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1. Introduction

Wedge FK-spaces are defined to be topological sequence spaces in which
the coordinate vectors converge to zero. Several characterizations of these
spaces are given by Bennett in [1]. Ince [3] studied the topological sequence
spaces in which the arithmetic means of coordinate vectors converge to zero.
Some characterizations of these spaces may be found in [3]. In this paper, we
study A-wedge FK-spaces which are topological sequence spaces in which
the A-transform of coordinate vectors converge to zero and give some char-
acterizations of these spaces.

In Section 2, we give notation and terminology while in Section 3 we
give some preliminary results. Section 4 deals with A-wedge FK-spaces and
Section 5 is devoted to weak A-wedge FK-spaces.

2. Notations and Preliminaries

Let w denote the space of all real- or complex-valued sequences x = (xn)∞n=1.
A K-space is a locally convex vector subspace of w with continuous coordi-
nates. An FK-space is a K-space which is also a Fréchet space (complete
linear metric space). A BK-space is a normed FK-space. The basic proper-
ties of such spaces can be found in [6], [7], and [9].

By m, c, and c0 we denote the spaces of all bounded sequences, conver-
gent, and null sequences, respectively. These are BK-spaces under the norm
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‖x‖∞ = sup
n
|xn|. By lp, (1 ≤ p < ∞), we shall denote the BK-space of all

absolutely p-summable sequences. As usual, l1 is denoted simply by l.
Throughout the paper δj , j = 1, 2, . . . , denotes the sequence (0, . . . , 0, 1, 0, . . .)

with the one in the j-th position. Let φ := l.hull
{
δk : k ∈ N

}
. The topolog-

ical dual of X is denoted by X ′. A K-space X is said to have the prop-
erty AD if φ is a dense subset of X and it is said to have the prop-
erty AK, if X ⊃ φ and for each x ∈ X , we have x(n) → x in X, where

x(n) =
n∑

k=1

xkδk = (x1, x2, . . . , xn, 0, . . .).

Let X be an FK-space containing φ. Following [6],

Xf =
{
x ∈ w : x =

(
f(δ1), f(δ2), . . . , f(δk), . . .

)
, f ∈ X ′} ,

Xβ =

{
x ∈ w :

∞∑

k=1

xkyk exists for every y ∈ X

}
.

Following Bennett [1] we say that a K-space (X, τ) containing φ is a
wedge space if δj → 0 in (X, τ) and it is a weak wedge space if δj → 0 weakly
in X.

Let A = (aij) be an infinite matrix. The matrix A may be considered
as a linear transformation y = Ax of sequences x = (xk) by the formula

yi = (Ax)i =
∞∑

j=1

aijxj , (i = 1, 2, 3, . . .).

For an FK-space X generated by seminorms {q1, q2, . . .}, we consider
the summability domain

XA = {x ∈ w : Ax ∈ X} .

Then XA is an FK-space under the seminorms (see e.g., [7] and [8])
(i) pi = |xi| , (i = 1, 2, . . .) ,

(ii) hi(x) = sup
m

∣∣∣∣∣
m∑

j=1

aijxj

∣∣∣∣∣ , (i = 1, 2, . . .) ,

(iii) (qioA)(x) = qi(Ax), (i = 1, 2, . . .) .
Throughout the paper {an} and {bn} will be positive real-valued se-

quences such that
(i) {an} is strictly decreasing with lim

n
an = 0,

(ii) {bn} is nondecreasing with lim
n

anbn = 0 and

(iii) lim
n

an

n∑
k=1

bk = 1.

In this case, a factorable matrix A = (ank) defined by ank = anbk if 1 ≤
k ≤ n, and zero otherwise, is a regular matrix; that is, c ⊂ cA and lim

i→∞
xi =

lim
i→∞

(Ax)i for all x ∈ c.

For example, the sequences {bn} and {an} , with bn =
(
n+α

n

)
and

an =
(

n∑
k=1

bk

)−1

satisfy these conditions. More generally, all Riesz (weighted

mean) matrices (see, e.g., Section 3.2 of [2]) A = (ank) with ank = pk

Pn
for k ≤
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n (and zero otherwise), where {pn} is positive nondecreasing, Pn =
n∑

k=1

pk,

and pn

Pn
→ 0 (as n →∞), satisfies these conditions.

