | 1 ≤ i, j ≤ N〉. We will build A(C,N)

from A by equating two endomorphisms of the F -module V ′ = V ⊗ V ⊗A0. Consider

the matrix

T =


t11 · · · tn1
...

...

t1n · · · tnn
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over A0, and define T ∈ EndF V ⊗ A0 by T (ei ⊗ a) :=
∑

1≤m≤N em ⊗ tmi a (think

right-multiplication of ei by T ). We demand

C12T13T23 = T23T13C12 (5.1)

as endomorphisms of V ′. In terms of the generators tji , the relations take the form:

(∀i, j)(∀m,n)
∑

1≤k,l≤N

cmn
kl tki t

l
j =

∑
1≤k,l≤N

ckl
ij t

n
l tmk .

5.1.2 R-matrices

Definition 18. An endomorphism C ∈ EndV ⊗ V is said to be an R-matrix if it is

invertible, and moreover satisfies the quantum Yang-Baxter equation:

R12R13R23 = R23R13R12 (5.2)

in EndV ⊗ V ⊗ V .

In terms of matrix coefficients (and Einstein summation notation), this identity

reads

(∀a, b, c)(∀u, v, w) rk1k2
ab ruk3

k1c rvw
k2k3

= rl1l2
bc rl3w

al2
ruv
l3l1 .

By now the R-matrix is ubiquitous in the study of noncommutative structures,

especially those coming from physics. Indeed, it would not be controversial to define a

quantum group as a Hopf algebra with an R-matrix. Which brings us to our next point.

By the FRT construction one is given a bialgebra. To get a Hopf algebra, we need to

define the antipode S on T . If T may be formally inverted (perhaps after extending the

algebra A(C,N) to a larger algebra T (N)), then putting S(T ) = T−1 is a good start.

Aside from these motivational remarks (continued in the next subsection), we’ll have

no further use for the notions of bialgebras and Hopf algebras; so we make no effort to

be more precise.

5.1.3 Determinants from R-matrices

Notation. We change notation slightly. Let F be as before, and put V = Fn. When

A(C, n) is the bialgebra of the FRT construction, and C is an R-matrix, we say that



46

A(n) is an RTT -algebra—dropping the reference to C in the notation. Also, many of

the established RTT -algebras use generators tij instead of tji so we will change notation

eventually to be consistent with later sections. One unchanging convention throughout

the rest of the chapter: we write expressions for R with the understanding that it acts

on V ⊗ V by right-multiplication.

Consider the tensor algebra T(V ): the F -module with basis {ei1 ⊗ · · · ⊗ eik} (for

k ∈ N, (i1, . . . , ik) ∈ [n]k). It is graded by length (the k above), with graded piece

denoted T(V )k We may sometimes write ei1ei2 · · · eik or even ei1i2···ik to simplify nota-

tion. We may extend the A-comodule action on V to T(V )k by using
(
k
2

)
twists and

multiplications (i.e. letting all tji commute past all ek):

∆T(V ) (ei1 ⊗ · · · ⊗ eik) =
∑

j1,...,jk

tj1i1 · · · t
jk
ik
⊗ (ej1 ⊗ · · · ⊗ ejk

) .

Obviously, R remains a comodule map on T(V )k (k ≥ 2) when its action is restricted

to any two, fixed factors (i.e. R = Rab, 1 ≤ a < b ≤ k). Under certain conditions, one

can build a nice one-dimensional A-comodule by taking the quotient of T(V ) by the

two-sided ideal generated by (αijI +(τR))(eiej) (a graded ideal!) and then focusing on

the highest nonzero graded piece. Here, the αij are appropriately chosen constants in

F .

Example. Let R = In ⊗ In = I ∈ EndV ⊗ V , then the exterior algebra Λ(n) is the

quotient of T(V ) by the relation (1 · I + (τR))v = 0, (∀v ∈ V ⊗2). On inspection, this

simply reads eiej = −ejei.

While there are certainly many choices one could make for the coefficients αij , not

all of them respect the A-comodule structure on T(V ). When a coherent choice is

made—for example, when all αij are the same scalar α—we get a “determinant” by

letting T coact on the quotient. Call the quotient ΛR, and fix a generator v ∈ ΛR, then

Det T is the element D ∈ A satisfying ∆ΛR
(v) = D ⊗ v.

Determinants for sub-matrices TI,J (|I| = |J | = d) of T are built by beginning with an

RTT -algebra of lesser dimension (d2). The element D is clearly group-like in A, but

this is not the end of the similarities between det and Det.
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In [22], Gurevich outlines a set of sufficient conditions on R to guarantee the exis-

tence of a nice ΛR. For these “closed Hecke symmetries,” he proves that determinants

arising as above will always have a Laplace-type expansion, and moreover, they often

satisfy

Dtji = βijt
j
iD , (5.3)

i.e., the determinant is not only group-like, but “β-central” in A.

His conditions do not quite guarantee that Det is amenable (or even adequate).

However, if every monomial tj1i1 tj2i2 · · · t
jm

im
appearing in the expression Det TI,J satisfied∏

1≤k≤m βikjk
= constant, then (5.3) gives Det the adequate property.

5.1.4 What’s coming next

In the coming sections, we present several known determinants fitting into the R-matrix

formalism. The main result each time is just a verification that these determinants are

amenable and a display of the Young symmetry and q-commuting relations. The reader

may feel free to skip to Section 5.8 at any time.

5.2 Commutative Determinant

Let M(n) be the free commutative C-algebra generated by tij—the ring of polynomials

on the C-space Mn(C). If I, J ∈
(
[n]
m

)
, define det TI,J by

det TI,J = [TI,J ] :=
∑

π∈SC

(−1)`(π)xi1,πj1xi2,πj2 · · ·xim,πjm .

Letting V = Cn, it is easy to see that M is an RTT -algebra with R = In ⊗ In. Also,

det is reproduced by the coaction of M on the n-th graded piece of T(V ) modulo the

ideal generated by {(I + (τR))v | v ∈ V ⊗2}.

By the well-known alternating and Laplace-expansion properties of det, it is easy

to check that det is an amenable determinant. Moreover, it is well-known that M(n)

has a field of fractions T (n) in which all TI,J may be inverted. In short,

Proposition 26. The pair (M(n),det) is an amenable pair (A(n),Det) with associated

measuring functions given by
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• (∀a ∈ A ⊆ [n]) Ir(a,A) = Ix(a,A) = (−1)`(a|Aa)

• (∀a ∈ A ⊆ [n]) Kr(a,A) = Kx(a,A) = 1.

In M(n), the row-minors
{

det TA,[d] | A ∈
([n]

d

)}
satisfy

• (∀1 ≤ s ≤ r < n) If K, M ⊆ [n] are subsets satisfying |K| = r + 1, |M | = s − 1,

then

0 =
∑

k∈K\M

(−1)`(k|M)−`(k|Kk)[TK\k,[r]][TkM,[s]] (5.4)

• If I, J ⊆ [n] (|J | = s ≤ r = |I|) are such that J can’t distinguish I as rows, then

[TJ,[s]][TI,[r]] = 1 · [TI,[r]][TJ,[s]] (5.5)

5.3 Quantum Determinant

Fix a field F containing Q. For the remainder of the section, fix a distinguished element

q ∈ F \ {−1, 0, 1}, and fix V = Fn.

5.3.1 Definitions & R-matrix

Definition 19. A 2× 2 matrix

 a b

c d

 is called q-generic (over F ) if

ba = qab (5.6)

dc = qcd (5.7)

ca = qac (5.8)

db = qbd (5.9)

cb = bc (5.10)

da = ad + (q − q−1)bc (5.11)

An n × m matrix X is said to be q-generic if every 2 × 2 sub-matrix X{i,j},{k,l} is

q-generic.

We are ready for our first important, noncommutative example [41, 28, 35].



49

Definition 20. Let Mq(n) denote the F -algebra with n2 generators tij and relations

given by demanding T = (tij) be a q-generic matrix over F . Let detq by defined by

detqTI,J = [TI,J ] :=
∑

π∈SC

(−q)−`(π)ti1,πj1ti2,πj2 . . . tim,πjm

for all 1 ≤ m ≤ n and all I, J ∈
(
[n]
m

)
.

Mq(n) is without question the most widely studied “quantization” of the algebra

of matrix functionals presented in the previous section. Put D = detqT , and introduce

a formal (central in Mq) inverse S of D. The resulting quantum group GLq(n) :=

Mq(n)
[
S
]
/(SD − 1) is the quantum analog of the ring of regular functions K[G] on

G = GLn(C). Like its classic counterpart, GLq(n) is a Hopf algebra. We will not focus

on this property in the sequel, indeed we will not focus on GLq(n) at all.

Let R ∈ EndV ⊗ V be given by

R = q−1
∑

i

Eii ⊗ Eii +
∑
i6=j

Eii ⊗ Ejj + (q−1 − q)
∑
i<j

Eij ⊗ Eji, (5.12)

again, thought of as acting on the right. For example, when n = 2—and in the basis

(e1 ⊗ e1, e1 ⊗ e2, e2 ⊗ e1, e2 ⊗ e2) of V ⊗ V —we have

R =



q−1 0 0 0

0 1 q−1 − q 0

0 0 1 0

0 0 0 q−1


.

It is a tedious but straightforward exercise to show that Mq(n) is an RTT -algebra for

this R-matrix; and moreover, detq is reproduced by the coaction of Mq(n) on the n-th

graded piece of T(V ) modulo the ideal generated by {(q+(τR))v | v ∈ V ⊗2}. Compare

Takeuchi’s article [48] for more details1.

5.3.2 First properties

An important consequence of the relations (5.6–5.11) is that Mq(n) is a noetherian

domain (cf. Proposition 45), and hence has an Ore field of fractions. Taking T (n) to

1A caveat for the reader. In [48], the twist τ is incorporated into the definition of R (i.e. into the
Yang-Baxter equation). The resulting formulas are essentially the same, but some care should be taken
in the translation from that setting to the present one.
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be this field of fractions, one finds the existence of all (TI,J)−1
ij needed in Chapter 4.

Following the standard proof in the commutative setting (cf. [45]), one can show

that detq is “q-alternating” in rows:

Theorem 27. Suppose X = X[n],[n] is an n× n q-generic matrix, and I ∈ [n]n. Then

detqXI,[n] =

 0 if I contains repeated indices,

(−q)−`(I)detqX otherwise.
(5.13)

Remark. As it turns out, detq is not column-alternating. If I ∈ [n]n contains distinct

entries, then detqX[n],I = (−q)−`(I)detqX, but repeated columns don’t result in zero.

For example, ∣∣∣∣∣∣ x11 x11

x21 x21

∣∣∣∣∣∣
q

= x11x21 − q−1x11x21 6= 0.

This column-defect will make it most convenient to talk about right quantum flags in

the sequel.

One may also follow the commutative proofs to give a q-Laplace expansion for the

quantum determinant. Combining the alternating and Laplace-expansion properties,

one readily deduces that

∑
j∈J

tij
(−q)−`(i′|I)

(−q)−`(j|J)
[TI\i′,J\j ] = δii′ [TI,J ] .

This result first appeared in [16], see also [30]. Finally, one has:

(∀i ∈ I, ∀j ∈ J) [TI,J ]tij = tij [TI,J ] .

One can show this directly, but a more clever argument uses the fact that the adjoint

matrix S(T ) = (sji) with sji = (−q)−`(i′|I)

(−q)−`(j|J) [TI\i′,J\j ] not only satisfies TS = [T ]In but

also ST = [T ]In (cf. [48] for details).

5.3.3 Main result

In summation, detq is an amenable determinant for Mq(n). For later use we catalog

the key identities.
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Proposition 28. The pair (Mq(n),detq) is an amenable pair (A(n),Det) with associ-

ated measuring functions given by

• (∀a ∈ A ⊆ [n]) Ir(a,A) = Ix(a,A) = (−q)−`(a|Aa)

• (∀a ∈ A ⊆ [n]) Kr(a,A) = Kx(a,A) = 1

In Mq(n), the row-minors
{

detqTA,[d] | A ∈
([n]

d

)}
satisfy

• (∀1 ≤ s ≤ r < n) If K, M ⊆ [n] are subsets satisfying |K| = r + 1, |M | = s − 1,

then

0 =
∑

k∈K\M

(−q)−`(k|M)−`(Kk|k)[TK\k,[r]][TkM,[s]] (5.14)

• If I, J ⊆ [n] (|J | = s ≤ r = |I|) are such that J can’t distinguish I as rows, then

for any i ∈ I

[TJ,[s]][TI,[r]] = q`(J |i)−`(i|J) · [TI,[r]][TJ,[s]] (5.15)

5.4 Multi-Parameter Determinant

In their joint paper [1], Artin, Schelter, and Tate introduce a vast generalization of

the algebra Mq(n) from the previous section—replacing one q with
(
n
2

)
q’s and their

reciprocals. Fix a field F containing Q. Fix a distinguished element λ ∈ F \ {0,−1}

and distinguished elements qij ∈ F \ {0, 1} satisfying qii = 1, qijqji = 1. Fix V = Fn.

5.4.1 Definitions & R-matrix

Definition 21. Define M~q(n) to be the F -algebra with generators {tij | 1 ≤ i, j ≤ n}

and relations as follows:

tjbtia =



qji

qba
tiatjb + (λ− 1)qjitibtja if j > i ∧ b > a

λ
qji

qba
tiatjb if j > i ∧ b ≤ a

1
qba

tiatjb if j = i ∧ b > a .

(5.16)
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Notation. Given J ∈
(
[n]
m

)
, we define the generalized sign of π ∈ SJ , sgn~q(π), as follows:

sgn~q(π) :=
∏

j<j′∈J
πj>πj′

(−qπj,πj′) .

Definition 22. Let det~qT = [T[n],[n]] denote the quantum determinant for T defined

by

det~qT = [T ] :=
∑

π∈Sn

sgn~q(π)t1,π1t2,π2 · · · tn,πn .

For 0 < m < n and row-indices I = {i1 < . . . < im} and column-indices J = {j1 <

. . . < jm}, define quantum minors in a similar fashion:

[TI,J ] =
∑

π∈SJ

sgn~q(π)ti1,πj1 · · · tim,πjm .

As we mentioned in the introduction, the Artin-Schelter approach to noncommu-

tative geometry is generally distinct from the quantum groups approach. Perhaps not

surprisingly, there is some overlap between the two. See [1] for more details and mo-

tivation. In [23], M. Hazewinkel shows that the AST quantum algebra M~q(n) is an

RTT -algebra, with associated R-matrix given by

R = λ−1
∑

i

Eii ⊗ Eii +
∑
i<j

qjiEjj ⊗ Eii +

∑
i<j

(
(λ−1qij)Eii ⊗ Ejj + (λ−1 − 1)Eij ⊗ Eji

)
. (5.17)

For example, when n = 3—and in the basis (e1 ⊗ e1, e1 ⊗ e2, e1 ⊗ e3, . . . , e3 ⊗ e3) of

V ⊗ V —we have

R =



λ−1

λ−1q12 λ−1 − 1

λ−1q13 λ−1 − 1

q21

λ−1

λ−1q23 λ−1 − 1

q31

q32

λ−1



.
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It is not difficult to show that the definition of det~q also comes from this R-matrix, via

the coaction of M~q(n) on the n-th graded piece of T(V ) modulo the ideal generated

by {(In + (τR))v | v ∈ V ⊗2}.

5.4.2 First properties

A-S-T prove all of the properties necessary to conclude that det~q is amenable. The next

two theorems appear in [1]. The corollaries are easy consequences of the proofs of the

theorems appearing there.

Notation. Let us extend the usual definition of `( · ) as follows. If a ∈ A = {a1 < . . . <

ap}, say a = ai, then let `(a|A) := `(a|A \ a) = `(ai, a1, . . . , âi, . . . , ap) = i− 1.

Theorem 29. Let Qj denote the product λj
∏n

m=1 qjm. Then for all j, k ∈ [n], we have

[T ]tjk =
Qk

Qj
tjk[T ] .

Corollary 30. Given a set A ⊆ [n] and an element a ∈ A, let Qa,A denote the product

λ`(a|A)
∏

a′∈A qaa′. Then for all row-indices I and column indices J with |I| = |J |, and

i ∈ I, j ∈ J , we have

[TI,J ]tij =
Qj,J

Qi,I
tij [TI,J ] .

Corollary 31. In the notation of the previous corollary, the quantum minors [TI\i,J\j ]

q-commute with [TI,J ] by the formula

[TI,J ][(TI,J)ij ] =
Qj,J

Qi,I
[(TI,J)ij ][TI,J ] .

Theorem 32. Let γj denote the product
∏j−1

m=1(−qjm) and βj denote the product∏n
m=j+1(−λqjm). The matrix T of generators has a right- (and left-) inverse S = (sjk)

given by the formula

sjk =
γk

γj
[T kj ][T ]−1 =

βk

βj
[T ]−1[T kj ] .

Remark. In particular, [T ] is not a zero divisor, and hence can be inverted in a suitable

noncommutative localization of M~q(n). The same goes for all [TI,J ]; indeed, one can

show, cf. [1], that M~q(n) is an Ore domain. Call the associated field of fractions T (n).

This is the setting in which the calculations of Chapter 4 should be performed.
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Corollary 33. Given a ∈ A ⊆ [n], define γa,A =
∏

a′∈A,`(a′|a)=0(−qaa′). Then the

following identities hold for any i, i′ ∈ I ⊆ [n] and J ⊆ [n] with |I| = |J |:
p∑

j∈J

tij

(
γi′,I

γj,J
[TIi′ ,Jj ]

)
= δii′ [TI,J ] ,

where δ is the Kronecker delta. In particular, the sub-matrix of generators TI,J has an

inverse S(TI,J) = (sji) given by

sji =
γi,I

γj,J
[TIi,Jj ][TI,J ]−1 .

5.4.3 Main result

We summarize the key properties of det~q. For a change of pace, we list the column-minor

relations.

