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Abstract. The purpose of this paper is to study topological sequence
spaces in which the A-transform of coordinate vectors (weakly) converge
to zero, where A is a nonnegative regular factorable matrix. We call these
spaces (weak) A-wedge F K-spaces.
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1. Introduction

Wedge F K-spaces are defined to be topological sequence spaces in which
the coordinate vectors converge to zero. Several characterizations of these
spaces are given by Bennett in [1]. Ince [3] studied the topological sequence
spaces in which the arithmetic means of coordinate vectors converge to zero.
Some characterizations of these spaces may be found in [3]. In this paper, we
study A-wedge FK-spaces which are topological sequence spaces in which
the A-transform of coordinate vectors converge to zero and give some char-
acterizations of these spaces.

In Section 2, we give notation and terminology while in Section 3 we
give some preliminary results. Section 4 deals with A-wedge F'K-spaces and
Section 5 is devoted to weak A-wedge F'K-spaces.

2. Notations and Preliminaries

Let w denote the space of all real- or complex-valued sequences z = (x,,)22 ;.

A K-space is a locally convex vector subspace of w with continuous coordi-
nates. An F'K-space is a K-space which is also a Fréchet space (complete
linear metric space). A BK-space is a normed F K-space. The basic proper-
ties of such spaces can be found in [6], [7], and [9].

By m, ¢, and ¢y we denote the spaces of all bounded sequences, conver-
gent, and null sequences, respectively. These are BK-spaces under the norm
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|z||.. = sup|zy,|. By IP,(1 < p < 00), we shall denote the BK-space of all

absolutely p-summable sequences. As usual, I! is denoted simply by I.
Throughout the paper 67, j = 1,2,. .., denotes the sequence (0,...,0,1,0,...)
with the one in the j-th position. Let ¢ := l.hull {5”“ ke N}. The topolog-
ical dual of X is denoted by X’. A K-space X is said to have the prop-
erty AD if ¢ is a dense subset of X and it is said to have the prop-
erty AK, if X D ¢ and for each z € X , we have (™ — z in X, where
e = 3 2,.6% = (21, 20,...,7,,0,...).
k=1
Let X be an FK-space containing ¢. Following [6],

X' ={zew:a=(f0"), f(0%),...,f(6%),...), fe X"},

o0
X0 = {x Ew: Zxkyk exists for every y € X} .
k=1

Following Bennett [1] we say that a K-space (X,7) containing ¢ is a
wedge space if 6/ — 0in (X, 7) and it is a weak wedge space if 67 — 0 weakly
in X.

Let A = (a;;) be an infinite matrix. The matrix A may be considered
as a linear transformation y = Az of sequences x = (x) by the formula

Y = (ALL‘)Z = Z Qi g, (Z = 1,2,37. . )
j=1

For an FK-space X generated by seminorms {q1, ¢, ...}, we consider
the summability domain
Xpg={recw: Az € X}.

Then X4 is an F K-space under the seminorms (see e.g., [7] and [8])
(1) pi=lzi|,(i=1,2,...),

D i,
j=1

(7i7) (gi0A)(z) = qi(Az), (i=1,2,...).

Throughout the paper {a,} and {b,} will be positive real-valued se-
quences such that

(1) {a,} is strictly decreasing with lirrtn ap =0,

L(i=1,2,...),

() hi(x) = sup

(#4) {b,} is nondecreasing with lim a,,b, = 0 and
n
n
(#i1) lima, > by = 1.
n k=1
In this case, a factorable matrix A = (anx) defined by anr = anby if 1 <
k < n, and zero otherwise, is a regular matrix; that is, ¢ C c4 and lim z; =
lim (Az); for all z € c.
For example, the sequences {b,} and {a,}, with b, = ("j;o‘) and
n -1
p = ( > bk> satisfy these conditions. More generally, all Riesz (weighted
k=1

mean) matrices (see, e.g., Section 3.2 of [2]) A = (ank) With ap, = = for k <
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n (and zero otherwise), where {p,} is positive nondecreasing, P, Z Dies

and & — 0 (as n — 00), satisfies these conditions.
We define A-wedge and weak A-wedge using the matrix A given above.