We define A-wedge and weak A-wedge using the matrix A given above.

Definition 2.1. Let (X, τ) be an K-space containing φ. Then (X, τ) is called
an A-wedge space if the sequence of matrix transformation under the matrix
A of coordinate vectors converges to zero in (X, τ); that is, the sequence

anb(n) = an

n∑

k=1

bkδk = (anb1, anb2, anb3, . . . , anbn, 0, 0, . . .),

converges to zero in (X, τ).

Observe that these are the rows of the matrix A. Because of the regu-
larity of the factorable matrix A, every wedge space is an A-wedge space but
the converse doesn’t hold. Note that, for an = 1

n and bn = 1, the FK-spaces
c0, c, m, lp, (p > 1) as well as the space of bounded sequences of bounded
variation bv are A-wedge spaces but not wedge spaces.

Definition 2.2. A K-space X containing φ is called a weak A-wedge space if
the sequence

anb(n) = an

n∑

k=1

bkδk = (anb1, anb2, anb3, . . . , anbn, 0, 0, . . .)

converges weakly to zero in (X, τ).

Every weak wedge space is a weak A-wedge space but the converse
doesn’t hold. For example, bv0 = bv∩ c0 is A-wedge and weak A-wedge space
but it is neither wedge nor weak wedge.

3. Preliminary Results

In this section, we give preliminary results that we need in later sections.

Theorem 3.1. (i) A closed subspace, containing φ, of an A-wedge (resp.,
weak A-wedge) FK-space is an A-wedge (resp., weak A-wedge) FK-space.

(ii) An FK-space which contains an A-wedge (resp., weak A-wedge)
FK-space must be an A-wedge (resp., weak A-wedge) FK-space.

(iii) A countable intersection of A-wedge (resp., weak A-wedge) FK-
spaces is an A-wedge (resp., weak A-wedge) FK-space.

Proof. The elementary properties of FK-spaces yield that the proof (see
e.g., Chapter 4 of [6]). ¤

Definition 3.2. Let z ∈ w. The space V b
0 (z) consists of all sequences x ∈ c0

for which
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∞∑
n=1

|zn|
∣∣∣∣∆(

xn

bn
)
∣∣∣∣ < ∞

Lemma 3.3. Under the norm

‖x‖V b
0 (z) =

∞∑
n=1

|zn|
∣∣∣∣∆(

xn

bn
)
∣∣∣∣ + sup

n
|xn| (3.1)

V b
0 (z) is an FK-AK space.

Proof. Define the matrix V by vnk = zn

bk
for k = n, vnk = −zn

bk
for k = n + 1,

and vnk = 0 elsewhere. Since V b
0 (z) = lV ∩ c0, then V b

0 (z) is an FK-space
under the norm (3.1) by Theorems 4.3.1 of [6]. For all x ∈ V b

0 (z), we have

∥∥∥x− x(m)
∥∥∥

V b
0 (z)

=
∞∑

n=m+1

|zn|
∣∣∣∣∆(

xn

bn
)
∣∣∣∣ + sup

n≥m
|xn|.

Since x ∈ V b
0 (z), then

∥∥x− x(m)
∥∥

V b
0 (z)

→ 0 as m → ∞. Hence V b
0 (z) is an

AK-space. ¤

Theorem 3.4. The space V b
0 (z) is an A-wedge space if and only if zn = o( 1

an
).

Proof. We have for each n,
∥∥∥anb(n)

∥∥∥
V b
0 (z)

= an|zn|+ an sup
k≤n

|bk| = an |zn|+ anbn.

Since lim
n

anbn = 0, the sequence anb(n) converges to zero in V b
0 (z) if and only

if lim
n

anzn = 0. ¤

Definition 3.5. For zn = 1
an

, let hb
a = V b

0 (z).

Lemma 3.6. The spaces hb
a is an FK-AK space under the norm

‖x‖hb
a

=
∞∑

n=1

1
an

∣∣∣∣∆(
xn

bn
)
∣∣∣∣ . (3.2)

Proof. By Lemma 3.3, we know that the spaces hb
a = V b

0 ( 1
an

) is an FK-AK

space under the V b
0 ( 1

an
) norm

‖x‖V b
0 ( 1

an
) =

∞∑
n=1

1
an

∣∣∣∣∆(
xn

bn
)
∣∣∣∣ + sup

n
|xn| .