Proposition 34. The pair (M~q(n),det~q) is an amenable pair (A(n),Det) with associ-

ated measuring functions given by:

• (∀a ∈ A ⊆ [n]) Ir(a,A) = Ix(a,A) = γa,A

• (∀a ∈ A ⊆ [n]) Kr(a,A) = Kx(a,A) = Qa,A

In M~q(n), the column-minors
{

[TA] = det T[d],A | A ∈
([n]

d

)}
satisfy

• (∀1 ≤ s ≤ r < n) If K, M ⊆ [n] are subsets satisfying |K| = r + 1, |M | = s − 1,

then

0 =
∑

k∈K\M

(−1)−`(k|Kk)
∏

k′∈K:k′<k qkk′

(−λ)−`(M |k)
∏

m′∈M :k<m′ qm′k
[Tk∪M ][TK\k] (5.18)

• If I, J, M ⊆ [n] (|J | = s ≤ r = |I|, |M | = u) are pairwise disjoint, and if J can’t

distinguish I as rows, then for any i ∈ I

[TJ∪M ][TI∪M ] =
λ(s

2)+(u
2)

λ−`(J |i)−su

Q[s+u],[r+u]\[s+u]

QJ∪M,I∪M
· [TI∪M ][TJ∪M ] (5.19)

5.5 Two-Parameter Determinant

Suppose the constants λ, qij in the field F of the previous section are transcendental

over a subfield, say F = F ′(λ, qij). Suppose moreover that we let qij → α (i < j) and

λ → βα. Denote this new field extension of F ′ again by F . Again let V = Fn.
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5.5.1 Definitions & background

Under the transformation indicated above, the A-S-T algebra M~q(n) becomes a two-

parameter deformation of the commutative setting. This special deformation was inde-

pendently introduced by Takeuchi in [47], and is a more transparent generalization of

the famous quantization of Section 5.3: one parameter for rows, one for columns.

Definition 23. A 2× 2 matrix

 a b

c d

 is called (α, β)-generic (over F ) if

ba = αab (5.20)

dc = αcd (5.21)

ca = βac (5.22)

db = βbd (5.23)

cb = βα−1bc (5.24)

da = ad + (β − α−1)bc (5.25)

An n×m matrix X is said to be (α, β)-generic if every 2× 2 sub-matrix X{i,j},{k,l} is

(α, β)-generic.

Definition 24. Let Mα,β(n) denote the F -algebra with n2 generators tij and relations

given by demanding T = (tij) be an (α, β)-generic matrix over F . Let detαβ by defined

by

detαβTI,J = [TI,J ] :=
∑

π∈SC

(−α)−`(π)ti1,πj1ti2,πj2 . . . tim,πjm

for all 1 ≤ m ≤ n and all I, J ∈
(
[n]
m

)
.

This algebra and the determinant are again given by an R-matrix:

R = (αβ)−1
n∑

i=1

Eii ⊗ Eii +
∑
i<j

α−1Ejj ⊗ Eii +

∑
i<j

(
β−1Eii ⊗ Ejj + ((αβ)−1 − 1)Eij ⊗ Eji

)
. (5.26)

Not surprisingly, this R-matrix is the result of applying the transformation on constants

indicated above to the R-matrix of A-S-T. Similarly, the determinant of A-S-T becomes
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the present two-parameter determinant. Recall the generalized sign of Section 5.4: given

π ∈ SJ , sgn~q(π) :=
∏

j<j′∈J, πj>πj′ qπj,πj′ . Under the transformation qij → α (i < j),

all of the terms become α−1 and the product has total length equal to `(π).

One might expect all properties of the pair A-S-T (M~q(n),det~q) to pass through

the limit and hold in the Takeuchi pair (Mα,β(n),detαβ). While this is generally true,

for instance there exists an Ore field of fractions T (n) and detαβ is again amenable, it

is not universally so. Namely, the Takeuchi determinant is only row alternating, while

the A-S-T determinant is both row and column alternating. The existence of a row

alternating property for each is proven as in the classical case. Below, we show what

happens when we try to take determinants of matrices with repeated columns.2∣∣∣∣∣∣ t11 t11

t21 t21

∣∣∣∣∣∣
α,β

=
∑

π∈S2

(−α)−`(π)ti1,jπ1ti2,jπ2

= t11t21 − α−1t11t21

while ∣∣∣∣∣∣ t11 t11

t21 t21

∣∣∣∣∣∣
~q

=
∑

π∈S2

(sgn~qπ)ti1,jπ1ti2,jπ2

= t11t21 − q11t11t21

Here we have extended the definition of det~q to allow J to be a tuple, not a subset.

The definition agrees with the old one when J = rect(J). These calculations indicate

that the left and right pre–flag algebras are both nice objects for the A-S-T setting,

while the Takeuchi (and one-parameter) deformation of M(n) favors the right pre–flag

algebra.

5.5.2 Main result

One may readily verify the results of this section by appealing to the results of the

previous section or by consulting the survey article [48].

2It should be noted that the Takeuchi determinant (and the usual quantum determinant) are almost
column alternating. If the columns are merely out of order, then one recovers the usual determinant up
to a power of (−α)−1 (respectively, (−q)−1); the alternating property fails only when there are repeated
columns.
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Proposition 35. The pair (Mα,β(n),detαβ) is an amenable pair (A(n),Det) with as-

sociated measuring functions given by

• (∀a ∈ A ⊆ [n]) Ir(a,A) = Ix(a,A) = (−α)−`(a|A)

• (∀a ∈ A ⊆ [n]) Kr(a,A) = Kx(a,A) = β`(a|A)α`(A|a)

In Mα,β(n), the row-minors
{

[TA] = detαβTA,[d] | A ∈
([n]

d

)}
satisfy

• (∀1 ≤ s ≤ r < n) If K, M ⊆ [n] are subsets satisfying |K| = r + 1, |M | = s − 1,

then

0 =
∑

k∈K\M

(−α)−`(k|M)−`(Kk|k)

(βα−1)`(Kk|k)
· [TK\k][TkM ] (5.27)

• If I, J, M ⊆ [n] (|J | = s ≤ r = |I|, |M | = u) are pairwise disjoint, and if J can’t

distinguish I as rows, then for any i ∈ I

[TJ∪M ][TI∪M ] =
(βα)−`(i|J)−su

(βα)(
s
2)+(u

2)
Kr(JM, IM)

Kr([s+u], [r+u]\[s+u])
· [TI∪M ][TJ∪M ] (5.28)

5.6 Another Quantum Determinant

Another specialization of the A-S-T algebra A(n) will be useful later. We pass from

F = F ′(λ, qij) to F = F ′(q).

Definition 25. Define AI(n) to be the F -algebra with generators {tij | 1 ≤ i, j ≤ n}

and relations as follows:

tjbtia =


tiatjb + (q2 − 1)tibtja if j > i ∧ b > a

q2tiatjb if j > i ∧ b ≤ a

tiatjb if j = i ∧ b > a .

Definition 26. For 0 < m ≤ n and row-indices I = {i1 < . . . < im} and column-indices

J = {j1 < . . . < jm}, let detI be the determinant for AI(n) defined by

detI T = [TI,J ] :=
∑

π∈Sm

(−1)`(π)ti1,jπ1 · · · tim,jπm .

This algebra and its determinant are again given by an R-matrix:

R = q−2
n∑

i=1

Eii ⊗ Eii +
∑
i<j

(
Ejj ⊗ Eii + q−2Eii ⊗ Ejj + (q−2 − 1)Eij ⊗ Eji

)
. (5.29)
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All of the comments in the previous section hold, except that this determinant

actually retains the column-alternating property that the A-S-T determinant possesses.

We summarize the important identities below. We choose to display the column-minor

identities because they will be useful in Section 7.2.

Proposition 36. The pair (AI(n),detI) is an amenable pair (A(n),Det) with associated

measuring functions given by

• (∀a ∈ A ⊆ [n]) Ir(a,A) = Ix(a,A) = (−1)`(a|A)

• (∀a ∈ A ⊆ [n]) Kr(a,A) = Kx(a,A) = (q2)`(a|A)

In AI(n), the column-minors
{

[TA] = detI T[d],A | A ∈
([n]

d

)}
satisfy

• (∀1 ≤ s ≤ r < n) If K, M ⊆ [n] are subsets satisfying |K| = r + 1, |M | = s − 1,

then

0 =
∑

k∈K\M

(−1)`(M |k)+`(k|Kk)(q2)−`(M |k) · [TM∪k][TK\k] (5.30)

• If I, J, M ⊆ [n] (|J | = s ≤ r = |I|, |M | = u) are pairwise disjoint, and if J can’t

distinguish I as columns, then for any i ∈ I

[TJ∪M ][TI∪M ] =
(q2)−`(J |i)

(q2)−`(J |I)

(q2)(
s
2)+`([s+u]|[r+u]\[s+u])

(q2)`(M |I)−`(M |J)
· [TI∪M ][TJ∪M ] (5.31)

5.7 Yangians

Here we summarize a spectral parameter notion of the R-matrix formalism. Things

work essentially the same way. If the reader is already familiar with the Yangians, he

may skip to subsection 5.7.3.

5.7.1 Spectral parameter R-matrices and determinants

Write V = Cn, and let U = {u1, u2, . . .} be formal parameters. Write C(U) for the field

extension C(u1, u2, . . .). For u ∈ U , we consider endomorphisms C(u) ∈ EndCV ⊗m ⊗

C(U).
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Write the map C(u) ∈ EndV ⊗V ⊗C(u) as
∑

i,j,k,l Eik ⊗Ejl⊗ ckl
ij (u) (again, acting

on the right). As in Section 5.1, we may extend C(u) to a map of V ⊗m ⊗ C(u) by

indicating on which factors C(u) should act:

C(u)ab := I⊗(a−1) ⊗ Eik ⊗ I⊗(b−a−1)Ejl ⊗ I⊗(m−b−1) ⊗ ckl
ij (u).

Definition 27. An endomorphism C(u) ∈ EndCV ⊗ V ⊗ C(u, v)⊗m is called a spec-

tral parameter R-matrix if it satisfies the quantum Yang Baxter equation with spectral

parameter,

R12(u)R13(u + v)R23(v) = R23(v)R13(u + v)R12(u), (5.32)

as an element of End V ⊗ V ⊗ V ⊗C(u, v). We drop the modifier “spectral parameter”

when it is clear from context.

Example (Yangian R-matrix). Let τ be the twist map ei⊗ ej 7→ ej ⊗ ei. Then the map

R(u) ∈ EndV ⊗ V ⊗ C(u) given by

R = (I⊗ 1− τ ⊗ u−1) (5.33)

is an R-matrix with spectral parameter.

Write A0(U) for the free noncommutative C-algebra built on the symbols {tji (u) |

1 ≤ i, j ≤ n, u ∈ U}. Let T (u) = (tji (u)) be an n × n matrix of formal noncommuting

variables (with parameter). We may let T (u) act on V ⊗A0(U) by writing

(∀i∀a) T (u)(ei ⊗ a) :=
∑

1≤k≤n

ek ⊗ tki (u)a.

As in Section 5.1, we define a quotient of A0 by demanding equality of two maps on

V ′ = V ⊗ V ⊗A0.

Definition 28. An algebra A(R, n) with spectral parameters is an RTT -algebra if,

together with R, its n2 generators tij(u) satisfy the relation

R12(u− v)T13(u)T23(v) = T23(v)T13(u)R12(u− v), (5.34)

viewed as an equation in EndV ⊗ V ⊗A0.
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The construction of determinants for spectral parameter RTT -algebras follows roughly

the steps outlined above, e.g. looking for a one-dimensional object on which to (co-)

act. One difference is worth a few words. In the construction, we again extend the

action of R to V ⊗m. However, we let Rij act with spectral parameter ui − uj—more

natural in light of (5.32) & (5.34). Only in the last step do we apply a reduction to one

parameter, arguing that we may take ui − ui+1 = 1. For the Yangian R-matrix in the

example above, the details are available in Molev’s survey article [36].

Definition 29. Say a spectral parameter determinant Det is amenable if there are

measuring functions Ir, Ix, Kr, Kx : P[n]× P[n] → F associated to Det satisfying:

• (∀i ∈ I)(∀j ∈ J) [Ti,j(u)] = tij(u).

• (∀i, i′ ∈ R)
∑

j∈J tij(u′)
{

Ix(j,J)
Ir(i′,I) [TIi′ ,Jj (u′′)]

}
= [TI,J(u)]δii′ .

• (∀I ′ ⊆ I)(∀J ′ ⊆ J) [TI,J(u)][TI′,J ′(v)] = Kx(J ′,J)
Kr(I′,I) [TI′,J ′(v′)][TI,J(u′)].

5.7.2 Review of Yangian for gln

For a Lie group/algebra pair (G, g), we have outlined above several ways to deform the

ring of global regular functions K[G].3 The algebra we define below is another example

of a quantum group. It is different from those preceding it, namely it is a deformation of

the universal enveloping algebra U(g). The Yangian Y (gln) was introduced by Drinfeld

[10] at roughly the same time as the quantum group GLq(n) of Section 5.3. For more

information on its Lie and representation theoretic background, and for current trends

in the study of Yangians, the reader is urged to consult [36], [27], and [5]. The latter

uses the quasideterminant and noncommutative Gaussian elimination to give several

presentations of Y (gln).

Definition 30. The Yangian for gln is the C-algebra Y (n) with countably many gen-

erators t
(1)
ij , t

(2)
ij , . . . where 1 ≤ i, j ≤ n, and defining relations

[t(r+1)
ij , t

(s)
kl ]− [t(r)ij , t

(s+1)
kl ] = t

(r)
kj t

(s)
il − t

(s)
kj t

(r)
il , (5.35)

3This is not entirely accurate. We have given an overview of several deformations of M(n). It is tra-
ditional to reserve the term “quantum group” for a slightly different object, a certain extension+quotient
of the deformed M(n), outlined in the discussion following Definition 20
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where r, s = 0, 1, 2, . . . and t
(0)
ij := δij · 1.

If we collect the generators t
(r)
ij (r = 0, 1, . . .) together in the generating series,

tji (u) = δij + t
(1)
ij u−1 + t

(2)
ij u−2 + · · · ∈ Y (n)[[u−1]], (5.36)

and then collect these generating series together in a matrix T (u) = (tji (u)), we may

express the relations more compactly.

Theorem 37. The algebra Y (n) is a spectral parameter RTT -algebra with R matrix

given by the Yangian R-matrix in (5.33).

We conclude this section with a few more important results the reader may find in

[36].

Definition 31. Fix I, J ∈
(
[n]
m

)
. In Y (n)[[u−1]], the quantum determinant qdetTI,J(u)

is defined by

qdetTI,J(u) = [TI,J(u)] :=
∑

π∈SJ

tπj1
i1

(u−m + 1) · · · tπjm−1

im−1
(u− 1)tπjm

im
(u) .

Theorem 38. Fix I, J ∈
(
[n]
m

)
. The Yangian determinant qdet has a cofactor matrix

S(TI,J(u)) and is central:

∑
j∈J

tji (u−m + 1)
{

(−1)j−i′ [TI\i′,J\j(u)]
}

= δii′ [TI,J(u)]I, (5.37)

(∀I ′ ⊆ I)(∀J ′ ⊆ J) [TI,J(u)][TI′,J ′(v)] = [TI′,J ′(v)][TI,J(u)]. (5.38)

5.7.3 Main result

There is one important thing to notice about T (u) as defined above. It is invertible in

Y (n)[[u−1]] because it may be viewed as a formal power series T (u) =
∑

i≥0 aiu
−i with

each ai a matrix over Y (n) and a0 a unit (indeed equal to 1, or I). The same may be

said for all sub-matrices TI,J(u). In short, T (n) := Y (n)[[u−1]] is a suitable setting to

carry out the calculations in Chapter 4. In doing so, one finds a spectral parameter

version of weak q-commuting, Young symmetry, and Muir’s Law identities. However,

the proof of the key Proposition 23 fails to carry over to this setting. There is likely
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a patch to the proof—which would give us a strong q-commuting identity—however, I

have not found one yet.

Proposition 39. The pair (Y (n)[[u−1]], qdet) is a spectral parameter amenable pair

(A(n),Det) with associated measuring functions given by

• (∀a ∈ A ⊆ [n]) Ir(a,A) = Ix(a,A) = (−1)`(a|Aa)

• (∀a ∈ A ⊆ [n]) Kr(a,A) = Kx(a,A) = 1

• In the adjoint property for [TI,J(u)], u′ = u− |I|+ 1, u′′ = u.

• In the commuting property for [TI,J(u)], u′ = u and v′ = v.

In Y (n)[[u−1]], the row-minors
{

[TA(u)] = qdetTA,[d](u) | A ∈
([n]

d

)}
satisfy

• (∀1 ≤ s ≤ r < n) If K, M ⊆ [n] are subsets satisfying |K| = r + 1, |M | = s − 1,

then

0 =
∑

k∈K\M

(−1)`(Kk|k)+`(k|M)[TK\k(u + r − s + 1)][Tk∪M (u)]. (5.39)

• If M ∈
(
[n]
m

)
and i, j ∈ [n] \M )i 6= j) then

[TM∪i(u)][TM∪j(u− 1)] = [TM∪j(u)][TM∪i(u1)]. (5.40)

• If I, J, M ∈ P[n] are pairwise disjoint (|M | = m) and

[TJ(u)][TI(u− p)] = X · [TI(u)][TJ(u− p)]

for some X ∈ F and some p ∈ Z, then

[TJ∪M (u + m)][TI∪M (u + m− p)] = [TI∪M (u + m)][TJ∪M (u + m− p)]. (5.41)

5.8 A New Example

Clearly, the R-matrix formalism is a rich source of amenable determinants. However,

there are examples of amenable determinants NOT coming from R-matrix construc-

tions. Here is one that we will see again later. As usual, fix a field F containing a

distinguished element q 6∈ {−1, 0, 1}, and a vector space V = Fn.
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Definition 32. Let AII(n) be the F -algebra with n2 generators tij and four classes of

relations given by

tjktik = qtiktjk (i < j)

tkjtki = tkitkj (i < j)

tjktil = qtiltjk (i < j; k < l)

tjltik = q−1tiktjl +
(
q − q−1

)
tiltjk (i < j; k < l).

(5.42)

Remark. These relations only involve 2× 2 square sub-matrices of T = (tij), so we may

conclude that the subalgebras of AII(n) generated by (TI,J) will all be isomorphic—and

isomorphic to AII(m), for |I| = |J | = m.

Definition 33. Given a square m ×m sub-matrix TI,J of T (including I = J = [n]),

we define a determinant detIITI,J by

detIITI,J = [TI,J ] :=
∑

π∈SJ

(−1)`(π)ti1,πj1ti2,πj2 · · · tim,πjm . (5.43)

This function will prove to be an amenable determinant for AII(n). Before we set

about demonstrating this, we should settle an outstanding claim from the introductory

remarks.

