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Key Idea Proceed with Caution Watch Out!



Problem Statement

Provide a means to construct noncommutative flag varieties in a variety of

noncommutative settings via the quasideterminant.

• Mind the Gap!

• The case of Grassmannians has satisfactory results.

1



Problem Statement

Provide a means to construct noncommutative flag varieties in a variety of

noncommutative settings via the quasideterminant.

• “It would be very important to define noncommutative flag spaces for quantum

groups.” [Manin, ‘88]

• Mind the Gap!

• The case of Grassmannians has satisfactory results.
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Problem Statement

Provide a means to construct noncommutative flag varieties in a variety of

noncommutative settings via the quasideterminant.

• Traditionally, noncommutative geometry is studied by proxy:

{topological spaces X} ↔ {rings of functionsR(X) on X}

• e.g. call a noncommutative algebra the “ring of functions” for some (phantom,

noncommutative) variety.
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Problem Statement

Provide a means to construct noncommutative flag varieties in a variety of

noncommutative settings via the quasideterminant.

• In settings of “quantum group” type. . .

• and only those settings possessing an “amenable determinant.”
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Problem Statement

Provide a means to construct noncommutative flag varieties in a variety of

noncommutative settings via the quasideterminant.

• “A main organizing tool in noncommutative algebra.” [Gelfand-G-Retakh-Wilson, ‘02]

• In the commutative case, it looks like

± detA

detAij
.

• Has a Cramer’s Rule.

• Is zero when matrix isn’t of full rank.

...

...

...
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Notation

• Denote the set {1, 2, . . . , n} by [n].

• Fix an n× n matrix A.

– If i, j ∈ [n] thenAij denotes the deletion of row i and column j.

– If I, J ⊆ [n] thenAI,J indicates we keep only rows I and columns J .

– If I ⊆ [n] with |I| = d, we abbreviateAI,[d] by AI .

• Fix two sets I = {i1, . . . , ir}, J = {j1, . . . , js} and k ∈ [n] \ I .

– We write kI for {k} ∪ I .

– We write I|J for the sequence (i1, . . . , ir, j1, . . . , js).

– We write `(I|J) for the length of the derangement I|J
(the min. number of adjacent swaps needed to put I|J in increasing order).
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Flag Varieties

• Fix an integer n > 1 and a sequence γ = (γ1, . . . , γr) of positive integers

summing to n. Fix a vector space V = Cn with basis B.

Definition (Flags). A flag Φ of shape γ is a left coset representative of

F`(γ) := GLn(C)/P+
γ where

P+
γ =


 . . .




0

∗

• Focus on γ = (1, 1, . . . , 1) for simplicity. Write F`(n) in this case.

• Another special case is γ = (d, n− d). It describes the GrassmannianGr(d, n),

the set of d-dimensional subspaces of V .

• F`(n) is made into a (projective) variety by the Plücker embedding:

η : A 7→ {detAI | I ⊆ [n], |I| = d, 1 ≤ d < n} ,

a map into Pγ := PC(n1) × PC(n2) × · · · × PC( n
n−1).
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Plücker Coordinates

• A point π = (pI) ∈ Pγ belongs to η(F`(n)) iff π satisfies:

Definition (The Young Symmetry Relations (YL,M )(u)). Given L,M ⊆ [n] with

|L| = s+ u, |M | = t− u and s ≥ t

0 =
∑

Λ⊂L
|Λ|=u

(−1)`(L\Λ|Λ)+`(Λ|M)pL\ΛpΛ∪M .

• or add alternating relations for the symbols pI and rewrite as

0 =
∑

Λ⊂L
|Λ|=u

(−1)`(L\Λ|Λ)pL\ΛpΛ|M .

• In this case, call the coordinates of π Plücker coordinates.

Theorem (Hodge-Pedoe, ‘47). A homogeneous polynomial F in the homogeneous

coordinate ring C[fI ] for Pγ is zero on η if and only if it is in the ideal generated by the

(right-hand sides of the) relations (YL,M )(u) (replacing p’s with f ’s).
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Flag Algebra

Definition (Flag Algebra). The flag algebraF(n), the homogeneous coordinate ring for

F`(n), is the C-algebra with generators
{
fI | I ∈ [n]d, 1 ≤ d < n

}
and relations

Alternating (AI): For all I ∈ [n]d

fI =





0 if the d elements of I are not distinct.