We show that the hb
a and V b

0 ( 1
an

) norms are equivalent by proving

‖x‖hb
a
≤ ‖x‖V b

0 ( 1
an

) ≤ (1 + M) ‖x‖hb
a
, (3.3)
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where M = sup
n

anbn. The first inequality is obvious. Let x ∈ hb
a and n =

1, 2, 3, . . . . Since lim
m

xm

bm
= 0, we have xn

bn
=

∞∑
j=n

∆(xj

bj
). Thus

|xn|
bn

=
∣∣∣∣
xn

bn

∣∣∣∣ ≤
∞∑

j=n

∣∣∣∣∆(
xj

bj
)
∣∣∣∣ =

∞∑

j=n

aj
1
aj

∣∣∣∣∆(
xj

bj
)
∣∣∣∣ .

Since {an} is decreasing,

|xn|
bn

≤
∞∑

j=n

an
1
aj

∣∣∣∣∆(
xj

bj
)
∣∣∣∣ = an

∞∑

j=n

1
aj

∣∣∣∣∆(
xj

bj
)
∣∣∣∣ .

Thus |xn|
anbn

≤
∞∑

j=n

1
aj

∣∣∣∆(xj

bj
)
∣∣∣ ≤

∞∑
j=1

1
aj

∣∣∣∆(xj

bj
)
∣∣∣ = ‖x‖hb

a
, which implies sup

m
|xm| ≤

M sup
m

|xm|
ambm

≤ M ‖x‖hb
a
. This is sufficient to prove the second inequality of

(3.3). ¤

Theorem 3.7. The space hb
a is not an A-wedge space.

Proof. Since hb
a = V b

0 (z) for z = 1
an

, the result follows from Theorem 3.4. ¤

The following spaces relate to duality of hb
a.

Lemma 3.8. The spaces (σ0)b
a and (σ∞)b

a given by

(σ0)b
a =

{
x ∈ w : lim

n
an

n∑

k=1

bkxk = 0

}
,

and

(σ∞)b
a =

{
x ∈ w : sup

n
an

∣∣∣∣∣
n∑

k=1

bkxk

∣∣∣∣∣ < ∞
}

are FK- spaces under the norm

‖x‖(σ∞)a
b

= sup
n

an

∣∣∣∣∣
n∑

k=1

bkxk

∣∣∣∣∣ . (3.4)

In addition (σ0)b
a is an AK-space under the norm (3.4).

Proof. Define the sequence Ax by (Ax)n = an

n∑
k=1

bkxk. Then (σ0)b
a = (c0)A

and (σ∞)b
a = mA. Since A is a triangular matrix, then (σ0)b

a and (σ∞)b
a

are FK-spaces under the norm (3.4) by Theorem 4.3.12 in [6]. For x ∈
(σ0)b

a and ε > 0, there exists N such that sup
n

an

∣∣∣∣
n∑

k=1

bkxk

∣∣∣∣ < ε whenever
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n > N . To show that (σ0)b
a is an AK-space, we show

∥∥x− x(m)
∥∥

(σ∞)b
a

=

sup
n≥m

an

∣∣∣∣∣
n∑

k=m+1

bkxk

∣∣∣∣∣ < 2ε whenever m > N . Let n ≥ m > N . Then

an

∣∣∣∣∣
n∑

k=m+1

bkxk

∣∣∣∣∣ ≤ an

∣∣∣∣∣
n∑

k=1

bkxk

∣∣∣∣∣ + an

∣∣∣∣∣
m∑

k=1

bkxk

∣∣∣∣∣ < ε + am

∣∣∣∣∣
m∑

k=1

bkxk

∣∣∣∣∣ < 2ε.

¤
Lemma 3.9. (hb

a)f = (hb
a)β = (hb

a)
′
= (σ∞)b

a, and
((σ0)b

a)f = ((σ0)b
a)β = ((σ0)b

a)
′
= hb

a.