Proposition 40. There exists no endomorphism C ∈ EndV ⊗V which, under the FRT

construction, produces the relations for AII(n) as presented above.

Remark. In particular, AII(n) is not an RTT -algebra—again, with the presentation

given above.

Proof. Focusing on the case n = 2, we may pose the question as a linear algebra

problem:

• Work in the vector space W = span{wij,kl | 1 ≤ i, j, k, l ≤ 2}.

• Let cmn
ij be 16 unknown variables over F .

• Consider the vectors wmn
ij =

∑
k1,k2

cmn
k1k2

wik1,jk2 −
∑

l1,l2
cl1l2
ij wl2n,l1m in W , and

the subspace W which they span, cf. (5.1)
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• If, e.g., the vector w22,11 − q−1w11,22 − (q − q−1)w12,21 belongs to W, then there

is hope that we can find an endomorphism C.

Alas, this vector, is not in W.

5.8.1 First properties

Proposition 41 (q-Alternating in Rows). Let A,B ∈ [n]m be tuples of row and

column indices respectively. Suppose moreover that B is “straightened”, with distinct

entries—that is, B = (b1 < b2 < . . . < bm). Finally, write A′ = (a′1 ≤ . . . ≤ a′m) for the

straightened form of A (fixing a σ ∈ Sm of minimal length so that A′ = (aσ1, . . . , aσm)).

Then

[TA,B] =

 0 if A contains repeated indices.

(−q)−`(σ)[TA′,B] otherwise.

Proof. We first consider the effect of the simple transposition si = (i, i + 1) on A (and

on [TA,B]) when ai+1 < ai. We begin by breaking the elements of Sm into two disjoint,

equinumerous sets: S′ = {π ∈ Sm | π(i) < π(i + 1)} and S′′ = Sm \ S′. Without

loss of generality, we may assume B = (1, 2, . . . ,m). Also, let us suppress the B in the

notation, writing [TA,B] as
[
A
]
. Now we may write

[
A
]

=
[
a1, . . . , ai−1, ai, ai+1, ai+2, . . . , am

]
=

∑
π∈Sm

(sgn π)ta1π(1) · · · tamπ(m)

=
∑
π∈S′

(sgn π)ta1π(1) · · · (taiπ(i)tai+1π(i+1) − taiπ(i+1)tai+1π(i)) · · · tamπ(m)

=
∑
π∈S′

· · ·
(
{qtai+1π(i+1)taiπ(i)} −

{q−1tai+1π(i)taiπ(i+1) + (q − q−1)tai+1π(i+1)taiπ(i)}
)
· · ·

=
∑
π∈S′

(−q)−1 · · · (tai+1π(i)taiπ(i+1) − tai+1π(i+1)taiπ(i)) · · ·

= (−q)−1
[
a1, . . . , ai−1, ai+1, ai, ai+2, . . . , am

]
.

Induction on the length of the permutation σ straightening A completes the proof when

no two indices of A are alike. When there are two like indices, we may use the above
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procedure to successively straighten A until we come upon a new A and a new i with

ai = ai+1. Consider the definition of
[
A
]

in this final case:

[
A
]

=
[
a1, . . . , ai−1, ai, ai+1, ai+2, . . . , am

]
=

∑
π∈Sm

(sgn π)ta1π(1) · · · tamπ(m)

=
∑
π∈S′

(sgn π)ta1π(1) · · · (taiπ(i)taiπ(i+1) − taiπ(i+1)taiπ(i)) · · · tamπ(m)

=
∑
π∈S′

(sgn π)ta1π(1) · · · (taiπ(i)taiπ(i+1) − [taiπ(i)taiπ(i+1)]) · · · tamπ(m)

= 0 .

Proposition 42 (Alternating in Columns). Let A,B ∈ [n]m be tuples of row and

column indices respectively. Suppose moreover that A is “straightened”, with distinct

entries—that is, A = (a1 < a2 < . . . < am). Finally, write B′ = (b′1 ≤ . . . ≤ b′m) for the

straightened form of B (fixing a σ ∈ Sm of minimal length so that B′ = (bσ1, . . . , bσm)).

Then Then

[TA,B] =

 0 if B contains repeated indices.

(−1)−`(σ)[TA,B′ ] otherwise.

Proof. We first consider the effect of the simple transposition s = si = (i, i + 1) on B

(and on [TA,B]) when bi+1 < bi. Put B′ = si(B). Without loss of generality, we may

assume A = (1, 2, . . . ,m). Again, we simplify notation by putting [TA,B] =
[
B
]
. Now

we may write

[
B
]

=
∑

π∈Sm

(sgn π)t1,bπ(1)
· · · ti,bπ(i)

ti+1,bπ(i+1)
· · · tm,bπ(m)

=
∑

π∈Sm

(sgn π ◦ s)t1,bπs(1)
· · · ti,bπs(i)

ti+1,bπs(i+1)
· · · tm,bπs(m)

= −
∑

π∈Sm

(sgn π)t1,bπ(1)
· · · ti−1,bπ(i−1)

ti,bπ(i+1)
ti+1,bπ(i)

ti+2,bπ(i+2)
· · ·

= −
[
B′] .

Induction on the length of the permutation σ straightening B completes the proof when

no two indices of B are alike. When there are two like indices, we may use the above
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procedure to successively straighten B until we come upon a new B and a new i with

bi = bi+1. In this case, the above calculations show that for this B,
[
B
]

= −
[
B
]
.

Definition 34 (Quantum Cofactor Matrix). From any square sub-matrix TI,J of

the matrix of generators, we define a new matrix S(TI,J) = (sji) by

sji = (−1)`(j|Jjj)(−q)`(i|Iii)
[
TIi,Jj

]
.

Proposition 43. For any I, J ∈
(
[n]
m

)
and S(TI,J) as defined above, we have

(TI,J) · S(TI,J) = [TI,J ]Im .

Proof. The proof is the traditional proof in the commutative setting. Below, we show

that the diagonal entries are correct, i.e. (∀k)
∑

j∈J tikjsjik = [TI,J ].

[TI,J ] =
∑

π∈Sm

(sgnπ)ti1,jπ1 · · · tik,jπk
· · · tim,jπm

= (−q)k−1
∑

π∈Sm

(sgn π)tik,jπ1ti1,jπ2 · · · t̂ik · · · tim,jπm ,

by the row q-alternating property. Now collect together those π with π(1) = p to

complete the proof:

[TI,J ] = (−q)k−1
m∑

p=1

∑
π(1)=p

(sgn π)tik,jpti1,jπ2 · · · t̂ik · · · tim,jπm

=
m∑

p=1

tik,jp(−q)k−1(−1)p−1 ×

∑
π′∈S[m]\p

(sgn π′)ti1,jπ′1 · · · t̂ik,jπ′p · · · tim,jπ′m

=
m∑

p=1

tik,jp(−q)k−1(−1)p−1
[
TI\ik,J\jp

]
=

∑
j∈J

tik,jsjik .

Before presenting our next result aboutAII(n), we remind the reader of an important

noncommutative generalization of Hilbert’s Basis Theorem.
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Theorem 44 (Ore Extensions). Fix a field F . If R is a (not necessarily commu-

tative) noetherian F -algebra without zero divisors, and if α ∈ AutF R and δ ∈ EndF R

satisfy δ(ab) = α(a)δ(b)+δ(a)b for all a, b ∈ R, then the skew-polynomial ring R[t;α, δ]

generated by R and t together with

(∀a ∈ R) ta = α(a)t + δ(a)

is again a noetherian F -algebra without zero divisors.

Ore studied these extensions of R when trying to build a large class of rings which

could be embedded in skew-fields. The next result shows that AII(n) may be so em-

bedded, giving us some hope that (AII(n),detII) will be an amenable pair.

Proposition 45. The algebra AII(n) is a noetherian domain, and as such has a well-

defined Ore field of fractions T (n) in which every [TI,J ] is invertible.

Sketch of Proof. Let F 〈X〉 denote the subalgebra of AII(n) generated by the set X.

Consider the following tower of subalgebras (adding one generator at a time, in lexico-

graphic order):

F ( F 〈x11〉 ( F 〈x11, x12〉 ( · · · ( F 〈x11, . . . , x1n〉 (

F 〈x11, . . . , x1n, x21〉 ( · · · ( F 〈x11, . . . , xnn〉 = AII(n)

Compare this to the chain of Ore extensions (Rij | 1 ≤ i, j ≤ n) defined as follows

(putting R0n = F ):

Ri,j =

 Ri,j−1[xij ;αij−1, δij−1] if 1 ≤ i ≤ n and 1 < j ≤ n

Ri−1,n[xi1;αi−1n, δi−1n] if 1 ≤ i ≤ n and j = 1

Here the αij (respectively, δij) are arbitrary automorphisms (endomorphisms) of Rij .

If we can find αij and δij so that F 〈x11, . . . , xij〉 ' Rij , we will be done.

This is fairly straightforward, and works just as in the standard quantum case

(Mq(n)), cf. [28] for details on that argument. Below, we show how to add x22 to the

chain.
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Observation: If an algebra A si given by generators and relations, one may define a

derivation δ by defining its action on generators, demanding it have the appropriate

linear and multiplicative properties, and checking it respects the relations.

That said, we need only look at how x22 moves past linear terms in X:

x22

(
a0 + a1x11 +

∑
1<i≤n

aix1i + b1x21

)
=(

a0 + q−1a1x11 +
∑

1<i≤n

qaix1i + b1x21

)
x22 + a1(q − q−1)x12x21

Evidently we should define α = α21 by α|F = I, α(x11) = q−1x11, α(x1j) = qx1j(j >

1), and α(x21) = x21. This is clearly an automorphism of R21. Also, we should define

δ = δ21 by δ(F ) = 0, δ(x21) = δ(x1j) = 0(j > 1), and δ(x11) = (q − q−1)x12x21.

Appealing to the observation above, we need only check that

δ(x1jx1i − x1ix1j) = 0 (1 < i < j),

δ(x1jx11 − x11x1j) = 0 (1 < j),

δ(x21x1j − qx1jx21) = 0 (1 < j),

δ(x21x11 − qx11x21) = 0.

All are routine, we check the last one.

δ(x21x11) = α(x21)δ(x11) + 0 · x11

= x21(q − q−1)x12x21

= q(q − q−1)x12x21x21,

while

qδ(x11x21) = qα(x11) · 0 + qδ(x11)x21

= q(q − q−1)x12x21x21.

The results we have shown thus far are already enough to enable us to write detII

in terms of quasideterminants.
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Proposition 46. Given subsets R, C ∈
(
[n]
m

)
(row and column indices),

|TI,J |ij = (−1)−`(j|Jj)(−q)−`(i|Ii) ·
[
TI,J

]
·
[
TI\i,J\j

]−1 (5.44)

With this result, we may deduce some commuting relations for matrix minors.

Theorem 47. For all I, J ∈
(
[n]
m

)
, and all i ∈ I, j ∈ J ,[

TI,J

]
tij = q`(j|Jj)−`(Jj |j) · tij

[
TI,J

]
. (5.45)

Proof. By the remark preceding Definition 33, we need only consider the case m = n,

i.e. all possibilities I, J ∈
(
[n]
m

)
and i ∈ I, j ∈ J , are equivalent to the case I = J = [m],

i, j ∈ [m]. We begin in the case n = 2 and proceed by induction. The base case is not

n = 1 because, as we will soon see, we need two rows which are distinct from i, and

two columns which are distinct from j. Putting I = J = {1, 2}, we check that (5.45) is

valid in all possible instances (putting p′ = `(j|J j) and p′′ = `(J j |j)):[
T{12},{12}

]
· t11 =

[
12; 12

]
· t11

= (t11t22 − t12t21)t11

= t11(q−1t11t22 + (q − q−1)t12t21)− qt12t11t21

= q−1t11(t11t22 − t12t21)

= q0−1t11[12; 12] = qp′−p′′t11[12; 12] .

[
12; 12

]
· t22 = (t11t22 − t12t21)t22

= (qt22t11 − q(q − q−1)t12t21)t22 − q−1t22t12t21

= t22(qt11t22 − (q − q−1)t12t21 − q−1t12t21)

= q1−0t22[12; 12] = qp′−p′′t22[12; 12] .

[
12; 12

]
· t12 = (t11t22 − t12t21)t12

= t12(qt11t22 − qt12t21)

= qp′−p′′t12[12; 12] .
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[
12; 12

]
· t21 = (t11t22 − t12t21)t21

= t21(q−1t11t22 − q−1t12t21)

= qp′−p′′t21[12; 12] .

Now suppose (TI′,J ′ , tij) satisfies the theorem ∀I ′ ( I = [n], ∀J ′ ( J = [n], and

∀i ∈ I ′, j ∈ J ′. Fix two rows r0, r1 ∈ I \ i and two columns c0, c1 ∈ J \ j. Using

Sylvester’s identity (Theorem 8) and (5.44),

[
T ] · tij =

(
|T |r0,c0 · (−1)`(c0|J\c0)(−q)`(r0|I\r0) ·

[
T r0,c0

])
· tij

=
(
|T r1,c1 |r0,c0 − |T r1,c0 |r0,c1 · |T r0,c0 |−1

r1,c1 · |T
r0,c1 |r1,c0

)
×

(−1)`(c0|J)(−q)`(r0|I) ·
[
T r0,c0

]
tij

=
(

f11

[
T r1,c1

][
T r1r0,c1c0

]−1 − f12

[
T r1,c0

][
T r1r0,c0c1

]−1 ×(
f22

[
T r0,c0

][
T r0r1,c0c1

]−1
)−1

· f21

[
T r0,c1

][
T r0r1,c1c0

]−1
)
×

tijq
`(j|J\c0,j)−`(J\c0,j|j)(−1)`(c0|J\c0)(−q)`(r0|I\r0)

[
T r0,c0

]
Here fab are some constants depending on (q, r0, r1, c0, c1) which we could compute if we

wished (cf. (5.44)), but we’ll be reversing our steps in a moment, so it’s not important.

Put J0 = J \ c0 and define J1, J01, and I0 similarly. Also, write 〈〈a,A〉〉 as shorthand

for `(a|A \ a)− `(A \ a|a). Continuing, we have

[
T ] · tij =

(
tij · f11q

〈〈j,J1〉〉[T r1,c1
]
q−〈〈j,J

01〉〉[T r1r0,c1c0
]−1 −

tij · f12q
〈〈j,J0〉〉[T r1,c0

]
q−〈〈j,J

01〉〉[T r1r0,c0c1
]−1 ×

q〈〈j,J
01〉〉[T r0r1,c0c1

]
q−〈〈j,J

0〉〉[T r0,c0
]−1

f−1
22 ×

f21q
〈〈j,J1〉〉[T r0,c1

]
q−〈〈j,J

01〉〉[T r0r1,c1c0
]−1
)
×

q〈〈j,J
0〉〉(−1)`(c0|J0)(−q)`(r0|I0)

[
T r0,c0

]
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= tijq
〈〈j,J0〉〉+··· ×(

f11

[
T r1,c1

][
T r1r0,c1c0

]−1 − f12

[
T r1,c0

][
T r1r0,c0c1

]−1 ×(
f22

[
T r0,c0

][
T r0r1,c0c1

]−1
)−1

· f21

[
T r0,c1

][
T r0r1,c1c0

]−1
)
×

(−1)`(c0|J0)(−q)`(r0|I0)
[
T r0,c0

]
= qθtij

[
T
]
.

Now it is left to compute θ more carefully.

θ = 〈〈j, J1〉〉 − 〈〈j, J01〉〉+ 〈〈j, J0〉〉

We may assume c0 < c1. There are three cases: (a) j < c0; (b) c0 < j < c1; and (c)

c1 < j. In all three cases, a simple calculation reduces θ to 〈〈j, J〉〉 = `(j|J j) − `(J j |j)

as needed.

Corollary 48. For all a ∈ [n], interpret `(a|a) as 0. Define a function k by k(A,B) =

q`(A|B)−`(B|A) =
∏

a∈A,b∈B q`(a|b)−`(b|a). Suppose R′, C ′ ∈
([n]

d

)
and R,C ∈

(
[n]
m

)
with

R′ ⊆ R,C ′ ⊆ C. The minors [TR,C ] and [TR′,C′ ] of T are related by the equation[
TR,C

]
·
[
TR′,C′

]
= k(C ′, C)

[
TI,J

]
·
[
T
]
.

In particular, if TR,C = T[n],[n] = T and 1 ≤ j ≤ n, then[
T
][

T ij
]

= qn+1−2j
[
T ij
][

T
]
.

Proof. The first statement follows directly from the previous theorem and the definition

of detII in terms of the tij . The second statement comes from some simple arithmetic

which we reproduce below.∑
t∈[n]\j

〈〈t, [n] \ t〉〉 =
{ n∑

t=1

〈〈t, [n] \ t〉〉
}
− 〈〈j, [n] \ j〉〉

=
{ n∑

t=1

(t− 1)− (n− t)
}
−
{

(j − 1)− (n− j)
}

=
{

n(n + 1) + 2
n(n + 1)

2

}
+
{

n + 1− 2j
}

= n + 1− 2j, as desired.
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5.8.2 Main result

We catalog the key discoveries made above for use in Section 7.2.

Proposition 49. The pair (AII(n),detII) is an amenable pair (A(n),Det) with associ-

ated measuring functions given by

• Ir(a, b) = (−q)−`(a|b) and Ix(a, b) = (−1)−`(a|b),

• Kr(a, b) = 1 and Kx(a, b) = k(a, b) = q`(a|b)−`(b|a),

In AII(n), the column-minors
{

[TA] = detII T[d],A | A ∈
([n]

d

)}
satisfy

• (∀1 ≤ s ≤ r < n) If K, M ⊆ [n] are subsets satisfying |K| = r + 1, |M | = s − 1,

then

0 =
∑

k∈K\M

(−1)−`(M |k)−`(k|Kk)q−`(M |k)+`(k|M) · [TM∪k][TK\k] (5.46)

• If I, J, M ⊆ [n] (|J | = s ≤ r = |I|, |M | = u) are pairwise disjoint, and if J can’t

distinguish I as columns, then for any i ∈ I

[TJ∪M ][TI∪M ] =
q`(J |i)−`(i|J)

q`(J |I)−`(I|J)

q`(M |J)−`(J |M)

q`(M |I)−`(I|M)
· [TI∪M ][TJ∪M ] (5.47)
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Chapter 6

Quantum Flag Algebra of Taft-Towber

In this chapter, we study the implications of our quasideterminantal calculus on the

important “quantum flags” of Taft and Towber. Throughout, F is a commutative field

with distinguished element q 6= 0 and not equal to a root of unity.

