# $A$-Wedge and Weak $A$-Wedge $F K$-Spaces 

H. Gül İnce and Martin Buntinas


#### Abstract

The purpose of this paper is to study topological sequence spaces in which the $A$-transform of coordinate vectors (weakly) converge to zero, where $A$ is a nonnegative regular factorable matrix. We call these spaces (weak) $A$-wedge $F K$-spaces.


Mathematics Subject Classification (2010). Primary 46A45; Secondary 40G05, 40H05.
Keywords. $F K$-Spaces, Wedge Spaces, $A$-wedge Spaces.

## 1. Introduction

Wedge $F K$-spaces are defined to be topological sequence spaces in which the coordinate vectors converge to zero. Several characterizations of these spaces are given by Bennett in [1]. Ince [3] studied the topological sequence spaces in which the arithmetic means of coordinate vectors converge to zero. Some characterizations of these spaces may be found in [3]. In this paper, we study $A$-wedge $F K$-spaces which are topological sequence spaces in which the $A$-transform of coordinate vectors converge to zero and give some characterizations of these spaces.

In Section 2, we give notation and terminology while in Section 3 we give some preliminary results. Section 4 deals with $A$-wedge $F K$-spaces and Section 5 is devoted to weak $A$-wedge $F K$-spaces.

## 2. Notations and Preliminaries

Let $w$ denote the space of all real- or complex-valued sequences $x=\left(x_{n}\right)_{n=1}^{\infty}$. A $K$-space is a locally convex vector subspace of $w$ with continuous coordinates. An $F K$-space is a $K$-space which is also a Fréchet space (complete linear metric space). A $B K$-space is a normed $F K$-space. The basic properties of such spaces can be found in [6], [7], and [9].

By $m, c$, and $c_{0}$ we denote the spaces of all bounded sequences, convergent, and null sequences, respectively. These are $B K$-spaces under the norm
$\|x\|_{\infty}=\sup _{n}\left|x_{n}\right|$. By $l^{p},(1 \leq p<\infty)$, we shall denote the $B K$-space of all absolutely $p$-summable sequences. As usual, $l^{1}$ is denoted simply by $l$.

Throughout the paper $\delta^{j}, j=1,2, \ldots$, denotes the sequence $(0, \ldots, 0,1,0, \ldots)$
with the one in the $j$-th position. Let $\phi:=l$.hull $\left\{\delta^{k}: k \in N\right\}$. The topological dual of $X$ is denoted by $X^{\prime}$. A $K$-space $X$ is said to have the property $A D$ if $\phi$ is a dense subset of $X$ and it is said to have the property $A K$, if $X \supset \phi$ and for each $x \in X$, we have $x^{(n)} \rightarrow x$ in $X$, where $x^{(n)}=\sum_{k=1}^{n} x_{k} \delta^{k}=\left(x_{1}, x_{2}, \ldots, x_{n}, 0, \ldots\right)$.

Let $X$ be an $F K$-space containing $\phi$. Following [6],

$$
\begin{aligned}
X^{f} & =\left\{x \in w: x=\left(f\left(\delta^{1}\right), f\left(\delta^{2}\right), \ldots, f\left(\delta^{k}\right), \ldots\right), f \in X^{\prime}\right\}, \\
& X^{\beta}=\left\{x \in w: \sum_{k=1}^{\infty} x_{k} y_{k} \text { exists for every } y \in X\right\} .
\end{aligned}
$$

Following Bennett [1] we say that a $K$-space $(X, \tau)$ containing $\phi$ is a wedge space if $\delta^{j} \rightarrow 0$ in $(X, \tau)$ and it is a weak wedge space if $\delta^{j} \rightarrow 0$ weakly in $X$.

Let $A=\left(a_{i j}\right)$ be an infinite matrix. The matrix $A$ may be considered as a linear transformation $y=A x$ of sequences $x=\left(x_{k}\right)$ by the formula $y_{i}=(A x)_{i}=\sum_{j=1}^{\infty} a_{i j} x_{j},(i=1,2,3, \ldots)$.

For an $F K$-space $X$ generated by seminorms $\left\{q_{1}, q_{2}, \ldots\right\}$, we consider the summability domain

$$
X_{A}=\{x \in w: A x \in X\}
$$

Then $X_{A}$ is an $F K$-space under the seminorms (see e.g., [7] and [8])
(i) $p_{i}=\left|x_{i}\right|,(i=1,2, \ldots)$,
(ii) $h_{i}(x)=\sup _{m}\left|\sum_{j=1}^{m} a_{i j} x_{j}\right|,(i=1,2, \ldots)$,
(iii) $\left(q_{i} o A\right)(x)=q_{i}(A x),(i=1,2, \ldots)$.

Throughout the paper $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ will be positive real-valued sequences such that
(i) $\left\{a_{n}\right\}$ is strictly decreasing with $\lim _{n} a_{n}=0$,
(ii) $\left\{b_{n}\right\}$ is nondecreasing with $\lim _{n} a_{n} b_{n}=0$ and
(iii) $\lim _{n} a_{n} \sum_{k=1}^{n} b_{k}=1$.

In this case, a factorable matrix $A=\left(a_{n k}\right)$ defined by $a_{n k}=a_{n} b_{k}$ if $1 \leq$ $k \leq n$, and zero otherwise, is a regular matrix; that is, $c \subset c_{A}$ and $\lim _{i \rightarrow \infty} x_{i}=$ $\lim _{i \rightarrow \infty}(A x)_{i}$ for all $x \in c$.

For example, the sequences $\left\{b_{n}\right\}$ and $\left\{a_{n}\right\}$, with $b_{n}=\binom{n+\alpha}{n}$ and $a_{n}=\left(\sum_{k=1}^{n} b_{k}\right)^{-1}$ satisfy these conditions. More generally, all Riesz (weighted mean) matrices (see, e.g., Section 3.2 of [2]) $A=\left(a_{n k}\right)$ with $a_{n k}=\frac{p_{k}}{P_{n}}$ for $k \leq$
$n$ (and zero otherwise), where $\left\{p_{n}\right\}$ is positive nondecreasing, $P_{n}=\sum_{k=1}^{n} p_{k}$, and $\frac{p_{n}}{P_{n}} \rightarrow 0($ as $n \rightarrow \infty)$, satisfies these conditions.