(−1)`(σ)fσI if σ ∈ Sd“straightens” the d-tuple I.

Young symmetry (YL,M )(u): (∀L,M ⊆ [n], u > 0) s.t. |M |+ u ≤ |L| − u

0 =
∑

Λ⊂L,|Λ|=u
(−1)−`(L\Λ|Λ)fL\ΛfΛ|M .

Commuting (CJ,I) (∀I, J ( [n])

fJfI = fJfI .
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A qqq-Deformation (“Algebra B”)

• Fix a fieldKq with a distinguished invertible element q.

Definition (Taft-Towber, ‘91). The quantum flag algebraFq(n) is theKq-algebra with

generators
{
fI | I ∈ [n]d, 1 ≤ d < n

}
and relations

Alternating (AI): For all I ∈ [n]d

fI =





0 if the d elements of I are not distinct.

(−q)−`(σ)fσI if σ ∈ Sd“straightens” the d-tuple I.

Young symmetry (YL,M )(u): (∀L,M ⊆ [n], u > 0) s.t. |M |+ u ≤ |L| − u

0 =
∑

Λ⊂L,|Λ|=u
(−q)−`(L\Λ|Λ)fL\ΛfΛ|M .

qqq-Straightening (SJ,I) (∀I, J ( [n]) s.t. |J | ≤ |I|

fJfI =
∑

Λ⊆I,|Λ|=|J |
(−q)`(Λ|I\Λ)fJ |I\ΛfΛ .
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Key Features

Theorem (T-T, ‘91). The quantum flag algebraFq(n) satisfies

• Fq(n) reduces to F(n) when q → 1.

• Fq(n) and F(n) are graded domains sharing the same basis and rate of growth.

• Fq(n) is a comodule algebra for the quantum groups GLq(n) and SLq(n).

...

...

...

View Fq(n) as an answer for Manin (for these particular quantum groups). After this

theorem, one may safely say, the quantum flag algebra of Taft and Towber is the correct

deformation for this noncommutative setting.
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Different Approach: Noncommutative Flags

• Try to deform the flags themselves, not the algebra of functions on them.

• Hopefully arrive at the same algebraFq(n).

Preliminary Steps are Identical

• Fix a skew-field D and a free D-module V = Dn (must choose: left or right?)

• A suitable notion of a (left/right) flag Φ exists.

• A matrix representationA(Φ) exists.

• A(Φ) is unique up to (left/right) multiplication by triangular matrices over D.

Questions

1. Can we find a description of these flags F`(n) in terms of coordinates?

2. Can we find a set of relations among the coordinates that characterize F`(n)?
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Quasideterminants

• Fix a matrix A = (akl) ∈Mn(R) for some (noncommutative) ring R. Write Aij for

the submatrix built from A by deleting row i and column j.

Definition (Gelfand-Retakh, ‘91). The (ij)-quasideterminant |A|ij is defined whenever

Aij is invertible, and in that case,

|A|ij =

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
ij
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Quasideterminants

• Fix a matrix A = (akl) ∈Mn(R) for some (noncommutative) ring R. Write Aij for

the submatrix built from A by deleting row i and column j.

Definition (Gelfand-Retakh, ‘91). The (ij)-quasideterminant |A|ij is defined whenever

Aij is invertible, and in that case,

|A|ij =

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
ij

= − · −1 ·

• 2× 2 Example: |A|11 = a11 − a12a
−1
22 a21.
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Quasi-Plücker Coordinates

Definition. Given an n× n matrix A and an integer 0 < d < n, the (right)

quasi-Plücker coordinates of size d are given by
{
rKij (A) := |AiK |is|AjK |−1

js

∣∣∣ i, j ∈ [n], K ⊆ [n] \ j, |K| = d− 1
}

Theorem (G-R, ‘97). The quasi-Plücker coordinates rKij (A) satisfy

• rKij (A) is independent of s (appearing in definition above)

• rKij (A · g) = rKij (A) for all g ∈ U+
n

• If F (A) is some rational function in the aij which is U+
n -invariant, then F is a

rational function in the rKij (A).

• Quasi-Plücker Relations (Pi,L,M ): If L,M ⊆ [n], i ∈ [n] \M , |M | = |L| − 1,

then:

1 =
∑

j∈L
r
L\j
ij (A) · rMji (A) .
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qqq-Generic Flags

• Fix D and the flags F`(n) over D.