6.1 Left & Right Quantum Plücker Coordinates

One important property of the quantum determinant which we have yet to mention

is its behavior under transpose. From the row/column symmetry in (5.6)–(5.11), it is

easy to see

Proposition 50. If A is a q-generic matrix, then its transpose AT is q-generic as well.

It is somewhat harder, though still straightforward (cf. [48]), to see

Proposition 51. If A is a q-generic matrix, then

detqA = detqA
T .

With these propositions, we make an important reduction. If we are given a “q-

generic point” A(Φ) in some left noncommutative flag F`(γ), then we may equally

well consider left (column) quantum Plücker coordinates of A or right (row) quantum

Plücker coordinates of AT , thought of as a q-generic point in some right noncommutative

flag F`(γ).

As alluded to earlier, there is some advantage to considering row coordinates over

column coordinates for q-generic matrices (cf. (5.13) and the remark following). Here,

we make explicit the connection between left and right coordinates of A and AT .
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Proposition 52. Let A be a d×n q-generic matrix with d < n. The left quasi-Plücker

coordinates of A are related to the right quasi-Plucker coordinates of AT by the formula

pK
ji (A) = q`(i|j)−`(j|i)(−q)2`(i|K)−2`(j|K) · rK

ij (AT ) .

Proof. Below, we write [AI,K ] for the quantum determinant detqAI,K . Also, for I ∈([n]
d

)
, we choose the first d rows of A to build column coordinates [A[d],I ] and the first

d columns of AT to build row coordinates [(AT )I,[d]]. We may write this last expression

as [(A[d],I)T ] and it will suit us to do so.

Fix an n× n q-generic matrix T . We summarize important facts which have come

before. Letting R,C ∈
([n]

d

)
denote the rows and columns of the sub-matrix X = TR,C ,

we have:

• (transpose) XT is q-generic, and [X] = [XT ].

• (factorization): [X] = (−q)`(r|Rr)−`(c|Cc)×|X|rc× [Xrc], and the factors commute.

• (rK
ij definition): For all |K|+ 1 = d′ ≤ d, rK

ij (X) = |Xi∪K,[d′]|ic × (|Xj∪K,[d′]|jc)−1.

• (pK
ji definition): For all |K|+1 = d′ ≤ d, pK

ji (X) = (|X[d′],j∪K |rj)−1×|X[d′],i∪K |ri.

Now,

rK
ij (AT ) = |(A[d],i∪K)T |ic × (|(A[d],j∪K)T |jc)−1

= (−q)`(c|[d]\c)−`(i|K) · [(A[d],i∪K)T ] · [((A[d],i∪K)T )ic]−1 ×(
(−q)`(c|[d]\c)−`(j|K) · [(A[d],j∪K)T ] · [((A[d],j∪K)T )js]−1

)−1

= (−q)`(j|K)−`(i|K) · [(A[d],i∪K)T ] · [(A[d],j∪K)T ]−1

= (−q)`(j|K)−`(i|K) · q`(j|i)−`(i|j)[A[d],j∪K ]−1 · [A[d],i∪K ] ,

while

pK
ji (A) = (|A[d],j∪K |rj)−1 × |A[d],i∪K |ri

=
(
(−q)`(j|K)−`(r|[d]\r) · [A[d],j∪K ] · [(A[d],j∪K)rj ]−1

)−1
×

(−q)`(i|K)−`(r|[d]\r) · [A[d],i∪K ] · [(A[d],i∪K)ri]−1

= (−q)−`(j|K)+`(i|K) · [A[d],j∪K ] · [A[d],i∪K ]−1 .
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For the rest of the chapter, we concentrate on the quantum Plücker coordinates

of a right flag. Also, we often suppress the column subscripts, taking
[
I
]

to mean

[AI,{1,2,...,|I|}].

6.2 The Quantum Flag Algebra

Recall the definition of “pre–flag algebra” from Chapter 4.

Given a composition γ |= n, and a noncommutative algebra A(n) with

amenable determinant, the right pre–flag algebra F̃(γ) associated to A(n) is

the F -algebra with generators
{

f̃I | I ∈
([n]

d

)
, d ∈ ‖γ‖

}
and relations given by

equations

0 =
∑

k∈K\M

Ir(k, kM)
Ir(k, K)Kr(K \ k, K)

· f̃K\kf̃k∪M (6.1)

whenever K, M ∈ P[n] with |K| − 1, |M |+ 1 ∈
(

n
‖γ‖
)
, and

f̃JM f̃IM =
ρJKr(J, I)
Kx(K̄,K)

· Kr(M, I)
Kr(M,J)Kx([t], [t + s] \ [t + r])

f̃I∪M f̃J∪M (6.2)

whenever J can’t distinguish I, J ∪M, I∪M ∈
( [n]
‖γ‖
)

(|J | = r, |I| = s, |M | = t),

and I, J, M are pairwise disjoint.

In our present situation, we may add q-alternating relations, change the set of gen-

erators, and employ Proposition 28 to get a candidate definition of the homogeneous

coordinate algebra for quantum flags. First, we characterize when J can’t distinguish

I.

Definition 35. Given two subsets I, J ⊆ [n], we say J surrounds I, written J y I, if

(i) |J | ≤ |I|, and (ii) there exist disjoint subsets ∅ ⊆ J ′, J ′′ ⊆ J such that:1

a. J \ I = J ′ ∪̇J ′′,

b. J ′ ≺ I \ J and I \ J ≺ J ′′.

1In the literature, sets J and I sharing this relationship are called “weakly separated.” I do not
like this terminology because it does not indicate who separates whom. It should be pointed out that,
working from the definition of detq within Mq(n), Leclerc and [33] showed that quantum minors

ˆ
J

˜
and

ˆ
I

˜
q-commute if and only if they are weakly separated.
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We may extend this notion to tuples instead of sets by letting J always surround I

provided two indices of J or I are identical; otherwise, J surrounds I iff set(J) surrounds

set(I).

Let us extend our notion of “can’t distinguish” from sets to tuples in a manner

analogous to the preceding definition. Then we have the following easy result.

Proposition 53. Fix two tuples J, I ∈ [n]‖γ‖. In the case of quantum determinants,

we have J can’t distinguish I (as rows) if and only if J y I.

Proof. We need −Ir(i,j)
Ir(j,i)Kr(i,j)

to be constant across all i ∈ I for each fixed j ∈ J . In the

present setting, this expression becomes −(−q)`(j|i)−`(i|j). Now place J and I on the

number line between 1 and n, and consider a fixed j. If there are elements i to the left

and to the right of j, then `(j|i)− `(i|j) is sometimes 1 and sometimes −1. If there are

only elements i on the left (or on the right) of j, then `(j|i)− `(i|j) is constantly 1 (or

−1).

Remark. The same statement and proof hold for the two-parameter and multi-parameter

deformations of Mn(C).

Definition 36 (Quantum Flag Algebra). Given a composition γ |= n, the quantum

pre–flag algebra F̃(γ) associated toMq(n) is the F -algebra with generators
{

f̃I | I ∈ [n]d, d ∈ ‖γ‖
}

and relations given below.

• The q-alternating relations (AI): For all I ∈ [n]‖γ‖ with I ′ = rect(I),

f̃I =

 0 if I contains repeated indices

(−q)−`(I)f̃I′ otherwise
(6.3)

• The weak–Young symmetry relations (YI,J)(1): For all I, J ∈ P[n] with |I| −

1, |J |+ 1 ∈
(

n
‖γ‖
)
,

0 =
∑
k∈I

(−q)−`(I\k|k)f̃I\kf̃k|J . (6.4)

• The q-commuting relations (CJ,I): For all J, I ∈
( [n]
‖γ‖
)

with J y I,

f̃J f̃I = q|J
′′|−|J ′|f̃I f̃J . (6.5)
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Let us compare this algebra to the quantum flag algebra introduced by Taft and

Towber in [45].

Definition 37. Given a composition γ |= n, the quantum flag algebra Fq(γ) is the

F -algebra with generators
{

fI | I ∈ [n]d, d ∈ ‖γ‖
}

and relations given below.

• The q-alternating relations (AI): For all I ∈ [n]‖γ‖ with I ′ = rect(I),

fI =

 0 if I contains repeated indices

(−q)−`(I)fI′ otherwise
(6.6)

• The Young symmetry relations (YI,J)(u): For all I, J ∈ P[n] and all u ∈ N with

|I| − u, |J |+ u ∈ ‖γ‖,

0 =
∑

Λ⊆I,|Λ|=u

(−q)−`(I\Λ|Λ)fI\ΛfΛ|J (6.7)

• The q-straightening relations (SJ,I): For all J, I ∈
( [n]
‖γ‖
)

with |J | ≤ |I|,

fJfI =
∑

Λ⊆I,|Λ|=|J |

(−q)`(Λ|I\Λ)fJ |I\ΛfΛ (6.8)

Remark. Several comments are in order.

• The definition as it appears in [45] pertains only to full flags F`((1n)). However,

the definition and the theorem appearing below are readily extended to more

general flags (cf. the papers of Hodge, Towber, and Taft [25, 49, 45, 46]).

• Technically, we should have taken I, J to be tuples instead of sets in (6.7) and

(6.8). To repair, simply replace all instances of I with tup(I), etc.

• Notice that relation (6.8) is trivial when |J | = |I|, reading fJfI = fJfI . This

leaves the coordinate algebra of the quantum Grassmannian with only two sets

of relations (namely, (6.6) and (6.7) with ‖γ‖ = {d}).

• This algebra is the “correct one” as the following quantum version of the Basis

Theorem indicates.
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Theorem 54 (Taft-Towber, [45]). The algebra Fq(γ) is isomorphic to the subalgebra

of Mq(n) generated by the quantum minors
{[

I
]

= detq TI,[d] | I ∈
([n]

d

)
, d ∈ ‖γ‖

}
of the

matrix of generators T .

The quantum flag algebra has been well studied—mostly in its Mq(γ) incarnation—

since its introduction (cf. [6, 12, 20, 29, 32]). In this chapter we focus on the discrepancy

between (6.3)–(6.5) and (6.6)–(6.8).

6.3 Young Symmetry Relations

In the commutative setting for flag algebras it is known that all relations analogous to

(YI,J)(u) with u > 1 (see (3.1)), are direct consequences of those with u = 1 (cf. [26]

and [49]). The proofs published there rely heavily on the commutativity of the Plücker

coordinates {pI} (and hence of the coordinate functions {fI}). What follows is a proof

of the same fact for quantum Plücker coordinates. In addition to giving a new proof

for the classical case (set q = 1), it stands as an important result on its own.

Proposition 55. Let I, J be ordered subsets of [n] with respective sizes s+u and r−u

(1 ≤ u ≤ r ≤ s). Then (YI,J)(u) can be written in terms of relations of type (YL,M )(u−1).

Specifically, writing YI,J ;(u) for the right-hand side of relation (YI,J)(u), we have

s+u∑
k=1

(
(−q)2(u−1)−`(Iik |ik)(−q)−`(ik|J)YIik ,ik∪J ;(u−1)

)
=

(
u−1∑
k=0

(−q)2k

)
YI,J ;(u) .

Proof. In terms of quantum minors, this reads

s+u∑
k=1

(−q)2(u−1)−`(I(k)|ik)
∑

Λ(k)⊂I(k)

|Λ(k)|=u−1

(−q)−`(I(k)\Λ(k)|Λ(k))
[
I(k) \ Λ(k)

][
Λ(k)|ik|J

]

=

(
u−1∑
k=0

(−q)2k

) ∑
Λ⊂I
|Λ|=u

(−q)−`(I\Λ|Λ)
[
I \ Λ

][
Λ|J

]
.

Here, we have abused our standard set-operations notation as follows: if A = {a1 <

a2 < · · · < ap}, then we write A(k) for Aak to increase legibility.

To demonstrate the equality, we simply take an arbitrary Λ and compare the coef-

ficients on the left- and right-hand sides of the monomial
[
I \ Λ

][
Λ|J

]
.
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left-hand side:

∑
ik∈Λ

(−q)2(u−1)−`(I(k)|ik)(−q)−`(I(k)\Λ(k)|Λ(k))
[
I \ Λ

][
Λ(k)|ik|J

]

=

∑
ik∈Λ

(−q)2(u−1)−`(I(k)|ik)−`(I(k)\Λ(k)|Λ(k))−`(Λ(k)|ik)

[I \ Λ
][

Λ|J
]

right-hand side: (
u−1∑
k=0

(−q)2k−`(I\Λ|Λ)

)[
I \ Λ

][
Λ|J

]
.

Multiplying both sides by (−q)+`(I\Λ|Λ) and using `(I \Λ|Λ) = `(I \Λ|Λ(k))+`(I(k)|ik)−

`(Λ(k)|ik), we are left with showing

u∑
k=1

(−q)2(u−1)−2`(Λ(k)|ik) =
u∑

k=1

(−q)2(k−1).

But (u− 1)− `(Λ(k)|ik) is exactly k − 1.

Remark. Note that this proof fails to work if q2 is a u-th root of unity. In the case q = 1

it additionally fails if the characteristic of the field is u. Thus there is no improvement

to the situation addressed in [49] in the commutative case.

Repeated application of this reduction proves the following important modification

to the definition of the quantum flag algebra.

Corollary 56. Equation (6.7) in the definition of Fq(γ) may be replaced with an ab-

breviated version—taking only u = 1.

In particular, this settles the discrepancy between (6.4) and (6.7). As (6.8) is vacuous

in the case of quantum Grassmannians, we have the following important theorem

Theorem 57. For fixed 0 < d < n, all identities holding among the quantum minors

{[I] | I ∈
([n]

d

)
} of T are consequences of quasi-Plücker coordinate identities.

This begs the question, what about relations (CJ,I), which appear in the definition of

G̃(d, n) but not in the definition of Gq(d, n)? We will address these “missing relations”

at the end of the next section.
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6.4 q-Straightening and q-Commuting Relations

We have seen that the “Young symmetry” relations of Taft and Towber are consequences

of relations known to hold among generic quasi-Plücker coordinates. As we will see

below, this is not the case for the so-called “Commuting” relations of Taft and Towber

(which we have labeled q-straightening relations here). However, a large subset of

these relations may be so described. The question of whether and to what extent the

remaining discrepancy may be fixed by finding new quasi-Plücker coordinate identities

is an interesting one. Before presenting the main result of this section, it will be helpful

to introduce some combinatorics.

6.4.1 POset paths

The elements of the power set PX have a partial ordering: for A,B ∈ PX, we say

A < B if A ( B. In this section, we think of this POset as an edge-weighted, directed

graph, and denote it by Γ(X).

Definition 38. The graph Γ(X) = Γ(X;α) = ({V, E};α) has vertex set V = PX and

edge set E = {(A,B) | A,B ∈ V, A ( B}. The function α : E → F assigns a weight αB
A

to each edge (A,B) ∈ E .

Example. If |X| = m, then Γ(X) has 2m vertices and
∑m

k=1

(
m
k

)
(2m − 1) edges. In

Figure 6.1, we give an illustration of Γ({1, 5, 6}), omitting some edges and edge weights

for legibility.

56 // 156

6

??����
//

44jjjjjjjjjjjj 16

??����

5 //

OO

15

α156
15

OO

∅

OO

44jjjjjjjjjjjjj
α1
∅

//

??����

JJ�������������
1 α15

1

??����

JJ�������������

OO

Figure 6.1: The graph Γ({1, 5, 6}) (partially rendered).

For the remainder of the subsection, we will be interested in graphs arising from

subsets I, J ∈ [n] with J y I. To simplify notation, let us write J = J ′∪̇J ′′ = {j1 <
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. . . < j′r} ∪ {jr′+1 < · · · < jr′+r′′}; also, put |J | = r′ + r′′ = r, |I| = s, and s − r = t.

It will only be necessary to consider the case J ∩ I = ∅, though the balance of this

subsection may be repeated in greater generality with minimal effort. Write Γ(J ; I) for

the graph built on the POset PJ with edge-weight function given by

(∀(A,B) ∈ E) αB
A := (−q)−`(J\B|B\A)−`(B\A|A)+

(
2|J\B|−|I|

)
|(B\A)∩J ′| . (6.9)

Definition 39. In the graph Γ(J ; I), we consider paths P0 and P defined as follows:

P0 = {(A1, A2, . . . , Ap) | Ai ⊆ J s.t. ∅ ( A1 ( A2 ( · · · ( Ap ( J} ,

and P = P0 ∪ 0̂ ∪ 1̂, where 0̂ = (∅), and

1̂ = ({jr′+1}, {jr′+1, jr′+2}, . . . , J ′′, {jr′ , . . . , jr}, . . . , {j2, . . . , jr}, J).

The weight α(π) of a path π = (A1, . . . , Ap) ∈ P0 is the product of edge weights of the

augmented path (∅, π, J):

αA1

∅ · αA2
A1
· · ·αAp

Ap−1
· αJ

Ap
.

We extend the definition of α to all of P as follows. Notice that if B = A in

(6.9), we get αA
A = 1. With this broader definition of the weight function α, we may

define α(π) = α(∅, π, J) for π = 0̂, 1̂ as well. Writing 1̂ = (A1, . . . , Ar=|J |), the path

(A1, . . . , Ar−1) ∈ P0 will also be important, we label this special path π1̂.

Definition 40. Given a subset K ⊆ J , define mM(K) as follows. If K ∩ J ′ 6= ∅, put

mM(K) = min(K ∩ J ′). Otherwise, put mM(K) = max(K ∩ J ′′).

For any path π = (A1, . . . , Ap), put A0 = ∅ and Ap+1 = J . Notice that 1̂ has the

property that Ak \ Ak−1 6= mM(Ak+1 \ Ak−1) for all 1 ≤ k < r, but Ar = mM(Ar+1 \

Ar−1).