We define $A$-wedge and weak $A$-wedge using the matrix $A$ given above.
Definition 2.1. Let $(X, \tau)$ be an $K$-space containing $\phi$. Then $(X, \tau)$ is called an $A$-wedge space if the sequence of matrix transformation under the matrix $A$ of coordinate vectors converges to zero in $(X, \tau)$; that is, the sequence

$$
a_{n} b^{(n)}=a_{n} \sum_{k=1}^{n} b_{k} \delta^{k}=\left(a_{n} b_{1}, a_{n} b_{2}, a_{n} b_{3}, \ldots, a_{n} b_{n}, 0,0, \ldots\right),
$$

converges to zero in $(X, \tau)$.
Observe that these are the rows of the matrix $A$. Because of the regularity of the factorable matrix $A$, every wedge space is an $A$-wedge space but the converse doesn't hold. Note that, for $a_{n}=\frac{1}{n}$ and $b_{n}=1$, the $F K$-spaces $c_{0}, c, m, l^{p},(p>1)$ as well as the space of bounded sequences of bounded variation $b v$ are $A$-wedge spaces but not wedge spaces.

Definition 2.2. A $K$-space $X$ containing $\phi$ is called a weak $A$-wedge space if the sequence

$$
a_{n} b^{(n)}=a_{n} \sum_{k=1}^{n} b_{k} \delta^{k}=\left(a_{n} b_{1}, a_{n} b_{2}, a_{n} b_{3}, \ldots, a_{n} b_{n}, 0,0, \ldots\right)
$$

converges weakly to zero in $(X, \tau)$.
Every weak wedge space is a weak $A$-wedge space but the converse doesn't hold. For example, $b v_{0}=b v \cap c_{0}$ is $A$-wedge and weak $A$-wedge space but it is neither wedge nor weak wedge.

## 3. Preliminary Results

In this section, we give preliminary results that we need in later sections.
Theorem 3.1. (i) A closed subspace, containing $\phi$, of an $A$-wedge (resp., weak $A$-wedge) $F K$-space is an $A$-wedge (resp., weak $A$-wedge) FK-space.
(ii) An FK-space which contains an A-wedge (resp., weak A-wedge) FK-space must be an $A$-wedge (resp., weak $A$-wedge) FK-space.
(iii) A countable intersection of $A$-wedge (resp., weak $A$-wedge) FKspaces is an $A$-wedge (resp., weak $A$-wedge) FK-space.

Proof. The elementary properties of FK-spaces yield that the proof (see e.g., Chapter 4 of [6]).

Definition 3.2. Let $z \in w$. The space $V_{0}^{b}(z)$ consists of all sequences $x \in c_{0}$ for which

$$
\sum_{n=1}^{\infty}\left|z_{n}\right|\left|\Delta\left(\frac{x_{n}}{b_{n}}\right)\right|<\infty
$$

Lemma 3.3. Under the norm

$$
\begin{equation*}
\|x\|_{V_{0}^{b}(z)}=\sum_{n=1}^{\infty}\left|z_{n}\right|\left|\Delta\left(\frac{x_{n}}{b_{n}}\right)\right|+\sup _{n}\left|x_{n}\right| \tag{3.1}
\end{equation*}
$$

$V_{0}^{b}(z)$ is an $F K-A K$ space.
Proof. Define the matrix $V$ by $v_{n k}=\frac{z_{n}}{b_{k}}$ for $k=n, v_{n k}=\frac{-z_{n}}{b_{k}}$ for $k=n+1$, and $v_{n k}=0$ elsewhere. Since $V_{0}^{b}(z)=l_{V} \cap c_{0}$, then $V_{0}^{b}(z)$ is an $F K$-space under the norm (3.1) by Theorems 4.3.1 of [6]. For all $x \in V_{0}^{b}(z)$, we have

$$
\left\|x-x^{(m)}\right\|_{V_{0}^{b}(z)}=\sum_{n=m+1}^{\infty}\left|z_{n}\right|\left|\Delta\left(\frac{x_{n}}{b_{n}}\right)\right|+\sup _{n \geq m}\left|x_{n}\right| .
$$

Since $x \in V_{0}^{b}(z)$, then $\left\|x-x^{(m)}\right\|_{V_{0}^{b}(z)} \rightarrow 0$ as $m \rightarrow \infty$. Hence $V_{0}^{b}(z)$ is an $A K$-space.

Theorem 3.4. The space $V_{0}^{b}(z)$ is an $A$-wedge space if and only if $z_{n}=o\left(\frac{1}{a_{n}}\right)$.
Proof. We have for each $n$,

$$
\left\|a_{n} b^{(n)}\right\|_{V_{0}^{b}(z)}=a_{n}\left|z_{n}\right|+a_{n} \sup _{k \leq n}\left|b_{k}\right|=a_{n}\left|z_{n}\right|+a_{n} b_{n} .
$$

Since $\lim _{n} a_{n} b_{n}=0$, the sequence $a_{n} b^{(n)}$ converges to zero in $V_{0}^{b}(z)$ if and only if $\lim _{n} a_{n} z_{n}=0$.

Definition 3.5. For $z_{n}=\frac{1}{a_{n}}$, let $h_{a}^{b}=V_{0}^{b}(z)$.
Lemma 3.6. The spaces $h_{a}^{b}$ is an $F K-A K$ space under the norm

$$
\begin{equation*}
\|x\|_{h_{a}^{b}}=\sum_{n=1}^{\infty} \frac{1}{a_{n}}\left|\Delta\left(\frac{x_{n}}{b_{n}}\right)\right| . \tag{3.2}
\end{equation*}
$$

Proof. By Lemma 3.3, we know that the spaces $h_{a}^{b}=V_{0}^{b}\left(\frac{1}{a_{n}}\right)$ is an $F K-A K$ space under the $V_{0}^{b}\left(\frac{1}{a_{n}}\right)$ norm

$$
\|x\|_{V_{0}^{b}\left(\frac{1}{a_{n}}\right)}=\sum_{n=1}^{\infty} \frac{1}{a_{n}}\left|\Delta\left(\frac{x_{n}}{b_{n}}\right)\right|+\sup _{n}\left|x_{n}\right| .
$$

We show that the $h_{a}^{b}$ and $V_{0}^{b}\left(\frac{1}{a_{n}}\right)$ norms are equivalent by proving

$$
\begin{equation*}
\|x\|_{h_{a}^{b}} \leq\|x\|_{V_{0}^{b}\left(\frac{1}{a_{n}}\right)} \leq(1+M)\|x\|_{h_{a}^{b}}, \tag{3.3}
\end{equation*}
$$

where $M=\sup a_{n} b_{n}$. The first inequality is obvious. Let $x \in h_{a}^{b}$ and $n=$ $1,2,3, \ldots$ Since $\lim _{m} \frac{x_{m}}{b_{m}}=0$, we have $\frac{x_{n}}{b_{n}}=\sum_{j=n}^{\infty} \Delta\left(\frac{x_{j}}{b_{j}}\right)$. Thus

$$
\frac{\left|x_{n}\right|}{b_{n}}=\left|\frac{x_{n}}{b_{n}}\right| \leq \sum_{j=n}^{\infty}\left|\Delta\left(\frac{x_{j}}{b_{j}}\right)\right|=\sum_{j=n}^{\infty} a_{j} \frac{1}{a_{j}}\left|\Delta\left(\frac{x_{j}}{b_{j}}\right)\right| .
$$