Definition 2.1. Let (X, 7) be an K-space containing ¢. Then (X, 7) is called
an A-wedge space if the sequence of matrix transformation under the matrix
A of coordinate vectors converges to zero in (X, 7); that is, the sequence

a,b™ = a, Zbk (anbi,anba,anbs, ..., a,b,,0,0,...),

converges to zero in (X, 7).

Observe that these are the rows of the matrix A. Because of the regu-
larity of the factorable matrix A, every wedge space is an A-wedge space but
the converse doesn’t hold. Note that, for a,, = % and b, = 1, the F K-spaces
co,c,m, P (p > 1) as well as the space of bounded sequences of bounded
variation bv are A-wedge spaces but not wedge spaces.

Definition 2.2. A K-space X containing ¢ is called a weak A-wedge space if
the sequence

a,b™ = a, Zbké (anbi,anba,apbs, ..., a,b,,0,0,...)

converges weakly to zero in (X, 7).

Every weak wedge space is a weak A-wedge space but the converse
doesn’t hold. For example, bvg = bv Ny is A-wedge and weak A-wedge space
but it is neither wedge nor weak wedge.

3. Preliminary Results

In this section, we give preliminary results that we need in later sections.

Theorem 3.1. (i) A closed subspace, containing ¢, of an A-wedge (resp.,
weak A-wedge) F K -space is an A-wedge (resp., weak A-wedge) F K -space.
(it) An FK-space which contains an A-wedge (resp., weak A-wedge)
F K -space must be an A-wedge (resp., weak A-wedge) FK -space.
(7i1) A countable intersection of A-wedge (resp., weak A-wedge) FK -
spaces is an A-wedge (resp., weak A-wedge) F K -space.

Proof. The elementary properties of F'K-spaces yield that the proof (see
e.g., Chapter 4 of [6]). O

Definition 3.2. Let z € w. The space V() consists of all sequences z € cg
for which
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ad X
Z |2nl |[A(GE
n=1

Lemma 3.3. Under the norm

o0

||va0b(z) = Z X

n=1

M%

+ sup |z, | (3.1)

Ve (z) is an FK-AK space.

Proof. Define the matrix V' by v, = Z” for k =n, v, = z" for k=n-+1,

and v, = 0 elsewhere. Since Vb( ) = lv N ¢g, then VO( ) is an F K-space
under the norm (3.1) by Theorems 4.3.1 of [6]. For all z € V(z), we have

oo
X
Hx—x(m) = D lal A(”)‘ + sup |z,].
v (=) n=m+1 bn n>m

Since z € V{(2), then ||z — x(m)Hvb(z) — 0 as m — oco. Hence V(z) is an
0

AK-space. O

Theorem 3.4. The space V{(2) is an A-wedge space if and only if z, = o(ai).

Proof. We have for each n,

’ab

(n)

n

= Gp|2n| + an sup |bx| = an |2n| + anbp.
Vob(z) k<n

Since lim a,,b, = 0, the sequence a,,b("™ converges to zero in V2 (z) if and only
n

if lima,z, = 0. Il

Definition 3.5. For z,, = --, let h% = V{(2).

Lemma 3.6. The spaces h’ is an FK-AK space under the norm

oo

1 Ty
el =3 - [

n=1

(3.2)

Proof. By Lemma 3.3, we know that the spaces hl = Vob(i) is an FK-AK
space under the Vob(i) norm

=1
lellvs ) = D2 5 A

n=1

+sup |2

We show that the h? and ‘/E)b(a%) norms are equivalent by proving

llny < ll2llvpry < L+ M) ], (3-3)



A-Wedge and Weak A-Wedge F'K-Spaces 5

where M = sup a,b,. The first inequality is obvious. Let = € h? and n =
n

1,2,3,.... Since ligl”l;—’: =0, we have = = Z A(b—J) Thus

Z%

j=n j=n

oo

Since {a, } is decreasing,
oo
1 1
W NI oF
n . a] J aj

j=n j:n
|zn ] 1
n
Thus b <5 o

— 1
< Al = Z — |AGH| =
j=n "’ j=1
alm Jn < M ||z| ny - This is sufficient to prove the second inequality of

(3.3). O

||£U||hb , which implies sup || <

M sup

Theorem 3.7. The space h’ is not an A-wedge space.

