A lower triangular infinite matrix is called a triangle if there are no zeros on the principal diagonal. Denote by \(A_k \) the sequence space defined by

\[
A_k := \left\{ \{s_n\} : \sum_{n=1}^{\infty} n^{k-1} |a_n|^k < \infty, \ a_n = s_n - s_{n-1} \right\} \quad \text{for} \quad k \geq 1.
\]

A matrix \(T \) is said to be a bounded linear operator on \(A_k \), written \(T \in B(A_k) \), if \(T : A_k \to A_k \). In [G. Das, A tauberian theorem for absolute summability, Proc. Cambridge Philos. Soc. 67 (1970), 321-326], Das defined such a matrix to be absolutely \(k \)-th power conservative for \(k \geq 1 \). A minimal set of sufficient conditions are obtained for a triangle \(T \in B(A_k) \) in a previous paper of author jointly with E. Savaş and B. E. Rhoades [E. Savaş, H. Şevli and B.E. Rhoades, Triangles which are bounded operators on \(A_k \), to appear in Acta Math. Hungar.]. It is the purpose of of this work to extend this result to doubly infinite matrices. As special summability methods \(T \) we consider weighted mean and double Cesàro, \((C, 1, 1)\), methods. (Received August 02, 2007)