Since $\left\{a_{n}\right\}$ is decreasing,

$$
\frac{\left|x_{n}\right|}{b_{n}} \leq \sum_{j=n}^{\infty} a_{n} \frac{1}{a_{j}}\left|\Delta\left(\frac{x_{j}}{b_{j}}\right)\right|=a_{n} \sum_{j=n}^{\infty} \frac{1}{a_{j}}\left|\Delta\left(\frac{x_{j}}{b_{j}}\right)\right| .
$$

Thus $\frac{\left|x_{n}\right|}{a_{n} b_{n}} \leq \sum_{j=n}^{\infty} \frac{1}{a_{j}}\left|\Delta\left(\frac{x_{j}}{b_{j}}\right)\right| \leq \sum_{j=1}^{\infty} \frac{1}{a_{j}}\left|\Delta\left(\frac{x_{j}}{b_{j}}\right)\right|=\|x\|_{h_{a}^{b}}$, which implies $\sup _{m}\left|x_{m}\right| \leq$ $M \sup _{m} \frac{\left|x_{m}\right|}{a_{m} b_{m}} \leq M\|x\|_{h_{a}^{b}}$. This is sufficient to prove the second inequality of (3.3).

Theorem 3.7. The space $h_{a}^{b}$ is not an $A$-wedge space.
Proof. Since $h_{a}^{b}=V_{0}^{b}(z)$ for $z=\frac{1}{a_{n}}$, the result follows from Theorem 3.4.
The following spaces relate to duality of $h_{a}^{b}$.
Lemma 3.8. The spaces $\left(\sigma_{0}\right)_{a}^{b}$ and $\left(\sigma_{\infty}\right)_{a}^{b}$ given by

$$
\left(\sigma_{0}\right)_{a}^{b}=\left\{x \in w: \lim _{n} a_{n} \sum_{k=1}^{n} b_{k} x_{k}=0\right\}
$$

and

$$
\left(\sigma_{\infty}\right)_{a}^{b}=\left\{x \in w: \sup _{n} a_{n}\left|\sum_{k=1}^{n} b_{k} x_{k}\right|<\infty\right\}
$$

are FK-spaces under the norm

$$
\begin{equation*}
\|x\|_{\left(\sigma_{\infty}\right)_{b}^{a}}=\sup _{n} a_{n}\left|\sum_{k=1}^{n} b_{k} x_{k}\right| . \tag{3.4}
\end{equation*}
$$

In addition $\left(\sigma_{0}\right)_{a}^{b}$ is an $A K$-space under the norm (3.4).
Proof. Define the sequence $A x$ by $(A x)_{n}=a_{n} \sum_{k=1}^{n} b_{k} x_{k}$. Then $\left(\sigma_{0}\right)_{a}^{b}=\left(c_{0}\right)_{A}$ and $\left(\sigma_{\infty}\right)_{a}^{b}=m_{A}$. Since $A$ is a triangular matrix, then $\left(\sigma_{0}\right)_{a}^{b}$ and $\left(\sigma_{\infty}\right)_{a}^{b}$ are $F K$-spaces under the norm (3.4) by Theorem 4.3 .12 in [6]. For $x \in$ $\left(\sigma_{0}\right)_{a}^{b}$ and $\epsilon>0$, there exists $N$ such that $\sup _{n} a_{n}\left|\sum_{k=1}^{n} b_{k} x_{k}\right|<\epsilon$ whenever
$n>N$. To show that $\left(\sigma_{0}\right)_{a}^{b}$ is an $A K$-space, we show $\left\|x-x^{(m)}\right\|_{\left(\sigma_{\infty}\right)_{a}^{b}}=$ $\sup _{n \geq m} a_{n}\left|\sum_{k=m+1}^{n} b_{k} x_{k}\right|<2 \epsilon$ whenever $m>N$. Let $n \geq m>N$. Then

$$
a_{n}\left|\sum_{k=m+1}^{n} b_{k} x_{k}\right| \leq a_{n}\left|\sum_{k=1}^{n} b_{k} x_{k}\right|+a_{n}\left|\sum_{k=1}^{m} b_{k} x_{k}\right|<\epsilon+a_{m}\left|\sum_{k=1}^{m} b_{k} x_{k}\right|<2 \epsilon
$$

Lemma 3.9. $\left(h_{a}^{b}\right)^{f}=\left(h_{a}^{b}\right)^{\beta}=\left(h_{a}^{b}\right)^{\prime}=\left(\sigma_{\infty}\right)_{a}^{b}$, and

$$
\left(\left(\sigma_{0}\right)_{a}^{b}\right)^{f}=\left(\left(\sigma_{0}\right)_{a}^{b}\right)^{\beta}=\left(\left(\sigma_{0}\right)_{a}^{b}\right)^{\prime}=h_{a}^{b}
$$

Proof. Since $h_{a}^{b}$ is an $A K$-space, then $\left(h_{a}^{b}\right)^{f}=\left(h_{a}^{b}\right)^{\beta}=\left(h_{a}^{b}\right)^{\prime}$ by Theorems 7.2.7 and 7.2.12 of [6]. Let $x \in\left(\sigma_{\infty}\right)_{a}^{b}$ and $y \in h_{a}^{b}$. Because of $y \in h_{a}^{b}$, we have $\lim _{n} \frac{y_{n}}{a_{n} b_{n}}=0$. By Abel summation

$$
\sum_{k=m}^{n} x_{k} y_{k}=\sum_{k=m}^{n-1} a_{k} s_{k} \frac{1}{a_{k}} \Delta\left(\frac{y_{k}}{b_{k}}\right)+a_{n} s_{n} \frac{y_{n}}{a_{n} b_{n}}-a_{m-1} s_{m-1} \frac{y_{m}}{a_{m-1} b_{m}}
$$

where $s_{k}=\sum_{j=1}^{k} b_{j} x_{j}$. Since $\|x\|_{\left(\sigma_{\infty}\right)_{a}^{b}}=\sup _{k} a_{k}\left|s_{k}\right|$, we have, as $m, n \rightarrow \infty$,

$$
\left|\sum_{k=m}^{n} x_{k} y_{k}\right| \leq\|x\|_{\left(\sigma_{\infty}\right)_{a}^{b}}\left(\sum_{k=m}^{n-1} \frac{1}{a_{k}}\left|\Delta\left(\frac{y_{k}}{b_{k}}\right)\right|+\left|\frac{y_{n}}{a_{n} b_{n}}\right|+\left|\frac{y_{m}}{a_{m-1} b_{m}}\right|\right) \rightarrow 0
$$