Definition 41. Fix a length 1 ≤ p ≤ r − 1. A path (A1, . . . , Ap) ∈ P0 shall be called

regular (or regular at position i0), if (∃i0)(1 ≤ i0 ≤ p) satisfying: (a) |Ai| = i (∀ 1 ≤

i ≤ i0); (b) Ai0 \ Ai0−1 = mM(Ai0+1 \ Ai0−1) (again, taking A0 = ∅ and Ap+1 = J if

necessary). A sequence is called irregular if it is nowhere regular. Extend the notion of

regularity to P by calling 0̂ irregular and 1̂ regular.
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Remark. The set P is the disjoint union of its regular and irregular paths. We point

out this tautology only to emphasize its importance in the coming proposition. Write

P′ for the irregular paths, and P′′ for the regular paths.

Proposition 58. The subsets P′ and P′′ of P are equinumerous.

Naturally, we will build a bijective map between the two sets. Given an irregular

path π = (A1, . . . , Ap) ∈ P0, we insert a new set B so that ϕ(π) is regular at B:

1. Find the unique i0 satisfying: (|Ai| = i ∀i ≤ i0) ∧ (|Ai0+1| > i0 + 1).

2. Compute b = mM(Ai0+1 \Ai0)

3. Put B = Ai0 ∪ {b}.

4. Define ϕ(π) := (A1, . . . , Ai0 , B, Ai0+1, . . . , Ap).

For the remaining irregular path 0̂, we put ϕ(0̂) = ({j1}), which agrees with the general

definition of ϕ if we think of 0̂ as the empty path () instead of the path consisting of

the empty set.

Example. Table 6.1 illustrates the action of ϕ on P when J = {1, 5, 6}.

π ϕ(π)
0̂ (1)

(5) (5, 15)
(6) (6, 16)
(15) (1, 15)
(16) (1, 16)
(56) (6, 56)

(5, 56) 1̂

Table 6.1: The pairing of P′ and P′′ via ϕ.

Proof. We reach a proof in three steps.

Claim 1: ϕ(P′) ⊆ P′′.

Take a path π ∈ P′ (i.e. a path with no regular points). The effect of ϕ is to insert

a regular point at position i0 + 1 (the spot where B sits), so the claim is proven if we

can show ϕ(π) ∈ P.
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As ϕ(0̂) clearly belongs to P, we may focus on those π ∈ P0. Also, it is plain to see

that π1̂ is irregular, and ϕ(π1̂) = 1̂. If ϕ is to be a bijection, we are left with the task

of showing that ϕ(P′ ∩P0 \ π1̂) ⊆ P0

When |Ap| < r−1, any B that is inserted will result in another path in P0 (because

|B| must be less than r). When |Ap| = r − 1, there is some concern that we will have

to insert a B at the end of the path, resulting in J being the new terminal vertex—

disallowed in P0. This cannot happen:

Case p < r − 1: At some point 1 ≤ i0 < p, there is a jump in set-size greater than

one when moving from Ai0 to Ai0+1. Hence, the B to be inserted will not come at the

end, but rather immediately after Ai0 to Ai0+1

Case p = r− 1: The only path (A1, A2, . . . , Ar−1) ∈ P0 which is nowhere regular is

the path π1̂.

Claim 2: ϕ is 1-1.

Suppose ϕ(A1, . . . , Ap) = ϕ(A′
1, . . . , A

′
p′), and suppose we insert B and B′ respec-

tively. By the nature of ϕ, we have p = p′ and i0 6= i′0. Take i0 < i′0. Also notice

that (A′
1, . . . , A

′
p′) = (A1, . . . , Ai0 , B, Ai0+1, . . . , A

′
i′0

, . . . A′
p′) In particular, B is a regu-

lar point of (A′
1, . . . , A

′
p′), and consequently, (A′

1, . . . , A
′
p′) 6∈ P′.

Claim 3: ϕ is onto.

Consider a path π = (A1, . . . , Ap) ∈ P′′. If p = 1, then it is plain to see that the only

irregular path is π = ({j1}), which is the image of (∅) under ϕ. So we consider π ∈ P′′

with p > 1. Note that |A1| = 1, for otherwise π cannot have any regular points. Now,

locate the first 1 ≤ i0 ≤ p with (a) |Ai0 | = i0; and (b) Ai0 \Ai0−1 = mM(Ai0+1 \Ai0−1.

The path π′ = (A1, . . . , Ai0−1, Ai0+1, . . . , Ak) is in P′ and moreover, ϕ(π′) = π.

Certainly one could cook up other bijections between the regular and irregular paths

in P. The map we have used has an additional nice property.

Proposition 59. The bijection ϕ from the proof of Proposition 58 is path-weight pre-

serving.

The result rests on the following



84

Lemma. Let ∅ ⊆ A ⊆ B ⊆ C ⊆ J . Writing B̂ = B \A and Ĉ = C \B, we have

αB
AαC

B =
[
(−q)2`(B′∩J ′|C′)−2`(C′|B′∩J ′′)

]
αC

A . (6.10)

Proof. From the definition of αC
B, we have

αB
A = (−q)−`(J\B|B̂)−`(B̂|A)+

(
2|J\B|−|I|

)
|B̂∩J ′|

αC
B = (−q)−`(J\C|Ĉ)−`(Ĉ|B)+

(
2|J\C|−|I|

)
|Ĉ∩J ′|

αC
A = (−q)−`(J\C|B̂∪Ĉ)−`(B̂∪Ĉ|A)+

(
2|J\C|−|I|

)
|(B̂∪Ĉ)∩J ′|

Let us compare the exponents of αC
A and αB

AαC
B:

exp(αC
A) = −`(J \ C|B̂)− `(J \ C|Ĉ)− `(Ĉ|A)− `(B̂|A) +(

2|J \A| − 2|Ĉ| − 2|B̂| − |I|
)(
|B̂ ∩ J ′|+ |Ĉ ∩ J ′|

)
, (6.11)

while

exp(αB
AαC

B) = −`(J \B|B̂)− `(J \ C|Ĉ)− `(B̂|A)− `(Ĉ|B) +(
2|J \B| − |I|

)
|B̂ ∩ J ′|+

(
2|J \ C| − |I|

)
|Ĉ ∩ J ′|

= −
{

`(J \ C|B̂) + `(Ĉ|B̂)
}
− `(J \ C|Ĉ)− `(B̂|A)−{

`(Ĉ|A) + `(Ĉ|B̂)
}

+
{

2|J \A| − 2|B̂| − |I|
}
|B̂ ∩ J ′|+{

2|J \A| − 2|B̂| − 2|Ĉ| − |I|
}
|Ĉ ∩ J ′|

= 2|Ĉ||B̂ ∩ J ′| − 2`(Ĉ|B̂) +
{

exp(αC
A)
}

. (6.12)

Notice that 2|Ĉ||B̂ ∩ J ′| = 2`(Ĉ|B̂ ∩ J ′) + 2`(B̂ ∩ J ′|Ĉ), and that −2`(Ĉ|B̂) =

−2`(Ĉ|B̂ ∩ J ′) − 2`(Ĉ|B̂ ∩ J ′′). The discrepancy between (6.12) and (6.11) becomes

2`(B̂ ∩ J ′|Ĉ)− 2`(Ĉ|B̂ ∩ J ′′), as desired.

Now the proposition follows by comparing α(Ai0 , Ai0+1) and α(Ai0 , B, Ai0+1).

Proof of Proposition. Suppose that π = (. . . , A,C, . . .), and that ϕ(π) inserts B imme-

diately after A. Then B = A ∪mM(C \A). Writing b = mM(C \A), (6.10) implies

α(ϕ(π)) =
[
(−q)2`(b∩J ′|Ĉ)−2`(Ĉ|b∩J ′′)

]
· α(π) .
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Now, if b∩J ′ 6= ∅, then b is the smallest element in C \A, and in particular, `(b|Ĉ) = 0.

In this same case, b ∩ J ′′ = ∅, so `(Ĉ|b ∩ J ′′) = 0 too. An analogous argument works

for the case b ∩ J ′ = ∅.

One more interesting fact about Γ(J ; I) and P is worth mentioning. When calcu-

lating α(π1̂) using (6.10), the twos introduced in the exponents there all disappear.

Proposition 60. Given, J, J ′, J ′′, and π1̂ as above, we have

α(π1̂) = (−q)|J
′|(|J ′|−1)−|J ′′|(|J ′′|−1) × αJ

∅ . (6.13)

Proof. Applying 6.10 repeatedly to the expression α(π1̂) we see that

α(π1̂) =
[
(−q)2`(jr′+1∩J ′|jr′+2)−2`(jr′+2|jr′+1∩J ′′)

]
×

α
jr′+1jr′+2

∅ α
jr′+1jr′+2jr′+3

jr′+1jr′+2
· · ·αJ

j2···jr

= (−q)−2(1)
[
(−q)2`(jr′+2∩J ′|jr′+3)−2`(jr′+3|jr′+2∩J ′′)

]
×

α
jr′+1jr′+2jr′+3

∅ · · ·αJ
j2···jr

= (−q)−2(1)−2(2)
[
(−q)2`(jr′+3∩J ′|jr′+4)−2`(jr′+4|jr′+3∩J ′′)

]
×

α
jr′+1jr′+2jr′+3jr′+4

∅ · · ·αJ
j2···jr

...

= (−q)−2(1)−···−2(|J ′′|−1)
[
(−q)2`(jr∩J ′|jr′ )−2`(jr′ |jr∩J ′′)

]
×

α
jr′ ···jr

∅ · · ·αJ
j2···jr

= (−q)−2
(|J′′|−1)|J′′|

2 (−q)0−0
[
(−q)2`(jr′∩J ′|jr′−1)−2`(jr′−1|jr′∩J ′′)

]
×

α
jr′−1···jr

∅ · · ·αJ
j2···jr

= (−q)2(1)(−q)−|J
′′|(|J ′′|−1)

[
(−q)2`(jr′−1∩J ′|jr′−2)−2`(jr′−2|jr′−1∩J ′′)

]
×

α
jr′−2···jr

∅ · · ·αJ
j2···jr

...

= (−q)2(1)+···+2(|J ′|−1)(−q)−|J
′′|(|J ′′|−1) × αJ

∅

= (−q)|J
′|(|J ′|−1)−|J ′′|(|J ′′|−1) × αJ

∅ ,

the desired expression.
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6.4.2 (CJ,I) versus (SJ,I)

We are now ready to study the final discrepancy between our pre–flag algebra F̃ and

the quantum flag algebra Fq of Taft and Towber.

Theorem 61. Suppose I, J ∈
( [n]
‖γ‖
)

and moreover J y I. Writing |J | = r, |I| = s,

and s− r = t, we have

f̃J f̃I =
∑

Λ⊆I,|Λ|=r

(−q)`(Λ|I\Λ)f̃J |I\Λf̃Λ . (6.14)

In other words, a weak version of the q-straightening relations hold for strictly

quasideterminantal reasons. As the proof will make clear, the complimentary statement

is stronger: the quantum flag algebra of Taft and Towber, with relations (AI), (YI,J),

and (SJ,I), implicitly satisfies the relations (CJ,I).

In the sequel, it will be convenient to abbreviate the right-hand side of (6.4) (and its

u > 1 versions, known to be true after the results of Section 6.3) by YI,J ;(u). Also, we

will abbreviate the difference (lhs− rhs) in (6.5) as CJ,I , and the difference (lhs− rhs)

in (6.14) as SJ,I .

Using a Muir’s Law argument as in the proof of Proposition 24, any statement we

say about the case J ∩ I = ∅ may be immediately extended to the more general case.

As in the proof there, the extension to the general case will only introduce coefficients

like Kr(M, I),Kx(L,K), etc. But these all equal 1 by Proposition 28. So we focus on

the case J ∩ I = ∅.2

The proof will proceed as a linear algebra argument, writing SJ,I as a linear combi-

nation of relations of type CJ,I and YL,K;(u). Before we dive in, we define a new quantity

CSJ,I(θ). In the first step below, we replace `(Λ|I \Λ) with |I \Λ||Λ| − `(I \Λ|Λ) and

`(J |I \ Λ) with |J ||I \ Λ| − `(I \ Λ|J). In the last step below, we factor to make the

quantity inside the parentheses look like a YL,K;(u) expression.

2The reader may also consult [30], where a quantum determinant version of Muir’s Law is stated.
There, it is proven using the quasideterminant version of Muir’s Law, cf. Theorem 7 of this thesis.
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CJ,I − SJ,I = −q|J
′′|−|J ′|f̃I f̃J +

 ∑
i1≤λ1<···<λr≤is

(−q)`(Λ|I\Λ)f̃J |I\Λf̃Λ


=

∑
Λ⊆I

(−q)|J
′|t(−q)−`(I\Λ|Λ)f̃J∪(I\Λ)f̃Λ − q|J

′′|−|J ′|f̃I f̃J

=
∑
Λ⊆I

(−q)|J
′|t+|J ′′||J |(−q)−`((J∪I)\Λ|Λ)f̃(J∪I)\Λf̃Λ − q|J

′′|−|J ′|f̃I f̃J

CSJ,I(θ) = (−q)|J
′|t+|J ′′||J |

∑
Λ⊆I

(−q)−`((J∪I)\Λ|Λ)f̃(J∪I)\Λf̃Λ − θf̃I f̃J

 .

We prove the theorem in steps:

Proposition 62. Let I and J be two sets satisfying the conditions of Theorem 61.

With SCJ,I(θ) and YL,K;(u) as defined above, there are constants {ηK | ∅ ⊆ K ( J}

such that

SCJ,I(θ) =
∑

∅⊆K(J

ηKY(I∪J)\K,K;(r−|K|)

for some θ ∈ Z[q, q−1].

Proposition 63. In the previous proposition, θ = (−q)−|J
′|t−|J ′′||J |q|J

′′|−|J ′|.

As CJ,I and Y(I∪J)\K,K are zero for quasideterminantal reasons, i.e. zero in our

pre–flag algebra, these two propositions and the calculation preceding them constitute

a proof of Theorem 61.

Example. An example before the proof:

[1][234] = (−q)`(2|34)[134][2] + (−q)`(3|24)[124][3] + (−q)`(4|23)[123][4] .

C234,1 − S234,1 = −q−1[234][1] + [134][2]− q1[124][3] + q2[123][4]

= q2
(
[123][4] + q−1[124][3] + q−2[134][2]− q−3[234][1]

)
= q2Y1234,∅;(1) .

Definition 42. Let X = {(A,B) | A ∪ B = I ∪ J,A ∩ B = ∅, and |B| = r}. Define V

to be the vector space over F with basis {eA,B | (A,B) ∈ X}.
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There is an obvious F -linear map µ : V → F̃ , sending eA,B to f̃Af̃B. We will pull

back the expressions SCJ,I(θ) and YI∪J\K,K;(r−|K|) to suitable preimages in V and work

there. We write

vθ := (−q)|J
′|t+|J ′′||J |

∑
Λ⊆I

(−q)−`((I∪J)\Λ|Λ)e(I∪J)\Λ,Λ − θeI,J

 ,

and

vK :=
∑

Λ⊆(I∪J),|Λ|=r−|K|

(−q)−`((I∪J\K)\Λ|Λ)(−q)−`(Λ|K)e(I∪J)\(K∪Λ),K∪Λ

for each ∅ ⊆ K ( J . Notice that µ(vθ) = SCJ,I(θ) and µ(vK) = Y(I∪J)\K,K .

Proposition 62 will be proven if we can show that ṽθ = vθ(−q)−|J
′′||J |−|J ′|t is a linear

combination of the vK for some θ. To this end, we introduce a grading on our vector

space.

Definition 43. For each K ∈ PJ , let V(K) = spanF {eA,B | B ∩ J = K}. Clearly, V

is graded by the POset PJ , i.e., V =
⊕

K∈PJ V(K). For each K ∈ PJ , define the

distinguished element eK by

eK =
∑

Λ⊆I,|Λ|=r−|K|

(−q)−`((I∪J)\(K∪Λ)|Λ)(−q)−`(Λ|K)e(I∪J)\(Λ∪K),Λ∪K .

For any v ∈ V , write (v)(K) for the component of v in V(K), that is, v =
∑

K(v)(K).

Notice that eJ = eI,J , and that

e∅ =
∑

λ∈I,|Λ|=|J |

(−q)−`((I∪J)\Λ|Λ)e(I∪J)\Λ,Λ

In other words, ṽθ = e∅ − θeJ . A more remarkable fact is that the vK′
may also be

expressed in terms of the eK .

Lemma. For each K ′ ∈ PJ \ J , there are constants αK
K′ ∈ F satisfying

vK′
=
∑

K∈PJ

αK
K′eK .

Remark. The notation is intended to be suggestive of the edge-weight function on

Γ(J ; I). It so happens that αK
K′ = 0 if K ′ ≮ K in the POset PJ , and αK

K′ 6= 0

otherwise. This important feature will become clear in the proof below.
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Proof of Lemma. Fixing a K ′, if K ) K ′, we write K̂ = K \ K ′. Similarly, we will

write Λ̂ = Λ \ J . Studying vK′
, we see that

vK′
=

∑
Λ⊆(I∪J)\K′
|Λ|=r−|K′|

(−q)−`((I∪J\K′)\Λ|Λ)(−q)−`(Λ|K′)e(I∪J)\(Λ∪K′),Λ∪K′

=
∑

K∈PJ

(vK′
)(K)

=
∑

K∈PJ

∑
λ⊆(I∪J)\K′

Λ∩J=K̂

(−q)−`((I∪J)\(Λ̂∪K)|Λ̂∪K̂) ×

(−q)−`(Λ̂∪K̂|K′)e(I∪J)\(Λ̂∪K),Λ̂∪K

=
∑

K∈PJ

(−q)−`((I\Λ̂)∪(J\K)|K̂)(−q)−`(K̂|K′) × ∑
λ̂⊆I

|Λ̂|=r−|K|

(−q)−`((I∪J)\(Λ̂∪K)|Λ̂)(−q)−`(Λ̂|K′)e(I∪J)\(Λ̂∪K),Λ̂∪K

 .

Why can we perform this last step? Because J y I, the expression `(I \ Λ̂|K̂) does not

actually depend on Λ̂, only on |Λ̂|. Indeed, it equals |I \ Λ̂| · |K̂ ∩ J ′|. Multiplying and

dividing by (−q)−`(Λ̂|K̂), we rewrite this last expression as

vK′
=

∑
K

(−q)−`((I\Λ̂)∪(J\K)|K̂)(−q)−`(K̂|K′)+`(Λ̂|K̂) × ∑
λ̂⊆I,|Λ̂|=r−|K|

(−q)−`((I∪J)\(Λ̂∪K)|Λ̂)(−q)−`(Λ̂|K)e(I∪J)\(Λ̂∪K),Λ̂∪K


=

∑
K′≤K

(−q)(2|J\K|−|I|)|K̂∩J ′|−`(J\K|K̂)−`(K̂|K′)
(
eK
)

=
∑

K′≤K

αK
K′eK .