Proof. Since h® = V(z) for z = i, the result follows from Theorem 3.4. [

The following spaces relate to duality of k0.

Lemma 3.8. The spaces (0¢)° and (05)2 given by

(Jo)z = {x Ew: liTanaankxk = 0} ,

k=1
< oo}

and

Zbkxk

n k=1

(000)2 = {x € w:supay

are F K- spaces under the norm

(3.4)

Zbkxk

k=1

||m||(a'oo)‘l - Sup Qn

In addition (0¢)% is an AK -space under the norm (3.4).

Proof. Define the sequence Az by (Az), = a, Y. brwy. Then (0¢)% = (co)a
k=1

and (05)% = ma. Since A is a triangular matrix, then (0¢)% and (04)%

are F'K-spaces under the norm (3.4) by Theorem 4.3.12 in [6]. For =z €
(00)% and € > 0, there exists N such that supa, ‘ > brag| < e whenever
n k=1
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n > N. To show that (0()? is an AK-space, we show fox(m)H =

(0s0)}
n
Z bkxk
k=m+1

Z bkl'k

k=m+1

sup an, < 2¢ whenever m > N. Let n > m > N. Then

n>m

<a, + an, < €+ am < 2e.

Zbkxk Zbkxk Zbkxk

O
Lemma 3.9. (h2)f = (h2)P = (%) = (04)8, and
((00)a)” = ((00)a)” = ((00)5) = he.
Proof. Since h® is an AK-space, then (h%) = (h2)? = (h?)" by Theorems

7.2.7 and 7.2.12 of [6]. Let = € (0)% and y € kY. Because of y € hl, we have
hm Yo = 0. By Abel summation

y y
Z ThYk = Z akskf ) + nSn = = A1t ——

nbn Am—1 bm

where s, = E bjz;. Since ||z||,_y» = sup, ak [sk|, we have, as m,n — oo,
= f

n—1
| Yo
Z wryk| <zl e (Z ar * amlme -

Hence (aoo)a C (h2)P.
Conversely let u € (h2)/. That is, ur, = f(6%), where f € (h%)". Then

Yn
anbn,

Yk
A+

an

n
D biu
k=1

k=1
11|

= [ fan Y brd®)
k=1
= 11

anb(”)

IN

So u € (050)2

o
For the second part, since h’ is an F'K-AK-space, we have

h < ((00)2)7 = ((00)%)° = ((00)2) .

The reverse inclusion follows from Corollary 1(iii) of [5]. According to that

Corollary,
— 1
b8 — : — A .
(o)) {x cus D | < oo}
< 00, limxn|—0}—h2.

Tn

E) < 00, sup

an bn

Since we assume lim,, a,,b,, = 0, we have

((00)%)? {wa §:
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Definition 3.10. Let s = {sn} _, always denote a strictly increasing sequence
of integers with s; = 0. We shall be interested in spaces of the form:

Sn41
1

|sl=qzew: hmxn—O and sup Z
n j=sn+1 ]

b

a <0

C

AGH

Lemma 3.11. For any strictly increasing sequence s = {sn}n 1, the space
 |s| is an FK-space with the norm

Snt1
]l s 1) = = sup Z (3.5)
j=sp+1 @
Furthermore,
he c cbls| g Cm.
Proof. The proof is essentially the same to that of Lemma 3.3 O

Similarly, the proof of the following is like that of Theorem 3.4

Theorem 3.12. For any strictly increasing sequence s = {sn}:’:l , the space
 |s| is not an A-wedge space.