Hence $\left(\sigma_{\infty}\right)_{a}^{b} \subset\left(h_{a}^{b}\right)^{\beta}$.
Conversely let $u \in\left(h_{a}^{b}\right)^{f}$. That is, $u_{k}=f\left(\delta^{k}\right)$, where $f \in\left(h_{a}^{b}\right)^{\prime}$. Then

$$
\begin{aligned}
a_{n}\left|\sum_{k=1}^{n} b_{k} u_{k}\right| & =\left|a_{n} \sum_{k=1}^{n} b_{k} f\left(\delta^{k}\right)\right|=\left|f\left(a_{n} \sum_{k=1}^{n} b_{k} \delta^{k}\right)\right| \\
& \leq\|f\|\left\|a_{n} b^{(n)}\right\|_{h_{a}^{b}}=\|f\|
\end{aligned}
$$

So $u \in\left(\sigma_{\infty}\right)_{a}^{b}$.
For the second part, since $h_{a}^{b}$ is an $F K-A K$-space, we have

$$
h_{a}^{b} \subset\left(\left(\sigma_{0}\right)_{a}^{b}\right)^{f}=\left(\left(\sigma_{0}\right)_{a}^{b}\right)^{\beta}=\left(\left(\sigma_{0}\right)_{a}^{b}\right)^{\prime}
$$

The reverse inclusion follows from Corollary 1(iii) of [5]. According to that Corollary,

$$
\left(\left(\sigma_{0}\right)_{a}^{b}\right)^{\beta}=\left\{x \in w: \sum_{n=1}^{\infty} \frac{1}{a_{n}}\left|\Delta\left(\frac{x_{n}}{b_{n}}\right)\right|<\infty, \quad \sup \left|\frac{x_{n}}{a_{n} b_{n}}\right|<\infty\right\}
$$

Since we assume $\lim _{n} a_{n} b_{n}=0$, we have

$$
\left(\left(\sigma_{0}\right)_{a}^{b}\right)^{\beta} \subset\left\{x \in w: \sum_{n=1}^{\infty} \frac{1}{a_{n}}\left|\Delta\left(\frac{x_{n}}{b_{n}}\right)\right|<\infty, \quad \lim \left|x_{n}\right|=0\right\}=h_{a}^{b}
$$

Definition 3.10. Let $s=\left\{s_{n}\right\}_{n=1}^{\infty}$ always denote a strictly increasing sequence of integers with $s_{1}=0$. We shall be interested in spaces of the form:

$$
c_{a}^{b}|s|=\left\{x \in w: \lim _{n} x_{n}=0 \text { and } \sup _{n} \sum_{j=s_{n}+1}^{s_{n+1}} \frac{1}{a_{j}}\left|\Delta\left(\frac{x_{j}}{b_{j}}\right)\right|<\infty\right\} .
$$

Lemma 3.11. For any strictly increasing sequence $s=\left\{s_{n}\right\}_{n=1}^{\infty}$, the space $c_{a}^{b}|s|$ is an $F K$-space with the norm

$$
\begin{equation*}
\|x\|_{c_{a}^{b}|s|}=\sup _{n} \sum_{j=s_{n}+1}^{s_{n+1}} \frac{1}{a_{j}}\left|\Delta\left(\frac{x_{j}}{b_{j}}\right)\right| . \tag{3.5}
\end{equation*}
$$

Furthermore,

$$
h_{a}^{b} \subset c_{a}^{b}|s| \subset c_{0} \subset m
$$

Proof. The proof is essentially the same to that of Lemma 3.3
Similarly, the proof of the following is like that of Theorem 3.4
Theorem 3.12. For any strictly increasing sequence $s=\left\{s_{n}\right\}_{n=1}^{\infty}$, the space $c_{a}^{b}|s|$ is not an $A$-wedge space.

Lemma 3.13. Assume that $\lim _{j} a_{j} z_{j}^{n}=0,(n=1,2,3, \ldots)$. Then there exists $z \in w$ with $\lim _{j} a_{j} z_{j}=0$ such that $\lim _{j} \frac{z_{j}^{n}}{z_{j}}=0,(n=1,2,3, \ldots)$.

Moreover, for any such $z$, we have $V_{0}^{b}(z) \subset \bigcap_{n=1}^{\infty} V_{0}^{b}\left(z^{n}\right)$.
Proof. Since $\lim _{j} a_{j} z_{j}^{n}=0,(n=1,2,3, \ldots)$, we may choose a sequence $\left\{j_{k}\right\}_{k=1}^{\infty}$ of positive integers such that

$$
1=j_{0}<j_{1}<j_{2}<\cdots<j_{k}<\cdots
$$

and

$$
\max _{1 \leq n \leq k}\left|a_{j} z_{j}^{n}\right|<\frac{1}{4^{k}}, \quad\left(j \geq j_{k} ; k=1,2, \ldots\right)
$$

Define $z \in w$ as follows :

$$
z_{j}=\frac{1}{2^{k} a_{j}},\left(j_{k} \leq j<j_{k+1} ; k=0,1,2, \ldots\right)
$$

Then $\lim _{j} a_{j} z_{j}=0$ and, fixing $n$, we get

$$
\begin{equation*}
\left|\frac{z_{j}^{n}}{z_{j}}\right|=\left|\frac{a_{j} z_{j}^{n}}{a_{j} z_{j}}\right|<\frac{1}{2^{k}} \text { whenever } j_{k} \leq j<j_{k+1} \text { and } k \geq n . \tag{3.6}
\end{equation*}
$$

Thus $\lim _{j} \frac{z_{j}^{n}}{z_{j}}=0$ for each $n$. The second part of the proof follows from inequality (3.6).