Definition. A flag Φ is called qqq-generic if there is some matrix representationA(Φ)

whose entries aij satisfy the defining relations of the quantum matrix algebra Mq(n)

built on a square matrix T . Let Xq denote the set of q-generic flags of F`(n).

Definition. There is a notion of quantum determinant detq( - ) for T and its submatrices

TJ,K . We call the collection {detqAI | I ⊆ [n]} the (row) quantum Plücker

coordinates of A (of Φ).

• Another Key Feature of Fq(n):

Theorem (T-T, ‘91). The quantum flag algebraFq(n) is isomorphic to the subalgebra of

Mq(n) generated by the quantum Plücker coordinate functions {detqTI | I ⊆ [n]} for

Xq .
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Quasi ; Quantum (“Algebra A”)

Theorem (G-R, ‘91 and Krob-Leclerc, ‘95). Given any i ∈ I ⊆ [n] and j ∈ J ⊆ [n],

there is a Determinant Factorization: puttingB = AI,J , we have

detqB = (−q)`(i|I)−`(j|J) |B|ij detqB
ij ,

and the factors commute.

• In particular: |Ai∪K |is|Aj∪K |−1
js = q±1(detqAi∪K)(detqAj∪K)−1.

• Try to reconstruct “algebra B” from facts about quasi-Plücker coordinate functions rKij .

Definition (Algebra A, First Try). Let F̃q(n) be theKq-algebra given by generators

f̃iK f̃
−1
jK and quasi-Plücker relations (Pi,L,M ) with |M | = |L| − 1:

1 =
∑

j∈L
f̃iL\j f̃

−1
L f̃jM f̃

−1
iM .
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The Vast Gulf

Algebra A:
• Generators are coupled.

• No flag Young symmetry relations.

• No hint of q-straightening relations.

Algebra B:

• Too many Young symmetry relations.

Not evidently a problem yet, but. . .

• No q-commuting relations..
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Step 18?9>:=;<8?9>:=;<8?9>:=;<8?9>:=;<8?9>:=;<
0 =

∑
Λ⊆L(−q)−`(L\Λ|Λ)fL\ΛfΛ|M
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Step 18?9>:=;<8?9>:=;<8?9>:=;<8?9>:=;<8?9>:=;<
0 =

∑
Λ⊆L(−q)−`(L\Λ|Λ)fL\ΛfΛ|M

��

0 =
∑

j∈L(−q)−`(L\j|j)fL\jfj|M

• Found a way to express (YL,M )(u) in terms of particular (YI,J)(1)’s.

• Novelty: A proof in the commutative case that does not require
[
fI , fJ

]
= 0.
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Step 18?9>:=;<8?9>:=;<8?9>:=;<8?9>:=;<8?9>:=;< in Detail

Theorem. If q is not a root of unity inKq , then the Young symmetry relation (YL,M )(u)

of Fq(n) is a consequence of the Young symmetry relations{
(YL\j,j|M )(u−1) | j ∈ L

}

Sketch of Proof:

• Write the right-hand sides of the expressions as YI,J ;(v).

• Show

YL,M ;(u) =
∑

j∈L

(−q)2(u−1)−`(Lj |j)

1 + q2 + · · ·+ q2(u−1)
YLj ,j|M ;(u−1) .

• Fix a particular Λ and simply compare the coefficients of fL\ΛfΛ|M appearing

above.
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Step 18?9>:=;<8?9>:=;<8?9>:=;<8?9>:=;<8?9>:=;< in Detail

Clearing the denominator on the right-hand side we have

on the left
u−1∑

k=0

(−q)2k−`(L\Λ|Λ),

and on the right ∑

j∈Λ

(−q)2(u−1)−`(L\j|j)−`(L\Λ|Λ\j)−`(Λ\j|j).