Proof. Since hb
a is an AK-space, then (hb

a)f = (hb
a)β = (hb

a)
′

by Theorems
7.2.7 and 7.2.12 of [6]. Let x ∈ (σ∞)b

a and y ∈ hb
a. Because of y ∈ hb

a, we have
lim
n

yn

anbn
= 0. By Abel summation

n∑

k=m

xkyk =
n−1∑

k=m

aksk
1
ak

∆(
yk

bk
) + ansn

yn

anbn
− am−1sm−1

ym

am−1bm
,

where sk =
k∑

j=1

bjxj . Since ‖x‖(σ∞)b
a

= supk ak |sk|, we have, as m,n →∞,

∣∣∣∣∣
n∑

k=m

xkyk

∣∣∣∣∣ ≤ ‖x‖(σ∞)b
a

(
n−1∑

k=m

1
ak

∣∣∣∣∆(
yk

bk
)
∣∣∣∣ +

∣∣∣∣
yn

anbn

∣∣∣∣ +
∣∣∣∣

ym

am−1bm

∣∣∣∣
)
→ 0.

Hence (σ∞)b
a ⊂ (hb

a)β .

Conversely let u ∈ (hb
a)f . That is, uk = f(δk), where f ∈ (hb

a)
′
. Then

an

∣∣∣∣∣
n∑

k=1

bkuk

∣∣∣∣∣ =

∣∣∣∣∣an

n∑

k=1

bkf(δk)

∣∣∣∣∣ =

∣∣∣∣∣f(an

n∑

k=1

bkδk)

∣∣∣∣∣

≤ ‖f‖
∥∥∥anb(n)

∥∥∥
hb

a

= ‖f‖ .

So u ∈ (σ∞)b
a.

For the second part, since hb
a is an FK-AK-space, we have

hb
a ⊂ ((σ0)b

a)f = ((σ0)b
a)β = ((σ0)b

a)
′
.

The reverse inclusion follows from Corollary 1(iii) of [5]. According to that
Corollary,

((σ0)b
a)β =

{
x ∈ w :

∞∑
n=1

1
an

∣∣∣∣∆(
xn

bn
)
∣∣∣∣ < ∞, sup

∣∣∣∣
xn

anbn

∣∣∣∣ < ∞
}

.

Since we assume limn anbn = 0, we have

((σ0)b
a)β ⊂

{
x ∈ w :

∞∑
n=1

1
an

∣∣∣∣∆(
xn

bn
)
∣∣∣∣ < ∞, lim |xn| = 0

}
= hb

a.

¤
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Definition 3.10. Let s = {sn}∞n=1 always denote a strictly increasing sequence
of integers with s1 = 0. We shall be interested in spaces of the form:

cb
a |s| =



x ∈ w : lim

n
xn = 0 and sup

n

sn+1∑

j=sn+1

1
aj

∣∣∣∣∆(
xj

bj
)
∣∣∣∣ < ∞



 .

Lemma 3.11. For any strictly increasing sequence s = {sn}∞n=1 , the space
cb
a |s| is an FK-space with the norm

‖x‖cb
a|s| = sup

n

sn+1∑

j=sn+1

1
aj

∣∣∣∣∆(
xj

bj
)
∣∣∣∣ . (3.5)

Furthermore,
hb

a ⊂ cb
a |s| ⊂ c0 ⊂ m.

Proof. The proof is essentially the same to that of Lemma 3.3 ¤

Similarly, the proof of the following is like that of Theorem 3.4

Theorem 3.12. For any strictly increasing sequence s = {sn}∞n=1 , the space
cb
a |s| is not an A-wedge space.

Lemma 3.13. Assume that lim
j

ajz
n
j = 0, (n = 1, 2, 3, . . .). Then there exists

z ∈ w with lim
j

ajzj = 0 such that lim
j

zn
j

zj
= 0, (n = 1, 2, 3, . . .).

Moreover, for any such z, we have V b
0 (z) ⊂

∞⋂
n=1

V b
0 (zn).

Proof. Since lim
j

ajz
n
j = 0, (n = 1, 2, 3, . . .), we may choose a sequence

{jk}∞k=1 of positive integers such that

1 = j0 < j1 < j2 < · · · < jk < · · ·
and

max
1≤n≤k

∣∣ajz
n
j

∣∣ <
1
4k

, (j ≥ jk ; k = 1, 2, . . .).