Remark 3.14. In Lemma 3.13 above, we may choose the sequence $\left\{j_{k}\right\}$ of positive integers such that

$$
a_{j} b_{j}<\frac{1}{2^{k}} \text { for } j \geq j_{k}
$$

and

$$
a_{j_{k+1}}<\frac{1}{2} a_{j_{k}} \text { for } k=0,1,2, \ldots
$$

Then

$$
z_{j}=\frac{1}{2^{k} a_{j}} \text { for } j_{k} \leq j<j_{k+1} ; k=0,1,2, \ldots
$$

and

$$
\frac{z_{j}}{b_{j}}=\frac{a_{j} z_{j}}{a_{j} b_{j}}>1 \text { for } j_{k} \leq j<j_{k+1} ; k=0,1,2, \ldots
$$

Lemma 3.15. Assume that $\lim _{j} a_{j} z_{j}^{0}=0$ for some $z^{0} \in w$. Then there exists $z^{\prime} \in w$ with $\lim _{j} a_{j} z_{j}^{\prime}=0$ such that $V_{0}^{b}\left(z^{\prime}\right) \subset V_{0}^{b}\left(z^{0}\right)$ and $V_{0}^{b}\left(z^{\prime}\right)$ is an $F K-$ space under the norm

$$
\|x\|^{\prime}=\sum_{j=1}^{\infty} z_{j}^{\prime}\left|\Delta\left(\frac{x_{j}}{b_{j}}\right)\right| .
$$

Proof. Let $z^{n}=z^{0}$ for $n=1,2,3, \ldots$ and assume the sequence $\left\{j_{k}\right\}$ of positive integers is chosen according to the proof of Lemma 3.13 and Remark 3.14 above. Then, by Lemma 3.13, there exists a sequence $z^{\prime} \in w$ with $\lim _{j} a_{j} z_{j}^{\prime}=0$ such that $V_{0}^{b}\left(z^{\prime}\right) \subset V_{0}^{b}\left(z^{0}\right)$. It is sufficient to show that, for all $x \in V_{0}^{b}\left(z^{\prime}\right)$, we have

$$
\begin{equation*}
\sup _{n}\left|x_{n}\right| \leq 2\|x\|^{\prime} \tag{3.7}
\end{equation*}
$$

Although the sequence $z_{j}^{\prime}$ may not be increasing for all $j=1,2,3 \ldots$, it has an increasing sawtooth shape as observed by (3.8), (3.9), and (3.10) below: Since $\left\{a_{j}\right\}$ is strictly decreasing, for each $i=0,1,2, \ldots$

$$
\begin{equation*}
z_{j}^{\prime}=\frac{1}{2^{i} a_{j}} \text { is strictly increasing for } j_{i} \leq j<j_{i+1} \tag{3.8}
\end{equation*}
$$

and for each $j_{i} \leq n<j_{i+1}$,

$$
\begin{equation*}
z_{j_{i}}^{\prime}=\frac{1}{2^{i} a_{j_{i}}} \leq \frac{1}{2^{i} a_{n}}=z_{n}^{\prime}<\frac{1}{2^{i} a_{j_{i+1}}}=\frac{2}{2^{i+1} a_{j_{i+1}}}=2 z_{j_{i+1}}^{\prime} . \tag{3.9}
\end{equation*}
$$

Also $\left\{z_{j_{i}}^{\prime}\right\}_{i=0}^{\infty}$ is positive and strictly increasing because $a_{j_{i+1}}<\frac{1}{2} a_{j_{i}}$; that is,

$$
\begin{equation*}
z_{j_{i}}^{\prime}=\frac{1}{2^{i} a_{j_{i}}}<\frac{1}{2^{i+1} a_{j_{i+1}}}=z_{j_{i+1}}^{\prime} \tag{3.10}
\end{equation*}
$$

Let $x \in V_{0}^{b}\left(z^{\prime}\right)$ and $j_{k} \leq n<j_{k+1}$. Define $\Delta_{i}=\frac{x_{j_{i}}}{b_{j_{i}}}-\frac{x_{j_{i+1}}}{b_{j_{i+1}}} .(i=0,1,2, \ldots)$. Since $\lim _{j} \frac{x_{j}}{b_{j}}=0$, and hence $\lim _{i} \frac{x_{j_{i}}}{b_{j_{i}}}=0$, we have

$$
\frac{x_{n}}{b_{n}}=\sum_{j=n}^{j_{k+1}-1} \Delta\left(\frac{x_{j}}{b_{j}}\right)+\sum_{i=k+1}^{\infty} \Delta_{i} .
$$

Thus

$$
\begin{equation*}
\frac{\left|x_{n}\right|}{b_{n}} \leq \sum_{j=n}^{j_{k+1}-1}\left|\Delta\left(\frac{x_{j}}{b_{j}}\right)\right|+\sum_{i=k+1}^{\infty}\left|\Delta_{i}\right| . \tag{3.11}
\end{equation*}
$$

By (3.8) and (3.10), we have

$$
\begin{equation*}
\frac{\left|x_{n}\right|}{b_{n}} \leq \frac{1}{z_{n}^{\prime}} \sum_{j=n}^{j_{k+1}-1} z_{j}^{\prime}\left|\Delta\left(\frac{x_{j}}{b_{j}}\right)\right|+\frac{1}{z_{j_{k+1}}^{\prime}} \sum_{i=k+1}^{\infty} z_{j_{i}}^{\prime}\left|\Delta_{i}\right| . \tag{3.12}
\end{equation*}
$$

By (3.9), we have

$$
\frac{\left|x_{n}\right|}{b_{n}} \leq \frac{1}{z_{n}^{\prime}} \sum_{j=n}^{j_{k+1}-1} z_{j}^{\prime}\left|\Delta\left(\frac{x_{j}}{b_{j}}\right)\right|+\frac{2}{z_{n}^{\prime}} \sum_{i=k+1}^{\infty} z_{j_{i}}^{\prime}\left|\Delta_{i}\right| .
$$

By Remark 3.14, we have $\frac{z_{n}^{\prime}}{b_{n}}>1$. Thus

$$
\begin{equation*}
\left|x_{n}\right| \leq \frac{z_{n}^{\prime}\left|x_{n}\right|}{b_{n}} \leq \sum_{j=n}^{j_{k+1}-1} z_{j}^{\prime}\left|\Delta\left(\frac{x_{j}}{b_{j}}\right)\right|+2 \sum_{i=k+1}^{\infty} z_{j_{i}}^{\prime}\left|\Delta_{i}\right| . \tag{3.13}
\end{equation*}
$$

Expanding $z_{j_{i}}^{\prime}\left|\Delta_{i}\right|$ in (3.13), we have by (3.8),

$$
z_{j_{i}}^{\prime}\left|\Delta_{i}\right|=z_{j_{i}}^{\prime}\left|\frac{x_{j_{i}}}{b_{j_{i}}}-\frac{x_{j_{i+1}}}{b_{j_{i+1}}}\right| \leq \sum_{j=j_{i}}^{j_{i+1}-1} z_{j_{i}}^{\prime}\left|\Delta\left(\frac{x_{j}}{b_{j}}\right)\right| \leq \sum_{j=j_{i}}^{j_{i+1}-1} z_{j}^{\prime}\left|\Delta\left(\frac{x_{j}}{b_{j}}\right)\right| .
$$