As the reader may suspect, this is precisely the same value given to αK
K′ in the

previous subsection. In particular, notice that (vK)(K) = 1 · eK . This yields the

important

Corollary 64. For any vK′
, vK with K ′ < K in the POset PJ , and for the same

constants αK
K′ as defined above, we have

(vK′ − αK
K′vK)(K) = 0.
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Proof of Proposition 62. We will use this key fact to perform a certain Gaussian elim-

ination on the “matrix” of vK ’s. Table 6.2 on the POset P({1, 5, 6}) should make our

intentions clear.

e∅ e1 e5 e6 e15 e16 e56 e156

v15 1 α156
15

v16 1 α156
16

v56 1 α156
56

v1 1 α15
1 α16

1 α156
1

v5 1 α15
5 α56

5 α156
5

v6 1 α16
6 α56

6 α156
6

v∅ 1 α1
∅ α5

∅ α6
∅ α15

∅ α16
∅ α56

∅ α156
∅

Table 6.2: Writing the vectors vK′
in terms of the eK .

Performing Gaussian elimination between the rows in the first two layers, we see that

the new rows in the second layer—who began their life with |J |+1 nonzero entries—now

have exactly two nonzero entries:

(vJ\j1\j2)′ = vJ\j1\j2 − α
J\j1
J\j1\j2v

J\j1 − α
J\j2
J\j1\j2v

J\j2

= eJ\j1\j2 +
(
αJ

J\j1\j2 − α
J\j1
J\j1\j2α

J
J\j1 − α

J\j2
J\j1\j2α

J
J\j2

)
eJ

Marching down the layers of this matrix one-by-one, we see that the new final row

is given by (v∅)′ = e∅ + θeJ = ṽθ for some θ.

Proof of Proposition 63. Careful bookkeeping shows that

θ = αJ
∅ −

 ∑
∅(K(J

αK
∅ αJ

K

+

 ∑
∅(K1(K2(J

αK1

∅ αK2
K1

αJ
K2

− · · ·

· · ·+ (−1)|J |−1

 ∑
∅(K1(···(K|J|−1(J

αK1

∅ αK2
K1
· · ·αJ

Kr−1

 . (6.15)

In other words, θ is a signed sum of path weights α(π), π running over all paths in

P save for 1̂. As the sign attached to π is the same as the length of π, and as the
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bijection ϕ from subsection 6.4.1 increases length by one but preserves path weight, we

immediately conclude

θ = (−1)|J |−1α(π1̂)

= (−1)|J |−1(−q)|J
′|(|J ′|−1)−|J ′′|(|J ′′|−1) × αJ

∅

= (−1)|J |−1(−q)|J
′′|−|J ′|(−q)|J

′||J ′|−|J ′′||J ′′|−|I||J ′|

= q|J
′′|−|J ′|(−q)|J

′||J ′|−|J ′′||J ′′|−|J ′′||J ′|−|I||J ′|−(|J ′|+|J ′′|+t)|J ′|+|J ′′||J ′|

= q|J
′′|−|J ′|(−q)−|J

′|t−|J ′′||J |,

as needed.

With Proposition 63 proven, the main theorem is finally demonstrated.

6.4.3 Missing relations

Let us analyze the proof above when γ = (d, n−d). Recall that for Grassmannians, the

right-hand side of (SJ,I) is simply fJfI , same as the left-hand side. In this case, SCJ,I

above becomes gJgI − q|J
′′|−|J ′|gIgJ , i.e. the q-commuting relations already known to

hold in the pre–flag algebra. However, what the proof says is that CJ,I = SCJ,I is

a linear combination of the Young symmetry relations YI∪J\K,K . In particular, the

q-commuting property of quantum Plücker coordinates, made explicit in the definition

of G̃(d, n), implicitly holds within the algebras Gq(d, n) of Taft and Towber.

Example. Two further examples after the fact:

1. [156][234] = q2−1[234][156]:

C156,234 = q6Y123456,∅

+ q5Y23456,1 + q5Y12346,5 − q6Y12345,6

− q3Y2346,15 + q4Y2345,16 + q4Y1234,56.

2. [134][156] = q0−2[156][134]:

C134,156 = q2Y13456,1

− q0Y1456,13 + q1Y1356,14.
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The same argument shows that, in Fq, (CJ,I) is a consequence of (YI,J) and (SJ,I |

J y I). In particular, the quantum flag algebras Fq(γ) are quotients of the pre–flag

algebras F̃(γ). It would seem there are not relations missing from Fq after all, rather

there are relations missing from F̃ .
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Chapter 7

Noncommutative Flags Algebras

7.1 The “pre” Prefix

In Chapter 6, we have seen that our pre–flag algebra F̃(γ) needn’t be the true homoge-

neous coordinate algebra for the flags in any particular noncommutative setting. Still,

it is clearly a good starting point in the task of building that algebra in any (amenable)

noncommutative setting of interest; especially in light of Theorem 57. Here, we give

another compelling result: as defined, the pre–flag algebra is good enough to completely

capture the complex flags’ coordinate functions.

Theorem 65. The pre–flag algebra F̃(γ) for the classic flag variety F`(γ) over C is

isomorphic to F(γ), the ring of homogeneous coordinate functions introduced in Chapter

3.

Proof. The algebra F(γ) is the commutative algebra with generators
{

fI | I ∈
( [n]
‖γ‖
)}

and relations given by

(∀I, J, u : |I| − u, |J |+ u ∈ ‖γ‖) 0 =
∑

Λ∈I\J
|Λ|=u

(−1)`(I\Λ|Λ)(−1)`(Λ|J)fI\ΛfΛ∪J .

For those terms fI\λfλ∪J appearing above satisfying {λ} ∩ J 6= ∅, we understand fλ∪J

as zero.

Turning to the pre–flag algebra, first note that in the present setting Kr = Kx = 1

while Ir(a,Aa) = Ix(a,Aa) = (−1)`(a|Aa). In particular, the left and right pre–flag

algebras are isomorphic, as we expect over C. We focus on the right flags. F̃(γ) is the

noncommutative algebra with generators
{

f̃I | I ∈
( [n]
‖γ‖
)}

and relations given by

(∀I, J : |I| − 1, |J |+ 1 ∈ ‖γ‖) 0 =
∑

λ∈I\J

(−1)`(I\λ|λ)(−1)`(λ|J)f̃I\λf̃λ∪J ,
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and by

(when J can’t distinguish I) f̃JM f̃IM = f̃IM f̃JM .

The first set of relations is identical after the comments preceding Proposition 55.

We only have the problem that F(γ) is a commutative algebra while F̃(γ) is a noncom-

mutative algebra. However, as ρj(i) = − Ir(i,j)
Ir(j,i)Kr(i,j)

= −(−1)±1 for all i, j ∈ [n], this

last set of relations really reads

(∀I, J : |I|, |J | ∈ ‖γ‖) f̃J f̃I = f̃I f̃J ,

i.e. all generators are central.

In the next section, we strengthen our case for the study of the pre–flag algebra by

considering a construction of Frenkel and Jardim. The final section introduces a related

algebra more closely aligned with the noncommutative coordinate algebra introduced

in Section 3.4.

7.2 Two “pre” Examples

Here we summarize how quasideterminants and the pre–Grassmannian algebra can be

used to describe a construction of Frenkel and Jardim [13]. The construction arose from

a new attempt to build quantum instantons.1

7.2.1 A quantum Grassmannian

Definition 44. The quantum compactified complexified Minkowski space Mp,q is the

graded C-algebra generated by z11′ , z12′ , z21′ , z22′ , D, D′ satisfying the relations (7.1) to

1The reader will forgive our not defining this term. It is not important to the result presented here.
Worse, including the requisite background from [40, 2, 13] and the citations therein would take us too
far off course. For a little more background (not much!), the reader may consult Chapter 8.



95

(7.5) below.

z11′z12′ = z12′z11′

z11′z21′ = z21′z11′

z12′z22′ = z22′z12′

z21′z22′ = z22′z21′ (7.1)

z12′z21′ = z21′z12′

q−1(z11′z22′ − z12′z21′) = q(z22′z11′ − z12′z21′) (7.2)

Dz11′ = pq−1z11′D D′z11′ = p−1q−1z11′D
′

Dz12′ = pq−1z12′D D′z12′ = p−1qz12′D
′

Dz21′ = pqz21′D D′z21′ = p−1q−1z21′D
′

Dz22′ = pqz22′D D′z22′ = p−1qz22′D
′

(7.3)

p−1DD′ = pD′D (7.4)

q−1(z11′z22′ − z12′z21′) = p−1DD′ (7.5)

Relations (7.1)-(7.4) are commutation relations, while (7.5) plays the role of the

quadric that defines GrC(2, 4) as a subvariety of P5. In other words, the algebra Mp,q

can be regarded as a quantum Grassmannian.

Remark. In [13], it is stated that the relations (7.1)-(7.5) may be expressed in R-

matrix form. This is not easy to see, and indeed it wouldn’t look like the RTT -algebra

construction above (e.g. because 6, the number of generators here, is not n2 for any

integer n). The details will not be important to us, and the interested reader is urged

to consult [13]. Briefly:

• Beginning with the standard one-parameter 2 × 2 quantum matrix T = (tij),

introduce a formal noncommuting parameter δ with the formula:

diag(δ, δ) · T · diag(q
1
4 , q−

1
4 )2 = diag(q

1
4 , q−

1
4 )2 · T · diag(δ, δ).

• Label the diagonal matrices above ∆ and Q; put X = Q−1∆TQ and Y =

Q∆−1TQ−1.



96

• The relations on X and Y are given in terms of an R-matrix because the relations

on T are. For example (viewing X and R as acting via left-multiplication), the

R-matrix 

p−1

q p−1 − q

p−1 − q−1 q−1

p−1


,

and the identity R23X12X13 = X13X12R23 reproduce the relations for X.

• View the xij′ , yij′ as coordinates in two “affine patches” (1 : xij′ : Dδ) and

( δ
D′ : yij′ : 1) in a quantum P5. Compactify this picture by introducing variables

zij′ and demanding

xij′ =
zij′

D
and yij′ =

zij′

D′

• Conclude that Z will have R-matrix type relations because X and Y do.

In a moment, we will see a more straightforward way to give Mp,q an R-matrix

structure. First, replace the indices (1, 2, 1′, 2′) with (1, 2, 3, 4), and write D = z12, D
′ =

z34. Taking p = q, we may define Mq as follows.

Definition 45. The quantum Grassmannian Mq is the graded C-algebra generated by

zij (1 ≤ i < j ≤ 4) with relations:

z13z12 = z12z12 z34z13 = q−2z13z34

z14z12 = z12z14 z34z14 = z14z34

z23z12 = q−2z12z23 z34z23 = q−2z23z34

z24z12 = q−2z12z24 z34z24 = z24z34

(7.6)

z34z12 = q−2z12z34 (7.7)
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z14z13 = z13z14

z23z13 = z13z23

z24z14 = z14z24

z23z14 = z14z23 (7.8)

z24z23 = z23z24

z24z13 = q−2z13z24 + (1− q−2)z14z23 (7.9)

z12z34 − z13z24 + z14z23 = 0 (7.10)

Here relations (7.6)–(7.9) are presented in a form conducive to using Bergman’s

Diamond Lemma, while relation (7.10) is precisely the classical Plücker relation (Young

symmetry relation) for GrC(2, 4).

It is worth mentioning that this is a new quantum Grassmannian in that it is not

isomorphic to the quantum Grassmannian of Taft and Towber. We give a proof of this

and several related facts in Chapter 8.

7.2.2 An R-matrix realization

We want to view all six symbols zij as being 2×2 minors of a 2×4 matrix T = (tij). To

that end, let AI(n) be the C(q)-algebra given in Section 5.6 with generators {tij}1≤i,j≤n

and relations given by the R-matrix

R = q−2
n∑

i=1

Eii ⊗ Eii +
∑
i<j

(
Ejj ⊗ Eii + q−2Eii ⊗ Ejj + (q−2 − 1)Eij ⊗ Eji

)
.

Recall DetTI,J =
∑

π∈Sd
(−1)`(π)ti1jπ1 · · · tidjπd

for I, J ∈
([n]

d

)
. In this setting, cf.

Proposition 36, we deduce

Theorem 66. The left pre–Grassmannian algebra G̃(2, 4) associated to AI(4) is the

C-algebra with generators
{

f̃ij | {i, j} ∈
(
[4]
2

)}
and relations given by (7.6)–(7.10) (the

z’s being replaced by f̃ ’s). That is, G̃(2, 4) ' Mq(2, 4).

Proof. We leave it to the reader to verify the majority of the relations. Below we spell

out two q-commuting relations and two Young symmetry relations.
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(q-Commuting Relations): In the setting AI(n), for all I, J ∈
([n]

d

)
, J can’t distinguish

I (as columns) iff J y I. In this case, writing M = I ∩ J, Ĵ = J \M , and Î = I \M ,

(5.31) becomes

[T[d],J ][T[d],I ] = (q2)|Ĵ
′′|(1−|Î|)+(|Ĵ|2 )+`(M |Ĵ)−`(M |Î)[T[d],I ][T[d],J ] .

In particular, when n = 4, d = 2, I = {1, 2}, J = {2, 3}, we have

f̃23f̃12 = q−2f̃12f̃23 ,

and when I = {3, 4}, J = {1, 2}, we have

f̃34f̃12 = q−2f̃12f̃34 .

This accounts for (7.6.c) and (7.7).

(Young Symmetry Relations): Recall from Proposition 36 that in the setting AI(n), the

(column) Young symmetry relations take the form

0 =
∑

k∈K\M

(−1)`(M |k)+`(k|Kk)(q2)−`(M |k)[T[d],M∪k][T[d],K\k] .

In particular, when n = 4, d = 2,K = {2, 3, 4},M = {1}, we have

f̃12f̃34 − f̃13f̃24 + f̃14f̃23 = 0.

This accounts for (7.10). Before continuing, let us rewrite (7.9) with (7.10) and (7.7)

to get:

−z14z23 + z24z13 − z34z12 = 0.

Compare this to the Young symmetry relation with n = 4, d = 2,K = {1, 2, 3},M =

{4}:

−q−2f̃14f̃23 + q−2f̃24f̃13 − q−2f̃34f̃12 = 0.

7.2.3 A non-R-matrix realization

We have demonstrated the Grassmannian of Frenkel and Jardim as the Grassmannian

associated to an RTT -algebra. Interestingly, it is also the Grassmannian for an algebra
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that cannot be described by an R-matrix, the algebra AII(n) of Section 5.8. The proof

is the same as the one outlined above, resting on coincidentally identical q-commuting

and Young symmetry relations in the Gr(2, 4) case. In the next section, the two settings

will diverge somewhat.

Proposition 67. Equations (5.30) & (5.31) coincide with (5.46) & (5.47) when n = 4

and γ = (2, 2).

7.3 Affine coordinate rings

We begin this section with an elementary result on noncommutative localization.

Definition 46. Fix a ring A and a subset X ⊆ A. A ring homomorphism α : A → B

is called X-inverting if α(x) has a two-sided inverse for all x ∈ X.

Proposition 68. For any A and X as above, there is a unique ring AX and a ring

map ε : A → AX satisfying the following universal property:

AX
∃!λ // B

A

ε

OO

∀α : X inverting

77pppppppppppppp

That is, if α : A → B is an X-inverting ring homomorphism, then there is a unique

map λ so that α = λε (as ring maps).

The proof may be found in any text discussing noncommutative localization, cf.

[8, 31]. One simply starts with A, adjoins formal noncommuting variables x′ for each

x ∈ X and then adds the relations xx′ = x′x = 1 to this new ring.

For us the method of construction of AX is just as important as its existence. From

it we deduce:

• If X generates A, then X, together with X−1, generates AX .

• If there is an X-inverting map α which is injective on X, that is, (∀x, x′ ∈ X) α(x−

x′) = 0 ⇒ x = x′, then ε must be injective.

This is the situation for our pre–flag algebras F̃(γ) below.
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7.3.1 GLd invariance

For the construction of our quantized flags, we explicitly demanded that we be able to

invert Det TI,J for (at least a very large number) I, J ∈ P[n], |I| = |J |. We discovered in

T (n) some relations among the expressions {Det TI,[d] : |I| = d}, and based on these, we

defined pre–flag algebras associated to T (n) (as F -algebras on generators X =
{

f̃I

}
with the same relations). In short, for each γ, there is an algebra homomorphism

α : F̃(γ) → T (n) that is both X-inverting and X-injective.

We conclude that for noncommutative settings giving rise to amenable determinants,

there is an algebra F̄ associated to F̃ (namely, F̃X) with
(

n
‖γ‖
)

distinct, invertible

generators
{

f̄I | I ∈
( [n]
‖γ‖
)}

. While ε may not be injective, we may still treat F̄ as

a nice localization of F̃ since the image ε(F̃) generates F̄ . We focus on F̄ for the

remainder of the section.

Proposition 69. The ratios f̄I/f̄J with |I| = |J | = d ∈ ‖γ‖ (dividing on the left or

right in accordance with viewing the generators as left or right coordinate functions)

may be viewed as functions on the “q-generic” points of F`(γ).

Remark. We have identified f̄I with the coordinate function [TI ] on F`(γ) (taken to

mean [TA,[d]] if we are considering right flags and to mean [T[d],A] if we are considering

left flags). Note that in the commutative case, and for g ∈ P+
γ , f(TI · g) = f(TI) det g′

where g′ is the |I| × |I| upper-left block of g. Evidently the dependence on g drops out

in the ratio of two such homogeneous coordinate functions, and as a result we have a

legitimate function on F`(γ) (or at least on the affine patch defined by the non-vanishing

of the coordinate [TJ ]. For noncommutative determinants, this g-intertwining property

need not hold.

Proof. The idea is to replace
[
I
][

J
]−1 by a product of ratios that look more like quaside-

terminants.