But `(L \ Λ|Λ) = `(L \ Λ|Λ \ j) + `(L \ j|j)− `(Λ \ j|j). We are left needing

u∑

k=1

(−q)2(u−1)−2`(Λ\λk|λk) =
u∑

k=1

(−q)2(k−1),

which is true because

(u− 1) = `(Λ \ λk|λk) + `(λk|Λ \ λk) = `(Λ \ λk|λk) + (k − 1).
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Step 28?9>:=;<8?9>:=;<8?9>:=;<8?9>:=;<8?9>:=;<




generators : f̃iK f̃
−1
jK

relations : 1 =
∑

j∈L f̃iL\j f̃
−1
L f̃jM f̃

−1
iM (for |M | = |L| − 1)

{





generators : f̃I

relations : 0 =
∑

j∈L(−q)−`(L\j|j)−`(j|M)f̃L\j f̃j∪M (∀|M |)

• Found a weak q-commuting law, allowing me to decouple the generators.

• Novelty: Found a Laplace expansion proof of (Pi,L,M ) that allowedM to have any

cardinality smaller than |L|.
• Novelty: Answers Question 1: the quasi-Plücker coordinates are suitable for flags,

not just Grassmannians.
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Step 28?9>:=;<8?9>:=;<8?9>:=;<8?9>:=;<8?9>:=;<




generators : f̃iK f̃
−1
jK

relations : 1 =
∑

j∈L f̃iL\j f̃
−1
L f̃jM f̃

−1
iM (for |M | = |L| − 1)

��




gens : f̃I

rels : 0 =
∑

j∈L(−q)−`(L\j|j)f̃L\j f̃j∪M (∀ 0 ≤ |M | < |L| − 1)

• Found a weak q-commuting law, allowing me to decouple the generators.

• Novelty: Found a Laplace expansion proof of (Pi,L,M ) that allowedM to have any

cardinality smaller than |L|.
• Novelty: Answers Question 1: the quasi-Plücker coordinates are suitable for flags,

not just Grassmannians.
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Steps 18?9>:=;<8?9>:=;<8?9>:=;<8?9>:=;<8?9>:=;< & 28?9>:=;<8?9>:=;<8?9>:=;<8?9>:=;<8?9>:=;<

Theorem (No Gap for Grassmannians). In case γ = (d, n), the pre–flag algebra

F̃q(γ) is isomorphic to the Taft-Towber flag algebraFq(γ).
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Step 38?9>:=;<8?9>:=;<8?9>:=;<8?9>:=;<8?9>:=;<




0 =
∑

j∈L(−q)−`(L\j|j)−`(j|M)fL\jfj∪M

fJfI =
∑

Λ⊆I,|Λ|=|J |(−q)`(Λ|I\Λ)−`(J |I\Λ)fJ∪I\ΛfΛ





0 =
∑

j∈L(−q)−`(L\j|j)−`(j|M)fL\jfj∪M

fJfI = q|J
′′|−|J ′|fIfJ whenever J y I, otherwise:

fJfI =
∑

Λ⊆I,|Λ|=|J |(−q)`(Λ|I\Λ)−`(J |I\Λ)fJ∪I\ΛfΛ

• Found a way to rewrite q-straightening relations as q-commuting relations.

• Novelty: Found the “missing relations” within Fq(n): q-commuting relations were

known to hold within Mq(n), but were not included in relations defining Fq(n).
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Step 38?9>:=;<8?9>:=;<8?9>:=;<8?9>:=;<8?9>:=;<




0 =
∑

j∈L(−q)−`(L\j|j)−`(j|M)fL\jfj∪M

fJfI =
∑

Λ⊆I,|Λ|=|J |(−q)`(Λ|I\Λ)−`(J |I\Λ)fJ∪I\ΛfΛ

��



0 =
∑

j∈L(−q)−`(L\j|j)−`(j|M)fL\jfj∪M

fJfI = q|J
′′|−|J ′|fIfJ whenever J y I, otherwise:

fJfI =
∑

Λ⊆I,|Λ|=|J |(−q)`(Λ|I\Λ)−`(J |I\Λ)fJ∪I\ΛfΛ

• Found a way to rewrite q-straightening relations as q-commuting relations.

• Novelty: Found the “missing relations” within Fq(n): q-commuting relations were

known to hold within Mq(n), but were not included in relations defining Fq(n).
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Step 48?9>:=;<8?9>:=;<8?9>:=;<8?9>:=;<8?9>:=;<
f̃jK f̃iK = q±1f̃iK f̃jK

(CJ,I) : f̃J f̃I = q|J
′′|−|J ′|f̃I f̃J whenever J y I

• From quasi-Plücker relations, managed to bootstrap my way up to strong

q-commuting law.