Define z ∈ w as follows :

zj =
1

2kaj
, ( jk ≤ j < jk+1; k = 0, 1, 2, . . .).

Then lim
j

ajzj = 0 and, fixing n, we get

∣∣∣∣
zn
j

zj

∣∣∣∣ =
∣∣∣∣
ajz

n
j

ajzj

∣∣∣∣ <
1
2k

whenever jk ≤ j < jk+1 and k ≥ n. (3.6)

Thus lim
j

zn
j

zj
= 0 for each n. The second part of the proof follows from

inequality (3.6). ¤
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Remark 3.14. In Lemma 3.13 above, we may choose the sequence {jk} of
positive integers such that

ajbj <
1
2k

for j ≥ jk

and
ajk+1 <

1
2
ajk

for k = 0, 1, 2, . . . .

Then
zj =

1
2kaj

for jk ≤ j < jk+1; k = 0, 1, 2, . . .

and
zj

bj
=

ajzj

ajbj
> 1 for jk ≤ j < jk+1; k = 0, 1, 2, . . . .

Lemma 3.15. Assume that lim
j

ajz
0
j = 0 for some z0 ∈ w. Then there exists

z′ ∈ w with lim
j

ajz
′
j = 0 such that V b

0 (z′) ⊂ V b
0 (z0) and V b

0 (z′) is an FK-

space under the norm

‖x‖′ =
∞∑

j=1

z′j

∣∣∣∣∆(
xj

bj
)
∣∣∣∣ .

Proof. Let zn = z0 for n = 1, 2, 3, . . . and assume the sequence {jk} of posi-
tive integers is chosen according to the proof of Lemma 3.13 and Remark 3.14
above. Then, by Lemma 3.13, there exists a sequence z′ ∈ w with lim

j
ajz

′
j = 0

such that V b
0 (z′) ⊂ V b

0 (z0). It is sufficient to show that, for all x ∈ V b
0 (z′), we

have
sup

n
|xn| ≤ 2 ‖x‖′ . (3.7)

Although the sequence z′j may not be increasing for all j = 1, 2, 3 . . . , it has
an increasing sawtooth shape as observed by (3.8 ), (3.9), and (3.10) below:
Since {aj} is strictly decreasing, for each i = 0, 1, 2, . . .

z′j =
1

2iaj
is strictly increasing for ji ≤ j < ji+1 (3.8)

and for each ji ≤ n < ji+1,

z′ji
=

1
2iaji

≤ 1
2ian

= z′n <
1

2iaji+1

=
2

2i+1aji+1

= 2z′ji+1
. (3.9)

Also
{
z′ji

}∞
i=0

is positive and strictly increasing because aji+1 < 1
2aji ; that is,

z′ji
=

1
2iaji

<
1

2i+1aji+1

= z′ji+1
. (3.10)

Let x ∈ V b
0 (z′) and jk ≤ n < jk+1. Define ∆i = xji

bji
− xji+1

bji+1
. (i = 0, 1, 2, . . .).

Since lim
j

xj

bj
= 0, and hence lim

i

xji

bji
= 0, we have

xn

bn
=

jk+1−1∑

j=n

∆(
xj

bj
) +

∞∑

i=k+1

∆i.
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Thus
|xn|
bn

≤
jk+1−1∑

j=n

∣∣∣∣∆(
xj

bj
)
∣∣∣∣ +

∞∑

i=k+1

|∆i| . (3.11)

By (3.8) and (3.10), we have

|xn|
bn

≤ 1
z′n

jk+1−1∑

j=n

z′j

∣∣∣∣∆(
xj

bj
)
∣∣∣∣ +

1
z′jk+1

∞∑

i=k+1

z′ji
|∆i| . (3.12)

By (3.9), we have

|xn|
bn

≤ 1
z′n

jk+1−1∑

j=n

z′j

∣∣∣∣∆(
xj

bj
)
∣∣∣∣ +

2
z′n

∞∑

i=k+1

z′ji
|∆i| .