Writing I = {i1 < i2 < · · · < id} and J similarly, construct from (I, J) the longer

sequence of subsets (I = A0, A1, A2, . . . , Ad−1, Ad = J) by taking At+1 = At\id−t∪jd−t.

Example. The idea is to move from I to J one index at a time. Here are two examples



101

that should be illuminating.

(123, 456) ; (123, 126, 156, 456) and (126, 346) ; (126, 126, 146, 346).

We have assumed in T (n) the existence of [TA]−1 for all A ∈
( [n]
‖γ‖
)
, in particular for

all Ai appearing in the sequence above. Let us stick to right flags for the remainder of

the proof, and abbreviate, e.g., [TA,[d]] as
[
A
]
. Now we may view f̄I/f̄J as the function

returning
[
I
][

J
]−1, or

(
[
A0

][
A1

]−1)(
[
A1

][
A2

]−1)
[
A2

]
· · ·

[
Ad−1

]−1(
[
Ad−1

][
Ad

]−1).

By first properties of adequate determinants, this last expression may be viewed, up to

some coefficients I∗,K∗ ∈ F \ {0}, as ratios of quasideterminants of the form

|TAt,[d]|id−ts|TAt+1,[d]|−1
jd−ts

,

each of which are GLn invariant by Proposition 13.

7.3.2 Dehomogenization & Function Fields

Fix a composition γ |= n with `(γ) = r. We follow the commutative case—also Kelley-

Lenagan-Rigal [29]—and introduce a means for defining affine patches on quantized

flags.

Definition 47. Say a chain of subsets A1 ( A2 ( · · · ( Ar = [n] has characteristic γ

if |Ai| = ‖γ‖i =
∑

j≤i γj for all 1 ≤ i < r. A sequence of sets (A1, A2, . . . , Ar−1) shall

be called an affine patch if the sequence A1 ( · · · ( Ar−1 ( [n] describes a chain of

characteristic γ.

The previous result suggests that there are more appropriate rings associated to

F`(γ) than F̃(γ). Given an affine patch π = (A1, . . . , Ar−1), we define the dehomoge-

nization of F`(γ) at π to be the subring Dhom(γ, π) of the localization F̄(γ) generated

by the ratios {f̃I/f̃Ad
: |I| = |Ad| = d}. This should be viewed as a piece of the function

field K(γ) associated to F`(γ)—to whatever extent this object even exists.2

2If T (\) is a skew-field, a natural place to look for K(γ) is as a sub–skew field of T (n). However,
T (n) needn’t be embeddable in a skew field, even when T (n) is a domain. If this is the case, we may
be out of luck when trying to construct K(γ). For more on this difficult problem of embedding domains
into skew fields, the reader is directed to the discussions in [31] and [8].
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Remark. An element x in a ring R is called normal if xR = Rx. A word or two about

the normal elements of F̃ is in order. If J can’t distinguish A for all J ∈
( [n]
‖γ‖
)
, then

fA is a normal element. For in this case, Theorem 21 implies that fA “q-commutes”

with X, and hence is q-central in F̃ . In all of the examples we have addressed, the

property J y A is sufficient to guarantee that fA q-commutes with fJ . In particular,{
f[‖γ‖1], f[‖γ‖2], . . . , f‖γ‖r−1

}
is a collection of normal elements in F̃ .

Kelley, Lenagan, and Rigal [29] study the case of quantum Grassmannians and deho-

mogenizations at affine patches π whose associated generators fAi are normal elements.

As observed in the previous paragraph, such patches exist for Grassmannians in all of

the examples considered in Chapter 5. Many of the results in [29] should go through

in these other quantized settings.

Normal or no, we may piece together the numerous dehomogenizations of F`(γ)

and view the result as a substantial piece of the field of functions on F`(γ)—again, to

whatever extent the latter even exists.

Definition 48. The ring of functions on F`(γ) is the subalgebra K̄(γ) of F̄(γ) gener-

ated by Dhom(γ, π), π running over all affine patches of γ.

The next result shows that this definition fits into the quasideterminant picture very

well.

Proposition 70. There is an F -algebra homomorphism ϕ from the ring Q(γ) of quasi-

Plücker coordinates to the ring K̄(γ) of functions on F`(γ) in any amenable setting.

Proof. We build the map from Q(γ) to F̄(γ), then show the image lies in K̄(γ). The

proof amounts to a review of Chapters 3 and 4. Recall that by construction, F̄(γ)

satisfies every relation in the generators f̄ that F̃(γ) satisfies in the generators f̃ .

As a reminder, Q(γ) (for right-flags) is the F -algebra generated by symbols
{
rK
ij |

i, j ∈ [n], K ∈ P[n], j 6∈ K, |K|+ 1 ∈
( [n]
‖γ‖
)}

subject to the relations:

• The idempotent relations (Ii,j,M ):

rM
ij =

 0 if i ∈ M

1 if i = j, i 6∈ M
(7.11)
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• The cancellation relations (Ci,j,k,M ):

rM
ij rM

jk = rM
ik (j, k 6∈ M) (7.12)

• The skew-symmetry relations (Si,j,k,M ):

rk∪M
ij ri∪M

jk rj∪M
ki = −1 (i, j, k 6∈ M) (7.13)

• The quasi-Plücker relations (Pi,L,M ):

∑
j∈L

r
L\j
ij rM

ji = 1 (|M | ≤ |L| − 1, i 6∈ M) (7.14)

Below, we will only check the skew-symmetry relation. Equation (4.5) informs us

what the map should be:

ϕ(rM
ij ) =

Ir(i,M)
Ir(j, M)

f̄i∪M f̄−1
j∪M .

We must check that

Ir(i, kM)
Ir(j, kM)

Ir(j, iM)
Ir(k, iM)

Ir(k, jM)
Ir(i, jM)

f̄ikM f̄−1
jkM f̄ijM f̄−1

ikM f̄jkM f̄−1
ijM = −1.

Call the coefficient appearing above (� k
i j). Then by the weak q-commuting property,

this reduces to showing

−1 = (−1)
Ir(i, j)Kr(j, ikM)
Ir(j, i)Kr(i, jkM)

×

(� k
i j)f̄

−1
jkM f̄ikM f̄ijM f̄−1

ikM f̄jkM f̄−1
ijM .

or

−1 = −Ir(i, j)Kr(j, ikM)
Ir(j, i)Kr(i, jkM)

Ir(j, k)Kr(k, ijM)
Ir(k, j)Kr(j, ikM)

Ir(k, i)Kr(i, jkM)
Ir(i, k)Kr(k, ijM)

×

(� k
i j)f̄

−1
jkM f̄ikM f̄−1

ikM f̄ijM f̄−1
ijM f̄jkM .

Now it is just a matter of checking that the introduced constants cancel (� k
i j), which

occurs because Ir,Kr are measuring functions.
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7.4 The ring of quasi-Plücker coordinates

Proposition 70, coupled with the discussion preceding Proposition 69, indicates that a

closer study of Q(γ) is merited. In this section, we begin this study by exhibiting a

basis for Q(γ). We work over Q.

Definition 49. An inadmissible word of length two is a word of the form

rM1
ij rM2

jk with |M1| ≥ |M2| and j > max{M1 \ (M2 ∪ k)} .

A word in the symbols rM
ij is inadmissible if it contains an inadmissible subword of

length two. A word in the symbols rM
ij is admissible if it contains no inadmissible

subwords.

Theorem 71. A basis for Q(γ) as a vector space over Q is given by all admissible

words.

The proof uses Bergman’s Diamond Lemma. Before diving in, we prove an identity

in Q(γ) that we will include in our reduction system in place of (Pi,L,M ).

Lemma. Suppose the integers i, j ∈ [n] and sets M,L ∈ P[n] satisfy (i) j 6∈ M , (ii)

|M | ≤ |L| − 1, and (iii) |M |+ 1, |L| ∈
(

n
‖γ‖
)
. Then the following identity holds in Q(γ),

call it (Pi,L,M,j). ∑
k∈L

r
L\k
ik rM

kj = rM
ij . (7.15)

Proof. This follows by rewriting (Pi,L,M ) using the other relations, especially (Sa,b,c,L\abc).

First, suppose i ∈ L; then (7.15) becomes r
L\i
ii rM

ij = rM
ij , which is simply relation

(Ii,i,L\i).

In the remaining case, note that L \M is nonempty. Choose a particular element,

say l0 and, excluding r
L\l0
il0

rM
l0j , rewrite each summand as

−r
k∪(L\kl0)
il0

r
i∪(L\kl0)
l0k rM

kj
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using relation (Sa,b,c,L\abc). Next, factor out r
L\l0
il0

on the left and rM
l0j on the right—

which we may do because j, l0 6∈ M—and get

∑
k∈L

r
L\k
ik rM

kj = r
L\l0
il0

− ∑
k∈L\l0

r
i∪(L\kl0)
l0k rM

kl0 + 1

 rM
l0j

= r
L\l0
il0

r
L\l0
l0i rM

il0 −
∑

k∈i∪(L\l0)

r
(i∪L\l0)\k
l0k rM

kl0 + 1

 rM
l0j

= r
L\l0
il0

r
L\l0
l0i rM

il0r
M
l0j

= rM
ij .

Starting the Diamond Lemma calculations with the set of reductions presented in

(7.11)–(7.14) leads to an ambiguity that doesn’t resolve. This is in fact how identity

(Pi,L,M,j) first revealed itself to me.

Proof of Theorem. Let X denote the set of all generators for Q(γ) and let 〈X〉 denote

the set of all words w of finite length `(w) in the elements of X. We need a reduction

system R ⊆ 〈X〉×Q〈X〉 and a semigroup partial ordering 6 on 〈X〉 that is compatible

with R.

Notation. For a word w = rM1
i1j1

· · · rMt
itjt

in 〈X〉, let `(w) denote its length t. Also, take

its lower indices to be the sequence L(w) = (i1, j1, i2, j2, . . . , it, jt) and its upper indices

to the the sequence U(w) = (M1,M2, . . . ,Mt).

(6): Given two words w,w′ ∈ X, say w 6 w′ if `(w) ≤ `(w′) and, if their lengths are

equal and equal to t,
∑

1≤i≤t L(w)i ≤
∑

1≤i≤t L(w′)i. The relation 6 is a semigroup

partial order on 〈X〉.
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(R): We rewrite the relations in Q(γ) as follows:

rM
ij = 0 (i 6= j, i ∈ M) (7.16)

rM
ii = 1 (i 6∈ M) (7.17)

rM
ij rM

jk = rM
ik (j, k 6∈ M) (7.18)

rk∪M
ij ri∪M

jk = −rj∪M
ik (i, j, k 6∈ M) (7.19)

r
L\j
ij rM

jk = rM
ik −

∑
l∈L

r
L\l
il rM

lk

( |M | ≤ |L| − 1

j = max{L \ (M ∪ k)}

)
(7.20)

We take (7.16)–(7.20) to be R. With the exception of the final reduction, it is plain to

see that 6 is compatible with R. On the right hand side of the last reduction, there

seem to be some words r
L\l
il rM

lk with
∑

p L
(
r
L\l
il rM

lk

)
p

>
∑

p L
(
r
L\j
ij rM

jk

)
p
. However, the

restriction j = max{L \ (M ∪ k)} implies these words are not actually of length two:

r
L\l
il rM

lk =

 0 if l ∈ M

r
L\k
ik if l = k

Here is an example of one of these degenerate cases that will play a prominent role in

the calculations below:

rk∪M
st rj∪M

tk = rj∪M
sk − rt∪M

sk (j, k, s, t 6∈ M).

To spare the reader, we will only verify that three overlap ambiguities resolve,

(A) r
L\j
sj rk∪M

jt rj∪M
tk (B) r

N\k
sk r

L\j
kj rM

jt (C) r
L\j
js r

L\j′
sj′ rM

j′t,

applying reductions to the first two symbols (12) or the last two symbols (23):

(A)(23) :

r
L\j
sj rk∪M

jt rj∪M
tk = r

L\j
sj

(
− rt∪M

jk

)
= −rt∪M

sk +
∑
j′ 6=j

r
L\j′
sj′ rt∪M

j′k
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(A)(12) :

r
L\j
sj rk∪M

jt rj∪M
tk =

(
rk∪M
st −

∑
j′ 6=j

r
L\j′
sj′ rk∪M

j′t

)
rj∪M
tk

=
(
rj∪M
sk − rt∪M

sk

)
−
∑
j′ 6=j

r
L\j′
sj′ rk∪M

j′t rj∪M
tk

= rj∪M
sk − rt∪M

sk −
∑
j′ 6=j

r
L\j′
sj′

(
rj∪M
j′k − rt∪M

j′k

)
= (A)(23) + rj∪M

sk −
∑
j′ 6=j

r
L\j′
sj′ rj∪M

j′k

= (A)(23) + 0, because r
L\j
sj rj∪M

jk is zero.

(B)(12) :

r
N\k
sk r

L\j
kj rM

jt =
(
r
L\j
sj −

∑
k′ 6=k

r
N\k′
sk′ r

L\j
k′j

)
rM
jt

= r
L\j
sj rM

jt −
∑
k′ 6=k

r
N\k′
sk′

(
rM
k′t −

∑
j′ 6=j

r
L\j′
k′j′ rM

j′t

)
=

(
rM
st −

∑
j′ 6=j

r
L\j′
sj′ rM

j′t

)
−
∑
k′ 6=k

r
N\k′
sk′

(
rM
k′t −

∑
j′ 6=j

r
L\j′
k′j′ rM

j′t

)

(B)(23) :

r
N\k
sk r

L\j
kj rM

jt = r
N\k
sk

(
rM
kt −

∑
j′ 6=j

r
L\j′
kj′ rM

j′t

)
= r

N\k
sk rM

kt −
∑
j′ 6=j

(
r
L\j′
sj′ −

∑
k′ 6=k

r
N\k′
sk′ r

L\j′
k′j′

)
rM
j′t

The difference becomes

(B)(12) − (B)(23) = rM
st −

∑
k′ 6=k

r
N\k′
sk′ rM

k′t − r
N\k
sk rM

kt . (7.21)

Now, either k or one of the k′ 6= k satisfies k′′ = max{N \ (M ∪ t)}. Applying reduction

(7.20) to the appropriate term above reduces (7.21) to zero.

(C)(12) :

r
L\j
js r

L\j′
sj′ rM

j′t =
(
− rs∪Ljj′

jj′

)
rM
j′t
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(C)(23) :

r
L\j
js r

L\j′
sj′ rM

j′t = r
L\j
js

(
rM
st −

∑
j′′ 6=j′

rj∪Ljj′′

sj′′ rM
j′′t

)
= rLj

js rM
st −

∑
j′′ 6=j′

(
rj′′∪Ljj′′

js rj∪Ljj′′

sj′′

)
rM
j′′t

= rLj

js rM
st −

∑
j′′ 6=j′

(
− rs∪Ljj′′

jj′′

)
rM
j′′t

The reasoning for (B)(12) − (B)(23) finishes the job for (C)(12) − (C)(23).

We conclude this section with a key step toward the goal of computing the number

of admissible words in Q(γ) of any given length.

Proposition 72. The number of inadmissible words of length two is

∑
1≤j≤n

∑
m2<m1

m2+1,m1+1∈‖γ‖

∑
0≤m′

2≤min{n−j,m2}

(n− 1−m1)
(

n− j

m′
2

)(
j − 1

m2 −m′
2

)
×

{
(j − 1−m2 + m′

2)
(

j − 1 + m′
2

m1

)
+ (n− j −m′

2)
(

j + m′
2

m1

)}
Proof. We count all of the choices for i, j, k,M1,M2 we can make in order for w =

rM1
ij rM2

jk to be an admissible word. To start the count, we fix j, |M2|, and |M1|—this

explains the first two sums appearing above.

Next, we divide M2 into two pieces: M ′
2 ⊆ {j + 1, . . . , n}, M ′′

2 ⊆ {1, 2, . . . , j − 1}.

This gives (
n− j

|M ′
2|

)(
j − 1

|M2| − |M ′
2|

)
choices for M2. Depending on whether k < j or k > j, we have a different number of

choices for k:

Case k < j : (j − 1− |M2|+ |M ′
2|)

Case k < j : (n− j − |M2|+ |M ′
2|) .

For w to be inadmissible, we need all elements of M1 greater than j to also appear in

M2 ∪{k}. Depending on whether k < j or k > j, we have a different number of choices
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for M1:

Case k < j :
(

j − 1 + |M ′
2|

|M1|

)
Case k < j :

(
j − 1 + |M ′

2|+ 1
|M1|

)
.

In all cases for k and M1, we have (n − 1 − |M1|) choices for i. Putting these consid-

erations together with m1 = |M1|, m2 = |M2|, and m′
2 = |M ′

2|, we get the advertised

formula.
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Chapter 8

The Frenkel-Jardim Flag

As we mentioned in the previous chapter, the construction of Frenkel and Jardim arose

from a new attempt to build quantum instantons. Simply put, an instanton is a solution

to the so-called anti-self-dual Yang-Mills (ASDYM) equation. In [2], Atiyah, Drinfeld,

Hitchin, and Manin (ADHM) constructed solutions over Minkowski space-time, R3⊕R.

Their solutions were parametrized in terms of some linear data. Moreover, they proved

that, up to gauge transformation, all solutions were of this type.

Frenkel and Jardim [13] follow the program of R. Penrose [40] by looking for solutions

in compactified complexified Minkowski space; or rather, a quantized version of this

space. With the construction outlined in Section 7.2 of (the algebra of functions on)

compactified complexified Minkowski space, they are able to build solutions to the

quantum ASDYM which are directly parametrized by the very same classic ADHM

linear data.

In their paper, Frenkel and Jardim also introduce indeterminants zi, zi′ and piece

together a quantum flag algebra Fq around the quantum Grassmannian Mp,q. As in

the commutative case, they are able to view the extension as adding twistors to the

picture. For further background and motivation, cf. loc. cit.

The content of this chapter is a pair of negative results: (i) the quantum Grassman-

nian Gq of Taft and Towber is not isomorphic to Mq; (ii) the pre–Grassmannian algebras

which were shown to be isomorphic to Mq cannot be naturally extended to capture the

flag Fq. One could argue that the first result is a positive one—it verifies that the

Frenkel-Jardim construction truly is a new quantum Grassmannian—but the second

is certainly discouraging. Were an isomorphism of the type (Mq ↪→ Fq) ' (G̃ ↪→ F̃)

to exist, it would put the Frenkel-Jardim construction squarely under the umbrella of
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straightforward, easy to define quantized flag algebras.