Inserting this into inequality (3.13),

$$
\left|x_{n}\right| \leq \sum_{j=n}^{j_{k+1}-1} z_{j}^{\prime}\left|\Delta\left(\frac{x_{j}}{b_{j}}\right)\right|+2 \sum_{i=k+1}^{\infty} \sum_{j=j_{i}}^{j_{i+1}-1} z_{j}^{\prime}\left|\Delta\left(\frac{x_{j}}{b_{j}}\right)\right| \leq 2 \sum_{j=n}^{\infty} z_{j}^{\prime}\left|\Delta\left(\frac{x_{j}}{b_{j}}\right)\right|,
$$

gives us the desired result for all $n$

$$
\left|x_{n}\right| \leq 2 \sum_{j=n}^{\infty} z_{j}^{\prime}\left|\Delta\left(\frac{x_{j}}{b_{j}}\right)\right| \leq 2\|x\|^{\prime} .
$$

## 4. $A$-Wedge $F K$-Spaces

In this section we study $A$-wedge $F K$-space. First we give the fundamental characterization of $A$-wedge spaces.

Theorem 4.1. The following conditions are equivalent for an $F K$-space $(X, \tau)$ :
(i) $X$ is an $A$-wedge space,
(ii) $X$ contains $V_{0}^{b}(z)$ for some $z \in w$ such that $z_{j}=o\left(\frac{1}{a_{j}}\right)$,
(iii) $X$ contains $c_{a}^{b}|s|$ for some strictly increasing sequence $s$ and the inclusion mapping $I:\left(c_{a}^{b}|s|,\|\cdot\|_{c_{a}^{b}|s|}\right) \rightarrow(X, \tau)$ is compact,
(iv) $X$ contains $h_{a}^{b}$ and the inclusion mapping $I:\left(h_{a}^{b},\|\cdot\|_{h_{a}^{b}}\right) \rightarrow(X, \tau)$ is compact.

Proof. $(i i) \Longrightarrow(i)$ follows from Theorems 3.1 and 3.4.
$(i) \Longrightarrow(i i)$. Let $\left\{q_{n}\right\}_{n=1}^{\infty}$ be a defining family of seminorms for the topology $\tau$ and let

$$
z_{j}^{n}:=q_{n}\left(b^{(j)}\right)=q_{n}\left(\sum_{i=1}^{j} b_{i} \delta^{i}\right) ; j, n=1,2, \ldots
$$

Suppose $x \in \bigcap_{n=1}^{\infty} V_{0}^{b}\left(z^{n}\right)$. Then $x \in c_{0}$ and for all $n=1,2,3, \ldots$ we have

$$
\sum_{j=1}^{\infty}\left|z_{j}^{n}\right|\left|\Delta\left(\frac{x_{j}}{b_{j}}\right)\right|=\sum_{j=‘}^{\infty} q_{n}\left(b^{(j)}\right)\left|\Delta\left(\frac{x_{j}}{b_{j}}\right)\right|=\sum_{j=1}^{\infty} q_{n}\left(\left(\Delta\left(\frac{x_{j}}{b_{j}}\right)\right) b^{(j)}\right)<\infty
$$

Since $X$ complete, $\sum_{j=1}^{\infty}\left(\Delta\left(\frac{x_{j}}{b_{j}}\right)\right) b^{(j)}$ converges in $(X, \tau)$. Coordinatewise, it converges to $x$, since, for $k \geq i$, the $i^{t h}$ coordinate of $\sum_{j=1}^{k}\left(\Delta\left(\frac{x_{j}}{b_{j}}\right)\right) b^{(j)}$ is $x_{i}-\frac{b_{i}}{b_{k+1}} x_{k+1}$, which tends to $x_{i}$ as $k \rightarrow \infty$. Since $X$ is a $K$-space, $x=$ $\sum_{j=1}^{\infty}\left(\Delta\left(\frac{x_{j}}{b_{j}}\right)\right) b^{(j)} \in X$. So $\bigcap_{n=1}^{\infty} V_{0}^{b}\left(z^{n}\right) \subset X$. Since $X$ is an $A$-wedge space, $\lim _{j} q_{n}\left(a_{n} b^{(n)}\right)=\lim _{j} a_{j} z_{j}^{n}=0,(n=1,2,3, \ldots)$. By Lemma 3.13 we may choose $z \in w$ such that $\lim _{j} a_{j} z_{j}=0$ and $V_{0}^{b}(z) \subset \bigcap_{n=1}^{\infty} V_{0}^{b}\left(z^{n}\right) \subset X$.
$(i i) \Longrightarrow(i i i)$. Let $V_{0}^{b}(z) \subset X$ for some $z$ with $z_{j}=o\left(\frac{1}{a_{j}}\right)$. By Lemma 3.15, $V_{0}^{b}(z)$ has a subset $V_{0}^{b}\left(z^{\prime}\right)$ with norm $\|x\|^{\prime}=\sum_{j=1}^{\infty} z_{j}^{\prime}\left|\Delta\left(\frac{x_{j}}{b_{j}}\right)\right|$. Take $s_{0}=0$ and $\left\{s_{n}\right\}_{n=1}^{\infty}$ denotes a strictly increasing sequence of integers satisfying,

$$
\begin{equation*}
\left|a_{j} z_{j}^{\prime}\right| \leq \frac{1}{2^{n}}, j \geq s_{n} ; \quad(n=1,2,3, \ldots) \tag{4.1}
\end{equation*}
$$

Let $x \in c_{a}^{b}|s|$. Suppose $m, p \in N, m \leq p$. Then by (4.1) we get

$$
\sum_{j=s_{m}+1}^{s_{p+1}}\left|z_{j}^{\prime}\right|\left|\Delta\left(\frac{x_{j}}{b_{j}}\right)\right| \leq \sum_{n=m}^{p} \sum_{j=s_{n}+1}^{s_{n+1}} a_{j}\left|z_{j}^{\prime}\right| \frac{1}{a_{j}}\left|\Delta\left(\frac{x_{j}}{b_{j}}\right)\right| \leq\|x\|_{c_{a}^{b}|s|} \sum_{n=m}^{p} \frac{1}{2^{n}} \rightarrow 0
$$