By Remark 3.14, we have z′n
bn

> 1. Thus

|xn| ≤ z′n |xn|
bn

≤
jk+1−1∑

j=n

z′j

∣∣∣∣∆(
xj

bj
)
∣∣∣∣ + 2

∞∑

i=k+1

z′ji
|∆i| . (3.13)

Expanding z′ji
|∆i| in (3.13), we have by (3.8),

z′ji
|∆i| = z′ji

∣∣∣∣
xji

bji

− xji+1

bji+1

∣∣∣∣ ≤
ji+1−1∑

j=ji

z′ji

∣∣∣∣∆
(

xj

bj

)∣∣∣∣ ≤
ji+1−1∑

j=ji

z′j

∣∣∣∣∆
(

xj

bj

)∣∣∣∣ .

Inserting this into inequality (3.13),

|xn| ≤
jk+1−1∑

j=n

z′j

∣∣∣∣∆(
xj

bj
)
∣∣∣∣ + 2

∞∑

i=k+1

ji+1−1∑

j=ji

z′j

∣∣∣∣∆
(

xj

bj

)∣∣∣∣ ≤ 2
∞∑

j=n

z′j

∣∣∣∣∆(
xj

bj
)
∣∣∣∣ ,

gives us the desired result for all n

|xn| ≤ 2
∞∑

j=n

z′j

∣∣∣∣∆(
xj

bj
)
∣∣∣∣ ≤ 2 ‖x‖′ .

¤

4. A-Wedge FK-Spaces

In this section we study A-wedge FK-space. First we give the fundamental
characterization of A-wedge spaces.

Theorem 4.1. The following conditions are equivalent for an FK-space (X, τ) :
(i) X is an A-wedge space,
(ii) X contains V b

0 (z) for some z ∈ w such that zj = o( 1
aj

),
(iii) X contains cb

a |s| for some strictly increasing sequence s and the
inclusion mapping I : (cb

a |s| , ‖.‖cb
a|s|) → (X, τ) is compact,

(iv) X contains hb
a and the inclusion mapping I : (hb

a, ‖.‖hb
a
) → (X, τ)

is compact.
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Proof. (ii) =⇒ (i) follows from Theorems 3.1 and 3.4.
(i) =⇒ (ii). Let {qn}∞n=1 be a defining family of seminorms for the

topology τ and let

zn
j := qn(b(j)) = qn(

j∑

i=1

biδ
i); j, n = 1, 2, . . .

Suppose x ∈
∞⋂

n=1
V b

0 (zn). Then x ∈ c0 and for all n = 1, 2, 3, . . . we have

∞∑

j=1

∣∣zn
j

∣∣
∣∣∣∣∆(

xj

bj
)
∣∣∣∣ =

∞∑

j=‘1

qn(b(j))
∣∣∣∣∆(

xj

bj
)
∣∣∣∣ =

∞∑

j=1

qn((∆(
xj

bj
))b(j)) < ∞.

Since X complete,
∞∑

j=1

(∆(xj

bj
))b(j) converges in (X, τ). Coordinatewise, it

converges to x, since, for k ≥ i, the ith coordinate of
k∑

j=1

(∆(xj

bj
))b(j) is

xi − bi

bk+1
xk+1, which tends to xi as k → ∞. Since X is a K-space, x =

∞∑
j=1

(∆(xj

bj
))b(j) ∈ X. So

∞⋂
n=1

V b
0 (zn) ⊂ X. Since X is an A-wedge space,

lim
j

qn(anb(n)) = lim
j

ajz
n
j = 0, (n = 1, 2, 3, . . .). By Lemma 3.13 we may

choose z ∈ w such that lim
j

ajzj = 0 and V b
0 (z) ⊂

∞⋂
n=1

V b
0 (zn) ⊂ X.

(ii) =⇒ (iii). Let V b
0 (z) ⊂ X for some z with zj =o( 1

aj
). By Lemma

3.15, V b
0 (z) has a subset V b

0 (z′) with norm ‖x‖′ =
∞∑

j=1

z′j
∣∣∣∆(xj

bj
)
∣∣∣ . Take s0 = 0

and {sn}∞n=1 denotes a strictly increasing sequence of integers satisfying,
∣∣ajz

′
j

∣∣ ≤ 1
2n

, j ≥ sn; (n = 1, 2, 3, . . .). (4.1)

Let x ∈ cb
a |s| . Suppose m, p ∈ N , m ≤ p. Then by (4.1) we get

sp+1∑

j=sm+1

∣∣z′j
∣∣
∣∣∣∣∆(

xj

bj
)
∣∣∣∣ ≤

p∑
n=m

sn+1∑

j=sn+1

aj

∣∣z′j
∣∣ 1
aj

∣∣∣∣∆(
xj

bj
)
∣∣∣∣ ≤ ‖x‖cb

a|s|

p∑
n=m

1
2n

→ 0

Thus x ∈ V b
0 (z′) and cb

a |s| ⊂ V b
0 (z′) ⊂ X.