8.1 Two quantum Grassmannians

Here we show that the Taft-Towber quantum Grassmannian Gq(2, 4) is not isomorphic

to the Frenkel-Jardim quantum Grassmannian Mq. The table below strongly suggests

this is the case, but we’ll give a rigorous proof just the same.

Let Mq have generators zij : 1 ≤ i < j ≤ 4 and Gq = Gq(2, 4) have generators

fij : 1 ≤ i < j ≤ 4. Table 8.1 displays their relations.

z14z13 = z13z14 f14f13 = qf13f14

z23z13 = z13z23 f23f13 = qf13f23

z24z14 = z14z24 f24f14 = qf14f24

z24z23 = z23z24 f24f23 = qf23f24

z13z12 = z12z13 f13f12 = qf12f13

z14z12 = z12z14 f14f12 = qf12f14

z23z12 = q−2z12z23 f23f12 = qf12f23

z24z12 = q−2z12z24 f24f12 = qf12f24

z34z13 = q−2z13z34 f34f13 = qf13f34

z34z14 = z14z34 f34f14 = qf14f34

z34z23 = q−2z23z34 f34f23 = qf23f34

z34z24 = z24z34 f34f24 = qf24f34

z34z12 = q−2z12z34 f34f12 = q2f12f34

z23z14 = z14z23 f23f14 = f14f23

z24z13 = z13z24 + (q−2 − 1)z12z34 f24f13 = q2(f13f24 + (q−1 − q)f12f34)
z14z23 = z13z24 − z12z34 f14f23 = qf13f24 − q2f12f34

Table 8.1: Relations on the Grassmannian coordinates.

Proposition 73. The algebras Mq and Gq are not isomorphic.

Proof. One striking feature of the relations in the left-hand column of Table 8.1 is that

z14 is central in Mq. Exploiting this feature gives the result.
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Suppose ϕ : Mq → Gq is an isomorphism. Writing ϕ(z14) = a0 +
∑

i<j aijfij +∑
i<j,k<l aij,klfijfkl + · · · , we see what conditions we must impose on a’s in order that

ϕ(z14) is central. We may assume the only nonzero constants ai1j1,i2j2,...,irjr appearing

are attached to those monomials which are part of a C-basis for Gq. Let us write

ai1j1,...,irjrfi1j1 · · · firjr as aKfK for some K = (K1,K2, . . . ,Kr) ∈
(
[4]
2

)
× · · · ×

(
[4]
2

)
(r

copies). Also, let us denote this set of tuples by B(r).

One striking feature of the relations in the right-hand column of Table 8.1 is that,

for any K ∈ B(r), for any r ≥ 1,

fKf12 = qr−#{Ki={1,2}}+#{Ki={3,4}}f12f
K .

Let us demand that
[
ϕ(z14), f12

]
= 0:

ϕ(z14)f12 =
(

a0 +
∑
r≥1

∑
K∈B(r)

aKfK

)
f12

= f12

(
a0 +

∑
r≥1

∑
K∈B(r)

qr−#{Ki={1,2}}+#{Ki={3,4}}aKfK

)
.

Thus, the only nonzero aK which may appear must have all Ki = (1, 2). For if this is

not the case, we may subtract this last expression from the desired result and get

f12

(∑
r≥1

∑
K∈B(r)

aK(1− qmK )fK

)
= 0,

for those particular aK not satisfying Ki = (1, 2)∀i—here the mK are strictly positive

integers. But the monomials appearing in the second factor were assumed to be part

of a basis, so that sum isn’t zero. Also, Gq is a domain (cf. [29]) so the product isn’t

zero.

We conclude that the only nonzero aK are those with each Ki = (1, 2). Now try

to commute f13 past ϕ(z14) and discover that the only choice for these a’s is also zero.

Finally, we see that the center of Gq is C, too small for an isomorphism to exist.

8.2 The quantum flag of Frenkel-Jardim

In their paper, Frenkel and Jardim define a quantum flag with two parameters p, q with

p = q±1.
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Definition 50. The quantum flag Fp,q associated to Mp,q is the C-algebra with gen-

erators {zi, zjk | 1 ≤ i ≤ 4, 1 ≤ j < k ≤ 4} and relations given by (7.6)–(7.10) together

with [
zi, zj

]
= 0, (8.1)

[
z1, z13

]
=
[
z1, z14

]
= 0[

z2, z23

]
=
[
z2, z24

]
= 0[

z3, z13

]
=
[
z3, z23

]
= 0[

z4, z14

]
=
[
z4, z24

]
= 0

(8.2)

z1z12 = pqz12z1 z1z34 = z34z1

z2z12 = pq−1z12z2 z2z34 = z34z2

z3z12 = z12z3 z3z34 = p−1qz34z3

z4z12 = z12z4 z4z34 = p−1q−1z34z4

(8.3)

z2z13 = pq−1z13z2 + (1− pq−1)z23z1

z2z14 = pq−1z14z2 + (1− pq−1)z24z1

z3z14 = p−1qz14z3 + (1− p−1q)z13z4

z3z24 = p−1qz24z3 + (1− p−1q)z23z4

(8.4)

z1z23 = pqz23z1 + (1− pq)z13z2

z1z24 = pqz24z1 + (1− pq)z14z2

z4z13 = p−1q−1z13z4 + (1− p−1q−1)z14z3

z4z23 = p−1q−1z23z4 + (1− p−1q−1)z24z3

(8.5)

z12z3 = q(z13z2 − z23z1)

z12z4 = q(z14z2 − z24z1)

z34z1 = q−1(−z13z4 + z14z3)

z34z2 = q−1(−z23z4 + z24z3)

(8.6)

In keeping with our discussion in Section 7.2, we will assume p = q in the sequel

and denote the algebra as Fq. Were the results of the next section of a more positive

nature, it might be worth exploring the case p = q−1 as well. Näıvely, it should be
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the result of taking row minors instead of column minors; or taking as the definition

of determinant, an object which counts row permutations instead of column permuta-

tions. However, as we will show presently, the Frenkel-Jardim flag construction does

not extend the Grassmannian construction in a manner consistent with the extension

from pre-Grassmannians to pre-flags implicit in Sections 5.6 and 5.8.

8.3 Four quantum flags

Let F̃ I, F̃ II denote the the pre–flag algebras on γ = (14) introduced in Sections 5.6 and

5.8 respectively.

Proposition 74. There is no algebra map ϕ : F̃ II → Fq which prolongs the isomor-

phism G̃II ' Mq exhibited in Section 7.2.

Proof. In Section 7.2 we had ϕ(f̃ij) = zij . It is left to find images for the new variables

f̃i. In Table 8.2, we display the new relations that must be respected.

One striking feature of the relations in the right-hand column of Table 8.2 is that

f̃12f̃i = q±1f̃if̃12 for all (ij). Let us follow the proof of Proposition 73 and write

ϕ(fi) = a
(i)
0 +

∑
j a

(i)
j zj +

∑
kl a

(i)
kl zkl +

∑
r≥2

∑
K∈B(r) a

(i)
K zK . Diverge from the notation

there by setting B(1) :=
( [4]
{1,2}

)
instead of

(
[4]
2

)
; keep B(r) equal to B(1)r. Again, we

may assume the only a
(i)
K appearing are those attached to monomials zK comprising a

linearly independent set in Fq.

One striking feature of the relations in the left-hand column (of Tables 8.1 and 8.2)

is that z12 commutes with everything up to a power of q2.

Let us compare ϕ(f12fi − q±1fif12) to zero, bearing in mind that we have fixed

ϕ(f12) = z12. The calculation reduces to

0 =
(

(1− q±1)a(i)
0 +

∑
r≥1

∑
K∈B(r)

(q2mK − q±1)a(i)
K zK

)
z12 , , (8.7)

for some integers mK depending on K = (K1,K2, . . . ,Kr). Now, the monomials ap-

pearing in the first factor were assumed to be part of a basis, so that sum isn’t zero—

excluding the case q is a root of unity. If Fq is a domain, we reach a contradiction and
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[
zi, zj

]
= 0

[
f̃i, f̃j

]
= 0

z12z1 = q−2z1z12

z13z1 = z1z13

z14z1 = z1z14

z34z1 = z1z34

f̃12f̃1 = q−1f̃1f̃12

f̃13f̃1 = q−1f̃1f̃13

f̃14f̃1 = q−1f̃1f̃14

f̃34f̃1 = q−1f̃1f̃34

z12z2 = z2z12

z23z2 = z2z23

z24z2 = z2z24

z34z2 = z2z34

f̃12f̃2 = qf̃2f̃12

f̃23f̃2 = q−1f̃2f̃23

f̃24f̃2 = q−1f̃2f̃24

f̃34f̃2 = q−1f̃2f̃34

z12z3 = z3z12

z13z3 = z3z13

z23z3 = z3z23

z34z3 = z3z34

f̃12f̃3 = qf̃3f̃12

f̃13f̃3 = q−1f̃3f̃13

f̃23f̃3 = q−1f̃3f̃23

f̃34f̃3 = q−1f̃3f̃34

z12z4 = z4z12

z14z4 = z4z14

z24z4 = z4z24

z34z4 = q2z4z34

f̃12f̃4 = qf̃4f̃12

f̃14f̃4 = qf̃4f̃14

f̃24f̃4 = qf̃4f̃24

f̃34f̃4 = qf̃4f̃34

z23z1 = z1z23 + (q − q−1)z3z12

z24z1 = z1z24 + (q − q−1)z4z12

z13z4 = z4z13 − (q − q−1)z1z34

z23z4 = z4z23 − (q − q−1)z2z34

f̃23f̃1 = q−1f̃1f̃23

f̃24f̃1 = q−1f̃1f̃24

f̃13f̃4 = qf̃4f̃13

f̃23f̃4 = qf̃4f̃23

z13z2 = z1z23 + qz3z12

z14z2 = z1z24 + qz4z12

z14z3 = z4z13 + q−1z1z34

z24z3 = z4z23 + q−1z2z34

f̃2f̃13 = f̃1f̃23 + f̃3f̃12

f̃2f̃14 = f̃1f̃24 + f̃4f̃12

f̃3f̃14 = f̃1f̃34 + f̃4f̃13

f̃3f̃24 = f̃2f̃34 + f̃4f̃23

Table 8.2: Relations on the flag coordinates.
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are finished. We can get away with less. First let us rewrite (8.7) as follows

0 =
(

(1− q±1)a(i)
0 z12

)
+(∑

j∈[4]

(q2mj − q±1)a(i)
j zjz12 +

∑
kl∈([4]

2 )

(1− q−2mkl±1)a(i)
kl z12zkl

)
+

∑
r≥2

( ∑
K∈B(r)

(q2mK − q±1)a(i)
K zKz12

)

Because the relations in Fq are homogeneous, we know each of these graded pieces must

be zero independently. We focus on the first two, and argue that {z12, z1z12, . . . , z4z12,

z12z12, z12z13, . . . , z12z34} is a linearly independent set in Fq.

Claim 1: The set X of monomials zi1zi2 · · · zirzj1k1zj2k2 · · · zjsks satisfying

1. it ≤ it+1 (1 ≤ t < r)

2. jt < kt and jt ≤ jt+1 and kt ≤ kt+1 (1 ≤ t < s)

span Fq as a C vector space.

The relations in the left-hand column of Tables 8.1 and 8.2 indicate that any word

not belonging to X may be written as a linear combination of words in X. Perhaps the

members of X are not linearly independent, but anyhow they certainly span Fq.

Claim 2: The monomials Z = {z12, z1z12, . . . , z4z12, z12z12, z12z13, . . . , z12z34} are part

of a basis for Fq.

The relations in the left-hand column of Tables 8.1 and 8.2 are presented in a form

conducive for applying Bergman’s Diamond Lemma [4]. The candidate basis is precisely

those words included in X. As we mentioned above, there may be relations among some

of these words. However, because the relations in Fq are homogeneous of degree two,

any new relations which we must introduce while implementing the Diamond Lemma—

coming from overlap ambiguities that don’t resolve—will be homogeneous of degree

strictly greater than two. So no matter what percentage of X survives as the true basis

of Fq, we are guaranteed that Z will be a part of it.

We conclude that ϕ(fi) ⊆
⊕

j≥2(Fq)(j) for all i (letting (Fq)(j) denote the degree



117

j graded piece of Fq). Finally, as ϕ(fij) = zij and ϕ(1) = 1, we are left with a 4-

dimensional piece of (Fq)(1) which is unaccounted for. . . not a promising quality for a

purported onto map.

Proceeding in a manner analogous to that above, one should conclude that Fq, F̃ I, F̃ II,

and Fq are four pairwise non-isomorphic quantizations of the homogeneous coordinate

algebra for F`(4).



118

References

[1] Michael Artin, William Schelter, and John Tate, Quantum deformations of GLn,
Comm. Pure Appl. Math. 44 (1991), no. 8-9, 879–895.

[2] M. F. Atiyah, N. J. Hitchin, V. G. Drinfel′d, and Yu. I. Manin, Construction of
instantons, Phys. Lett. A 65 (1978), no. 3, 185–187.

[3] Arkady Berenstein and Vladimir Retakh, Noncommutative double Bruhat cells and
their factorizations, in preparation (27 pages, 2004), arXiv: math.QA/0407010.

[4] George M. Bergman, The diamond lemma for ring theory, Adv. in Math. 29 (1978),
no. 2, 178–218.

[5] Jonathan Brundan and Alexander Kleshchev, Parabolic presentations of the Yan-
gian Y (gln), Comm. Math. Physics (to appear), preprint (64 pages, 2002), arXiv:
math.QA/0407011.

[6] Philippe Caldero, A multiplicative property of quantum flag minors, Represent.
Theory 7 (2003), 164–176 (electronic).

[7] Vyjayanthi Chari and Andrew Pressley, A guide to quantum groups, Cambridge
University Press, Cambridge, 1995, Corrected reprint of the 1994 original.

[8] Paul Moritz Cohn, Skew field constructions, London Mathematical Society Lecture
Note Series, no. 27, Cambridge University Press, Cambridge, 1977.

[9] Alain Connes, Noncommutative geometry, Academic Press Inc., San Diego, CA,
1994.

[10] V. G. Drinfel′d, Hopf algebras and the quantum Yang-Baxter equation, Dokl. Akad.
Nauk SSSR 283 (1985), no. 5, 1060–1064.

[11] Pavel Etingof, Israel Gelfand, and Vladimir Retakh, Factorization of differential
operators, quasideterminants, and nonabelian Toda field equations, Math. Res.
Lett. 4 (1997), no. 2-3, 413–425.

[12] R. Fioresi, Quantum deformation of the Grassmannian manifold, J. Algebra 214
(1999), no. 2, 418–447.

[13] Igor B. Frenkel and Marcos Jardim, Quantum instantons with classical moduli
spaces, Comm. Math. Phys. 237 (2003), no. 3, 471–505.

[14] William Fulton, Young tableaux, London Mathematical Society Student Texts,
vol. 35, Cambridge University Press, Cambridge, 1997, With applications to rep-
resentation theory and geometry.



119

[15] I. M. Gel′fand and V. S. Retakh, Determinants of matrices over noncommutative
rings, Funktsional. Anal. i Prilozhen. 25 (1991), no. 2, 13–25, 96.

[16] , Theory of noncommutative determinants, and characteristic functions of
graphs, Funktsional. Anal. i Prilozhen. 26 (1992), no. 4, 1–20, 96.

[17] I. M. Gelfand and V. S. Retakh, Quasideterminants, I, Selecta Math. (N.S.) 3
(1997), no. 4, 517–546.

[18] Israel Gelfand, Sergei Gelfand, Vladimir Retakh, and Robert Lee Wilson, Quaside-
terminants, Adv. in Math. 193 (2005), no. 1, 56–141.

[19] Israel M. Gelfand, Daniel Krob, Alain Lascoux, Bernard Leclerc, Vladimir S. Re-
takh, and Jean-Yves Thibon, Noncommutative symmetric functions, Adv. Math.
112 (1995), no. 2, 218–348.

[20] K. R. Goodearl and T. H. Lenagan, Quantum determinantal ideals, Duke Math.
J. 103 (2000), no. 1, 165–190.

[21] Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley Classics
Library, John Wiley & Sons Inc., New York, 1994, Reprint of the 1978 original.

[22] D. I. Gurevich, Algebraic aspects of the quantum Yang-Baxter equation, Algebra
i Analiz 2 (1990), no. 4, 119–148, Trans. in Leningrad Math. J. 2 (1991), no. 4,
801–828.

[23] Michiel A. Hazewinkel, Multiparameter quantum groups and multiparameter R-
matrices, Acta Appl. Math. 41 (1995), no. 1-3, 57–98, Geometric and algebraic
structures in differential equations.

[24] A. Heyting, Die theorie der linearen gleichungen in einer zahlenspezies mit
nichtkommutativer multiplikation, Math. Ann. 98 (1928), 465–490.

[25] W. V. D. Hodge, Some enumerative results in the theory of forms, Proc. Cambridge
Philos. Soc. 39 (1943), 22–30.

[26] W. V. D. Hodge and D. Pedoe, Methods of algebraic geometry. Vol. I, Cambridge
Mathematical Library, Cambridge University Press, Cambridge, 1994, Book I: Al-
gebraic preliminaries, Book II: Projective space, Reprint of the 1947 original.

[27] Kenji Iohara, Bosonic representations of Yangian double DY}(g) with g = glN , slN ,
J. Phys. A 29 (1996), no. 15, 4593–4621.

[28] Christian Kassel, Quantum groups, Springer-Verlag, New York, 1995.

[29] A. C. Kelly, T. H. Lenagan, and L. Rigal, Ring theoretic properties of quantum
Grassmannians, J. Algebra Appl. 3 (2004), no. 1, 9–30.

[30] Daniel Krob and Bernard Leclerc, Minor identities for quasi-determinants and
quantum determinants, Comm. Math. Phys. 169 (1995), no. 1, 1–23.

[31] T. Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics, vol.
189, Springer-Verlag, New York, 1999.



120

[32] Bernard Leclerc, Maxim Nazarov, and Jean-Yves Thibon, Induced representations
of affine Hecke algebras and canonical bases of quantum groups, Studies in mem-
ory of Issai Schur (Chevaleret/Rehovot, 2000), Progr. Math., vol. 210, Birkhäuser
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