Thus $x \in V_{0}^{b}\left(z^{\prime}\right)$ and $c_{a}^{b}|s| \subset V_{0}^{b}\left(z^{\prime}\right) \subset X$.
Now assume that $U \subset c_{a}^{b}|s|$ be such that $\|x\|_{c_{a}^{b}|s|} \leq M$ for all $x \in U$. It is clear that $U \subset V_{0}^{b}\left(z^{\prime}\right)$. For $s_{n} \leq m<s_{n+1}$ and $x \in U$, by (4.1) we get

$$
\begin{aligned}
\left\|x-x^{(m)}\right\|^{\prime} & =\sum_{j=m+1}^{\infty}\left|z_{j}^{\prime}\right|\left|\Delta\left(\frac{x_{j}}{b_{j}}\right)\right| \leq \sum_{i=n}^{\infty} \sum_{j=s_{i}+1}^{s_{i+1}} a_{j}\left|z_{j}^{\prime}\right| \frac{1}{a_{j}}\left|\Delta\left(\frac{x_{j}}{b_{j}}\right)\right| \\
& \left.\leq\|x\|_{c_{a}^{b}|s|} \sum_{i=m}^{\infty} \frac{1}{2^{i}} \rightarrow 0 \text { (uniformly on } U\right),(m \rightarrow \infty)
\end{aligned}
$$

Hence $x^{(m)} \rightarrow x,(m \rightarrow \infty)$, in $\left(V_{0}^{b}\left(z^{\prime}\right),\|x\|^{\prime}\right)$ uniformly on $U$. Since $V_{0}^{b}\left(z^{\prime}\right)$ is an $A K$-space, then by Lemma 2 of [1], $U$ is relatively compact in
$V_{0}^{b}\left(z^{\prime}\right)$. Since the inclusion mapping $I: V_{0}^{b}\left(z^{\prime}\right) \rightarrow X$ is continuous, $I(U)=U$ is relatively compact in $X$. Thus the inclusion mapping $I:\left(c_{a}^{b}|s|,\|\cdot\| \|_{c_{a}^{b}|s|}\right) \rightarrow$ ( $X, \tau$ ) is compact.
$(i i i) \Longrightarrow(i v)$. Because the inclusion mapping $I: h_{a}^{b} \rightarrow c_{a}^{b}|s|$ is continuous, the proof is trivial.
$(i v) \Longrightarrow(i)$. Since $\left\|a_{n} b^{(n)}\right\|_{h_{a}^{b}}=1$, the set $B=\left\{a_{n} b^{(n)}: n=1,2, \ldots\right\}$ is a bounded subset of $h_{a}^{b}$. In addition since the inclusion mapping $I$ : $\left(h_{a}^{b},\|\cdot\|_{h_{a}^{b}}\right) \rightarrow(X, \tau)$ is compact, $I(B)=B$ is $\tau$-relatively compact in $X$. Hence, by Theorem 2.3.11 of [4], since $a_{n} b^{(n)} \rightarrow 0$ in $w$, we have $a_{n} b^{(n)} \rightarrow 0$ in $(X, \tau)$.

Theorem 4.2. Suppose $z \in\left(\sigma_{0}\right)_{a}^{b}$. Then $z^{\beta}:=\left\{x \in w: \sum_{k=1}^{\infty} z_{k} x_{k}\right.$ converges $\}$ is an $A$-wedge FK-space.

Proof. The space $z^{\beta}$ is an $F K$-space with seminorms $p_{i}(x)=\left|x_{i}\right|, \quad(i=$ $1,2, \ldots)$, and $P_{0}(x)=\sup _{m}\left|\sum_{k=1}^{m} z_{k} x_{k}\right|$, by Theorem 4.3.7 in [6]. Let $z \in\left(\sigma_{0}\right)_{a}^{b}$. Since, for each $i=1,2,3, \ldots$,

$$
p_{i}\left(a_{n} b^{(n)}\right)=\left\{\begin{array}{ll}
a_{n} b_{i} & , \text { if } i \leq n \\
0 & , \text { if } i>n
\end{array}\right\} \leq a_{n} b_{n} \rightarrow 0,(n \rightarrow \infty),
$$

it remains to show that $P_{0}\left(a_{n} b^{(n)}\right)=\max _{1 \leq m \leq n} a_{n}\left|\sum_{k=1}^{m} z_{k} b_{k}\right| \rightarrow 0,(n \rightarrow \infty)$. Since the sequence $\left\{a_{n}\right\}$ is decreasing and $\lim _{n} a_{n}=0$, we choose a sequence $\left\{\zeta_{N}\right\}$ of natural numbers for which $\frac{a_{\zeta_{N-1}}}{a_{\zeta_{N}}} \geq 2^{N}$ and $a_{\zeta}\left|\sum_{i=1}^{\zeta} z_{i} b_{i}\right| \leq 2^{-N}$, $\left(\forall \zeta \geq \zeta_{N}\right)$.
Then for any $N>2$, take $n \geq \zeta_{N}$. We have
(i) $a_{n}\left|\sum_{k=1}^{m} z_{k} b_{k}\right|=\frac{a_{n}}{a_{m}} a_{m}\left|\sum_{k=1}^{m} z_{k} b_{k}\right| \leq 2^{-(N-1)}$, for $\zeta_{N-1} \leq m \leq n$
(ii) $a_{n}\left|\sum_{k=1}^{m} z_{k} b_{k}\right| \leq \frac{a_{\zeta_{N}}}{a_{\zeta_{N-1}}} a_{m}\left|\sum_{k=1}^{m} z_{k} b_{k}\right| \leq 2^{-N} \sup _{m} a_{m}\left|\sum_{k=1}^{m} z_{k} b_{k}\right|$, for $m<\zeta_{N-1}$,
Hence

$$
P_{0}\left(a_{n} b^{(n)}\right)=\max \left\{2^{-(N-1)}, \quad 2^{-N} \sup _{m<\zeta_{N-1}} a_{m}\left|\sum_{k=1}^{m} z_{k} b_{k}\right|\right\}
$$

which tends to zero as $n \rightarrow \infty$.
Now we give the following result.
Corollary 4.3. The intersection of all $A$-wedge FK-spaces is $h_{a}^{b}$.