• Novelty: Saw past “algebra B” to what was really going on (amenable determinants).
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Step 48?9>:=;<8?9>:=;<8?9>:=;<8?9>:=;<8?9>:=;<
f̃jK f̃iK = q±1f̃iK f̃jK

��

(CJ,I) : f̃J f̃I = q|J
′′|−|J ′|f̃I f̃J whenever J y I

• From quasi-Plücker relations, managed to bootstrap my way up to strong

q-commuting law.

• Novelty: Saw past “algebra B” to what was really going on (amenable determinants).
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The (Persistent) Canal

(∀J 6y I) fJfI =
∑

Λ⊆I,|Λ|=|J |(−q)`(Λ|I\Λ)fJ |I\ΛfΛ .

• Comes from fact that quantum determinant has row and column Laplace expansions.

• Looked briefly for such a proof for quasi-Plücker coordinates.

• Preliminary computer calculations suggest there are no more quasi-Plücker

coordinate identities to be discovered.

– Proving This: gives a positive answer for Question 2.

– Disproving This: moves toward a positive answer for Question 2 and also (likely)

closes the “canal.”

• Awaiting closure, we call F̃q(γ) a “pre”–flag algebra and turn our attention to other

noncommutative settings.
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Problem Statement (Refined)

• Given: an algebraM(n) on n2 generators T = (tij); a T -injective map into a

skew fieldM(n)→ D; “q-generic” relations on the generators T ; and a

determinant function Det( - ) for T and its submatrices.

• Construct: the homogeneous ring of coordinate functions, the “flag algebra,” for the

q-generic points of F`(Dn, γ).

• Solution: if Det is an amenable determinant, then the pre–flag algebra forM(n) is

given by generators f̃I and relations of the form (CJ,I) and (YL,M )(1) whose

precise form comes from the expression of Det in terms of the quasideterminant.

Conjecture. For any amenable setting, the “pre” prefix may be dropped in the

construction of quantized Grassmannians. That is, the basis and graded-piece growth are

identical to those in the classical algebra for Gr(d, n).
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Amenable Determinants

• Fix aK-algebraM(n) on n2 generators T = (tij) and “q-generic” relations.

Definition. Let Det be a map from square submatrices of T toM(n). Write

DetTR,C = [TR,C ] for short. Call Det an amenable determinant if there are

measuring functions Kr,Kx,Ir,Ix : P[n]× P[n]→ K \ {0} associated to Det

satisfying:

1. (∀r, c ∈ [n]) [Tr,c] = trc.

2. (∀r, r′ ∈ R)
∑

c∈C trc
Ix(c,C)
Ir(r′,R) [(TR,C)r

′c] = [TR,C ] · δrr′ .

3. (∀R′ ⊆ R)(∀C ′ ⊆ C) [TR,C ][TR′,C′ ] =
Kx(C′,C)
Kr(R′,R) [TR′,C′ ][TR,C ].

Theorem. IfM(n)→ D is a homomorphism to a ringD over which (enough) square

submatrices of T may be inverted, thenM(n) has a pre–flag algebra.
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Amenable Examples

• The usual commutative determinant [(?)Cramer, 1750]

• The quantum determinant [Kulish-Sklyanin, ‘82; Manin ‘89]

• The two- parameter quantum determinant [Takeuchi, ‘90]

• The multi-parameter quantum determinant [Artin-Schelter-Tate, ‘91]

• The Yangian determinant [Izergin-Korepin, ‘81; K-S, ‘82]

• The super determinant (Berezinian) [Berezin, ‘83]

• A construction in “quantized Minkowski space” [Frenkel-Jardim, ‘03]

...

...

...
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Future Directions

Continue Manin’s Program:

• Build other quantized determinantal varieties using the quasideterminant.

• Build flag varieties for quantized groups not of type A.

Study the Generic Noncommutative Flag:

• Attempt to exhaust all quasi-Plücker coordinate identities (Question 2).

• Study the resulting “noncommutative flag algebra”K〈rKij | . . . 〉.
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Future Directions

Continue Manin’s Program:

• Build other quantized determinantal varieties using the quasideterminant.

• Build flag varieties for quantized groups not of type A.

Study the Generic Noncommutative Flag:

• Attempt to exhaust all quasi-Plücker coordinate identities (Question 2).

• Study the resulting “noncommutative flag algebra”K〈rKij | . . . 〉.
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Any Questions?