Lemma 3.13. Assume that lima;2} =0, (n = 1,2,3,...). Then there exists
j

J

z € w with lima;z; = 0 such that limzz—j_ =0, (n=1,2,3,...).
J j#

o0
Moreover, for any such z, we have V() ¢ ) V2(z").

n=1
Proof. Since lijr_najz;-I =0, (n = 1,2,3,...), we may choose a sequence
{jk}rey of positive integers such that
I=jo<pn<je<-<jp<--
and

max |ajz;"< (G>jeik=1,2,...).

1
1<n<k 4k’
Define z € w as follows :

2j = (Jk <J<jrt1; E=0,1,2,...).

k:'7
2ka;

Then lim a;z; = 0 and, fixing n, we get
J

z3 a;zj 1 ; o
—| = < o whenever ji <j < jgi1 and k > n. (3.6)
Zj a;z; 2

Thus lim ZZ—J” = 0 for each n. The second part of the proof follows from

inequality (3.6). O



8 H. Giil Ince and Martin Buntinas

Remark 3.14. In Lemma 3.13 above, we may choose the sequence {j;} of
positive integers such that

1
a;bj < o for j = ji

and .
Ajpqy < iajk for k =0,1,2,....
Then
% Ohg. for i <j<jgry1; £=0,1,2,...
j

and B wons

L= > 1for ji<j<jpsr; K=0,1,2,....

b, a;b;

Lemma 3.15. Assume that lim ajz? =0 for some 2° € w. Then there eists
J
2 € w with lima;z; = 0 such that V§(2') C V(") and V§(2') is an FK-
J

space under the norm

Il —Z

Proof. Let 2" = 2° for n = 1,2,3,... and assume the sequence {j;} of posi-
tive integers is chosen according to the proof of Lemma 3.13 and Remark 3.14
above. Then, by Lemma 3.13, there exists a sequence 2z’ € w with hm ajz =0

such that V?(2") C V(2°). It is sufficient to show that, for all x € VO ("), we
have
sup [a,| < 2|z (3.7)

Although the sequence zg may not be increasing for all j = 1,2,3..., it has
an increasing sawtooth shape as observed by (3.8 ), (3.9), and (3.10) below:
Since {a;} is strictly decreasing, for each ¢ =0,1,2,...

1
zp = S is strictly increasing for j; < j < jiy1 (3.8)
a;
and for each j; <n < j;11,
1 1 1 2
2= = < — =2 < = = — =22 . 3.9
Ji 2y, T 2iay, "o 2iay,,,  2ilay, Jit1 (3.9)

Also {z } , Is positive and strictly increasing because a;,,, < a] ; that is,

1 1
2 = o < = =2z .. (3.10)
Ji 2Zaji 21+1aji+1 Jit1
Let z € VP(2') and jr < n < jri1. Define A; = % - % (1=0,1,2,...).
k3 i+1

. . : . Xj.
Since lim % = 0, and hence lim 3% = 0, we have
7 J 7 Ji

Jr41—1

%:: ZA% ZA
j=n

1=k+1
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Thus
|“"””| Z 1Al (3.11)
j=n i=k+1
By (3.8) and (3.10), we have
lza| 1 78S ; -
Pele— 4 AGH|+ 57— DAL (3.12)
n Fno 5T J Zikt1 i—r
Jj=n 1=k+1
By (3.9), we have
— .
|l‘n 1 e T 2
oS GIAGH|+ o D # Al
" " j=n J ™ i=k+1
By Remark 3.14, we have b; > 1. Thus
Jr+1—1
|z, | < 2Tl < Z J +2 Z 2 A (3.13)
] 1=k+1

Expanding 27 [A;| in (3.13), we have by (3.8),

Jit1—1

<Y 7

i=ii : i=ii

Ty, Ljit1

2|0 = 2,
bh b.ji+1

Inserting this into inequality (3.13),

Jr41—1 oo Jit1—1 00
D S NS RS S SN C3 | EE) oEt e
j=n J i=k+1 j=g; J j=n J

gives us the desired result for all n

|lzn| < QZ

4. A-Wedge F K-Spaces

In this section we study A-wedge F K-space. First we give the fundamental
characterization of A-wedge spaces.