Now assume that U ⊂ cb
a |s| be such that ‖x‖cb

a|s| ≤ M for all x ∈ U. It
is clear that U ⊂ V b

0 (z′). For sn ≤ m < sn+1 and x ∈ U, by (4.1) we get
∥∥∥x− x(m)

∥∥∥
′

=
∞∑

j=m+1

∣∣z′j
∣∣
∣∣∣∣∆(

xj

bj
)
∣∣∣∣ ≤

∞∑

i=n

si+1∑

j=si+1

aj

∣∣z′j
∣∣ 1
aj

∣∣∣∣∆(
xj

bj
)
∣∣∣∣

≤ ‖x‖cb
a|s|

∞∑

i=m

1
2i
→ 0 (uniformly on U), (m →∞).

Hence x(m) → x, (m → ∞), in (V b
0 (z′),‖x‖′) uniformly on U. Since

V b
0 (z′) is an AK-space, then by Lemma 2 of [1], U is relatively compact in
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V b
0 (z′) . Since the inclusion mapping I : V b

0 (z′) → X is continuous, I(U) = U
is relatively compact in X. Thus the inclusion mapping I : (cb

a |s| , ‖.‖cb
a|s|) →

(X, τ) is compact.
(iii) =⇒ (iv). Because the inclusion mapping I : hb

a → cb
a |s| is continu-

ous, the proof is trivial.
(iv) =⇒ (i). Since

∥∥∥anb(n)
∥∥∥

hb
a

= 1, the set B =
{
anb(n) : n = 1, 2, . . .

}

is a bounded subset of hb
a. In addition since the inclusion mapping I :

(hb
a, ‖.‖hb

a
) → (X, τ) is compact, I(B) = B is τ -relatively compact in X.

Hence, by Theorem 2.3.11 of [4], since anb(n) → 0 in w, we have anb(n) → 0
in (X, τ). ¤

Theorem 4.2. Suppose z ∈ (σ0)b
a. Then zβ :=

{
x ∈ w :

∞∑
k=1

zkxk converges
}

is an A-wedge FK-space.

Proof. The space zβ is an FK-space with seminorms pi(x) = |xi| , (i =

1, 2, . . .), and P0(x) = sup
m

∣∣∣∣
m∑

k=1

zkxk

∣∣∣∣ , by Theorem 4.3.7 in [6]. Let z ∈ (σ0)b
a.

Since, for each i = 1, 2, 3, . . .,

pi(anb(n)) =
{

anbi , if i ≤ n
0 , if i > n

}
≤ anbn → 0, (n →∞),

it remains to show that P0(anb(n)) = max
1≤m≤n

an

∣∣∣∣
m∑

k=1

zkbk

∣∣∣∣ → 0, (n → ∞).

Since the sequence {an} is decreasing and lim
n

an = 0, we choose a sequence

{ζN} of natural numbers for which
a

ζN−1
a

ζN

≥ 2N and aζ

∣∣∣∣∣
ζ∑

i=1

zibi

∣∣∣∣∣ ≤ 2−N ,

(∀ζ ≥ ζN ).
Then for any N > 2, take n ≥ ζN . We have

(i) an

∣∣∣∣
m∑

k=1

zkbk

∣∣∣∣ = an

am
am

∣∣∣∣
m∑

k=1

zkbk

∣∣∣∣ ≤ 2−(N−1), for ζN−1 ≤ m ≤ n

(ii) an

∣∣∣∣
m∑

k=1

zkbk

∣∣∣∣ ≤
a

ζN

a
ζN−1

am

∣∣∣∣
m∑

k=1

zkbk

∣∣∣∣ ≤ 2−N sup
m

am

∣∣∣∣
m∑

k=1

zkbk

∣∣∣∣ , for

m < ζN−1,

Hence

P0(anb(n)) = max

{
2−(N−1), 2−N sup

m<ζN−1

am

∣∣∣∣∣
m∑

k=1

zkbk

∣∣∣∣∣

}

which tends to zero as n →∞. ¤

Now we give the following result.