Proof. Let the intersection of all $A$-wedge $F K$-spaces be $Y$. By Theorem 4.1 $(i) \Longrightarrow(i v)$, Theorem 4.2, and Lemma 3.9 we have

$$
h_{a}^{b} \subset Y \subset \bigcap\left\{z^{\beta}: z \in\left(\sigma_{0}\right)_{a}^{b}\right\}=\left\{\left(\sigma_{0}\right)_{a}^{b}\right\}^{\beta}=h_{a}^{b}
$$

Hence the result.
Corollary 4.4. $\bigcap_{z_{n}=o\left(\frac{1}{a_{n}}\right)} V_{0}^{b}(z)=h_{a}^{b}$.
Proof. By Theorem 3.4, if $z_{n}=o\left(\frac{1}{a_{n}}\right)$, then $V_{0}^{b}(z)$ is an $A$-wedge $F K$ space. Also by Theorem $4.1(i v), h_{a}^{b} \subset \bigcap_{z_{n}=o\left(\frac{1}{a_{n}}\right)} V_{0}^{b}(z)$. The reverse inclusion is obtained by Theorem 4.1 (ii) and Corollary 4.3.

Remark 4.5. By Corollary 4.3, there is no smallest $A$-wedge space.

## 5. Weak $A$-Wedge $F K$-Spaces

In this section, we deal with weak $A$-wedge $F K$-spaces
Theorem 5.1. An FK-space $(X, \tau)$ is a weak $A$-wedge space if and only if $X$ contains $h_{a}^{b}$ and the inclusion mapping $I:\left(h_{a}^{b},\|\cdot\|_{h_{a}^{b}}\right) \rightarrow(X, \tau)$ is weakly compact.

Proof. Necessity: Let $(X, \tau)$ be a weak $A$-wedge space. Then for all $f \in X^{\prime}$,

$$
\begin{equation*}
f\left(a_{n} b^{(n)}\right)=f\left(a_{n} \sum_{k=1}^{n} b_{k} \delta^{k}\right)=a_{n} \sum_{k=1}^{n} b_{k} f\left(\delta^{k}\right) \rightarrow 0,(n \rightarrow \infty) \tag{5.1}
\end{equation*}
$$

and thereby $\left\{f\left(\delta^{k}\right)\right\} \in\left(\sigma_{\infty}\right)_{a}^{b}$. Thus $X^{f} \subset\left(\sigma_{\infty}\right)_{a}^{b}$. Since $\left(\sigma_{\infty}\right)_{a}^{b}=\left(h_{a}^{b}\right)^{f}$ and $h_{a}^{b}$ is an $A D$-space, then $h_{a}^{b} \subset X$ by Theorem 8.6.1 in [6]. This inclusion requires that the inclusion mapping $I: h_{a}^{b} \rightarrow X$ is continuous. Because $h_{a}^{b}$ is an $A K$-space, we have for all $x \in h_{a}^{b}$ and $f \in X^{\prime}$ that

$$
f\left(\sum_{k=1}^{\infty} x_{k} \delta^{k}\right)=\sum_{k=1}^{\infty} x_{k} f\left(\delta^{k}\right)=\langle I(x), f\rangle=\left\langle x, f\left(\delta^{k}\right)\right\rangle
$$

On the other hand, $\left\{f\left(\delta^{k}\right)\right\} \in\left(\sigma_{0}\right)_{a}^{b}$ for all $f \in X^{\prime}$ by (5.1).
Thus, since $\sigma\left(\left(\left(\sigma_{0}\right)_{a}^{b}\right)^{\prime},\left(\sigma_{0}\right)_{a}^{b}\right)=\sigma\left(h_{a}^{b},\left(\sigma_{0}\right)_{a}^{b}\right)$, then the mapping $I:\left(h_{a}^{b}, \sigma\left(h_{a}^{b},\left(\sigma_{0}\right)_{a}^{b}\right)\right) \rightarrow\left(X, \sigma\left(X, X^{\prime}\right)\right)$ is continuous. By the Banach-Alaoğlu Theorem (Theorem 1, Section 13.3 of [7]), the set $B=\left\{x \in h_{a}^{b}:\|\cdot\|_{h_{a}^{b}} \leq 1\right\}$ is $\sigma\left(h_{a}^{b},\left(\sigma_{0}\right)_{a}^{b}\right)$-compact and hence $I(B)=B$ is $\sigma\left(X, X^{\prime}\right)$-compact. Consequently the inclusion mapping $I:\left(h_{a}^{b},\|\cdot\|_{h_{a}^{b}}\right) \rightarrow(X, \tau)$ is weakly compact.

Sufficiency: Let $h_{a}^{b} \subset X$ and the inclusion mapping $I:\left(h_{a}^{b},\|\cdot\|_{h_{a}^{b}}\right) \rightarrow$ $(X, \tau)$ be weakly compact. Then $B=\left\{x \in h_{a}^{b}:\|\cdot\|_{h_{a}^{b}} \leq 1\right\}$ is $\sigma\left(X, X^{\prime}\right)$ relatively compact. Hence, by Theorem 2.3 .11 of [4], $a_{n} b^{(n)} \rightarrow 0,(n \rightarrow \infty)$, in $\sigma\left(X, X^{\prime}\right)$ since it converges to zero in $w$.

Now we have the following
Corollary 5.2. The intersection of all weak $A$-wedge $F K$-spaces is $h_{a}^{b}$.
Proof. The proof is like that of Corollary 4.3 by using Theorems 5.1 and 4.2.

Using Theorem 3.1 for weak $A$-wedge $F K$-spaces, we obtain the following.

Remark 5.3. There is no smallest weak $A$-wedge $F K$ - space.

## References

[1] G. Bennett, A new class of sequence spaces with applications in summability theory J. Reine Angew. Math. 266 (1974), 49-75.
[2] J. Boos, Classical and Modern Methods in Summability Oxford U. Press, Oxford, 2000.
[3] H. G. İnce, Cesàro wedge and weak Cesàro wedge FK-spaces Czechoslovak Math. J. 52 (127) (2002), 141-154.
[4] P. K. Kamthan and M. Gupta, Sequence Spaces and Series Marcel Dekker, New York-Basel, 1981.
[5] E. Malkowsky and E. Savas, Matrix transformations between sequence spaces of generalized weighted means Applied Math. and Computation 147 (2004), 333345.
[6] A. Wilansky, Summability Through Functional Analysis North Holland, 1984.
[7] A. Wilansky, Functional Analysis Blaisdell Press, 1964.
[8] K. Zeller, Allgemenie Eigenschaften von Limitierungsverfahren Math. Z. 53 (1951), 463-487
[9] K. Zeller and W. Beekmann, Theorie der Limitierungsverfahren (2nd edition) Springer, Berlin-Heidelberg-New York, 1970.
H. Gül İnce

Gazi University
Faculty of Sciences and Arts, Department of Mathematics
06500 Teknikokullar, Ankara, TURKEY
e-mail: ince@gazi.edu.tr
Martin Buntinas
Loyola University Chicago
Department of Mathematics \& Statistics,
Chicago, IL 60626, USA
e-mail: mbuntin@math.luc.edu