Theorem 4.1. The following conditions are equivalent for an FK -space (X, T) :

(i) X is an A-wedge space,

(i1) X contains V{(z) for some z € w such that z; = o(-),

J

(iii) X contains c’ |s| for some strictly increasing sequence s and the
inclusion mapping I : (% |s]|, H'”cg|s|) — (X, 7) is compact,

(iv) X contains h® and the inclusion mapping I : (h®, ||th) —(X,7)
18 compact.
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Proof. (it) = (i) follows from Theorems 3.1 and 3.4.
(i) = (ii). Let {gn},—; be a defining family of seminorms for the
topology 7 and let

z] = qn(b(j)) = qn(z b6Y); j,mn=1,2,...

Suppose # € (] VP(2"). Then z € ¢y and for all n = 1,2,3,... we have

n=1
Z ’Zn| ‘ Z n( b(] ‘ an b(J))
o0

j=1
Since X complete, Y. (A(32))bY) converges in (X, 7). Coordinatewise, it
]:1 J

k )
converges to x, since, for k > i, the i'" coordinate of (A(%))b(” is

- J

=1

T; — ZTr+1, which tends to z; as k — oo. Since X is a K-space, x =

blc+1
Z(A(Tj))b(j) e X. So ﬂ Ve(2") C X. Since X is an A-wedge space,
j=1 n=1

lim g, (a,b™) = lima;27 = 0,(n = 1,2,3,...). By Lemma 3.13 we may
j J

choose z € w such that lima;jz; = 0 and V(2) € N VP(z") C
J n=1

(i) = (iii). Let VP(2) C X for some z with z; = (i) By Lemma

A3 -

3.15, V¥ (2) has a subset V(2') with norm ||z||" = DE Take sop =0

Jj=1
and {sn}zcz1 denotes a strictly increasing sequence of integers satisfying,
1
|a; )| < o J = s (n=1,2,3,...). (4.1)

Let 2 € ¢} |s|. Suppose m,p € N, m < p. Then by (4.1) we get

Sp+1 Sn+41

/

S 5203 3wl [aGh]<tely X 5 -

J=sm+1 n=m j=s,+1

Thus z € Vob(z’) and ¢b |s| C VP(2') C X.
Now assume that U C ¢}, |s| be such that ||z < M for all z € U. It
is clear that U C V{(2). For s, < m < s,41 and z € U, by (4.1) we get

’ oo

- Y |a

j=m+1

o

Z Z CLJ|ZJ|7

Si41 ‘
1=n j=s;+1

— 1
< ”chg|s\ Z 5~ 0 (uniformly on U), (m — o0).

Hence 2™ — z, (m — oo), in (V(2'),]|z||") uniformly on U. Since
Ve (2') is an AK-space, then by Lemma 2 of [1], U is relatively compact in
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V& (2') . Since the inclusion mapping I : V¥(2') — X is continuous, I(U) = U
is relatively compact in X. Thus the inclusion mapping I : (c |s], ||.||CZ‘S|) —
(X, 7) is compact.

(iii) = (iv). Because the inclusion mapping I : h? — ¢ |s| is continu-
ous, the proof is trivial.

(iv) = (i). Since ’anb(")

e =1, the set B = {anb(") n= 1,2,...}

is a bounded subset of h’. In addition since the inclusion mapping I :
(B2, ||-ls) — (X, 7) is compact, I(B) = B is 7-relatively compact in X.
Hence, by Theorem 2.3.11 of [4], since a,b™ — 0 in w, we have a,b™ — 0
in (X, 7). O

o0

Theorem 4.2. Suppose z € (0¢)%. Then 2° := {x Ew: Y 2Tk converges}
k=1

is an A-wedge F'K -space.