Corollary 4.3. The intersection of all A-wedge FK-spaces is hb
a.
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Proof. Let the intersection of all A-wedge FK-spaces be Y. By Theorem 4.1
(i) =⇒ (iv), Theorem 4.2, and Lemma 3.9 we have

hb
a ⊂ Y ⊂

⋂ {
zβ : z ∈ (σ0)b

a

}
=

{
(σ0)b

a

}β
= hb

a.

Hence the result. ¤
Corollary 4.4.

⋂
zn=o( 1

an
)

V b
0 (z) = hb

a.

Proof. By Theorem 3.4, if zn = o( 1
an

), then V b
0 (z) is an A-wedge FK-

space. Also by Theorem 4.1(iv), hb
a ⊂

⋂
zn=o( 1

an
)

V b
0 (z). The reverse inclusion

is obtained by Theorem 4.1(ii) and Corollary 4.3. ¤
Remark 4.5. By Corollary 4.3, there is no smallest A-wedge space.

5. Weak A-Wedge FK-Spaces

In this section, we deal with weak A-wedge FK-spaces

Theorem 5.1. An FK-space (X, τ) is a weak A-wedge space if and only if
X contains hb

a and the inclusion mapping I : (hb
a, ‖.‖hb

a
) → (X, τ) is weakly

compact.

Proof. Necessity: Let (X, τ) be a weak A-wedge space. Then for all f ∈ X ′,

f
(
anb(n)

)
= f

(
an

n∑

k=1

bkδk

)
= an

n∑

k=1

bkf(δk) → 0, (n →∞), (5.1)

and thereby
{
f(δk)

} ∈ (σ∞)b
a. Thus Xf ⊂ (σ∞)b

a. Since (σ∞)b
a = (hb

a)f and
hb

a is an AD-space, then hb
a ⊂ X by Theorem 8.6.1 in [6]. This inclusion

requires that the inclusion mapping I : hb
a → X is continuous. Because hb

a is
an AK-space, we have for all x ∈ hb

a and f ∈ X ′ that

f

( ∞∑

k=1

xkδk

)
=

∞∑

k=1

xkf(δk) = 〈I(x), f 〉 = 〈 x, f(δk) 〉.

On the other hand,
{
f(δk)

} ∈ (σ0)b
a for all f ∈ X ′ by (5.1).

Thus, since σ
(
((σ0)b

a)′, (σ0)b
a

)
= σ

(
hb

a, (σ0)b
a

)
, then the mapping

I : (hb
a, σ

(
hb

a, (σ0)b
a

)
) → (X, σ (X, X ′)) is continuous. By the Banach-Alaoğlu

Theorem (Theorem 1, Section 13.3 of [7]), the set B =
{

x ∈ hb
a : ‖.‖hb

a
≤ 1

}

is σ
(
hb

a, (σ0)b
a

)
-compact and hence I(B) = B is σ (X, X ′)-compact. Conse-

quently the inclusion mapping I : (hb
a, ‖.‖hb

a
) → (X, τ) is weakly compact.

Sufficiency: Let hb
a ⊂ X and the inclusion mapping I : (hb

a, ‖.‖hb
a
) →

(X, τ) be weakly compact. Then B =
{

x ∈ hb
a : ‖.‖hb

a
≤ 1

}
is σ (X, X ′)-

relatively compact. Hence, by Theorem 2.3.11 of [4], anb(n) → 0, (n → ∞),
in σ (X, X ′) since it converges to zero in w. ¤
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Now we have the following

Corollary 5.2. The intersection of all weak A-wedge FK-spaces is hb
a.

Proof. The proof is like that of Corollary 4.3 by using Theorems 5.1 and
4.2. ¤

Using Theorem 3.1 for weak A-wedge FK-spaces, we obtain the follow-
ing.

Remark 5.3. There is no smallest weak A-wedge FK- space.
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