Proof. The space z° is an FK-space with seminorms p;(z) = |z;|, (i =
1,2,...), and Py(x) = sup| Y. zxzx|, by Theorem 4.3.7 in [6]. Let z € (09)5.
m k=1

Since, for each i =1,2,3,.. .,

" apb; ,if 1 <n
pi(anb( )){ 0 i isn }gananO, (n — o),

m

> zibi

k=1
Since the sequence {a,} is decreasing and lim a,, = 0, we choose a sequence
n

it remains to show that Po(anb(”)) = max a,

 Dnax — 0, (n — o0).

S
a
{¢n} of natural numbers for which % > 2N and a¢ | zibs| < 27N,
N i=1
(V¢ > Cn)-
Then for any N > 2, take n > (. We have
m m
(@) an | D 21br| = S=am | D z1br| < 2=(IN=1) for (y_1 <m <n
k=1 k=1
m a m m
(i1) an | > zibr| < —D—ap | Y 2be| < 27N supay, | Y 2xbi|, for
k=1 N-1 k=1 m k=1
m < (N-1,
Hence
m
Po(anb(”)) = max 2*(N*1), 27N sup am szbk
m<CN-1 =1
which tends to zero as n — oo. [l

Now we give the following result.

Corollary 4.3. The intersection of all A-wedge FK -spaces is hl.
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Proof. Let the intersection of all A-wedge F' K-spaces be Y. By Theorem 4.1
(i) = (iv), Theorem 4.2, and Lemma 3.9 we have

Wy c({ 22 €(00)) = {(00)) = Bl
Hence the result. O
Corollary 4.4. N Vi(z) = hb.

Zn:o(ﬁ)

Proof. By Theorem 3.4, if z, = o(a%), then VJ(z) is an A-wedge FK-
space. Also by Theorem 4.1(iv), h® € () V{(2). The reverse inclusion
zn:o(i)

is obtained by Theorem 4.1(4i) and Corollary 4.3. (]
Remark 4.5. By Corollary 4.3, there is no smallest A-wedge space.

5. Weak A-Wedge F K-Spaces

In this section, we deal with weak A-wedge F K-spaces

Theorem 5.1. An FK-space (X,7) is a weak A-wedge space if and only if
X contains hY and the inclusion mapping I : (h8,||.||,,) — (X,7) is weakly
compact.

Proof. Necessity: Let (X, 7) be a weak A-wedge space. Then for all f € X',

f (anb“”) =f <an ; bka’“) = ay ; bef(6%) = 0,(n — 00),  (5.1)

and thereby {f(0%)} € (0x)’. Thus X/ C (04)b. Since (0o0)l = (h%)7 and
hY is an AD-space, then h® C X by Theorem 8.6.1 in [6]. This inclusion
requires that the inclusion mapping I : k2 — X is continuous. Because h® is
an AK-space, we have for all x € h® and f € X’ that

f (ZIM’“) =Y @ f(6") = (I(x), [)= (= f(&")).
k=1 k=1

On the other hand,{ f(6*)} € (00)? for all f € X’ by (5.1).
Thus, since o (((60)%)’, (60)3) = o (kY, (00)%) , then the mapping
I: (R, o (k% (00)})) — (X, 0 (X, X)) is continuous. By the Banach-Alaoglu
Theorem (Theorem 1, Section 13.3 of [7]), the set B = {:c enl: |l < 1}
is o (h%, (00)})-compact and hence I(B) = B is ¢ (X, X’)-compact. Conse-
quently the inclusion mapping I : (h%, ||.||,,) — (X, 7) is weakly compact.
Sufficiency: Let h% C X and the inclusion mapping I : (hS,|.[/,,) —
(X,7) be weakly compact. Then B = {a: enl: |l < 1} is o (X, X’

)_
relatively compact. Hence, by Theorem 2.3.11 of [4], a,b™ — 0, (n — o0),
in o (X, X’) since it converges to zero in w. O
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Now we have the following
Corollary 5.2. The intersection of all weak A-wedge FK -spaces is hl.

Proof. The proof is like that of Corollary 4.3 by using Theorems 5.1 and
4.2. O

Using Theorem 3.1 for weak A-wedge F'K-spaces, we obtain the follow-
ing.

Remark 5.3. There is no smallest weak A-wedge F K- space.
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