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The main purpose of this paper is to show the applications that flow from the theorem that all of the coefficients of a 
unit in an Algebraic number field satisfy the same linear recurrence.  While this is true for fields of any degree, for 
simplicity it is stated here for a cubic field.

Theorem 1.  Let e = a1 + b1w + c1w2  be a unit in the algebraic number field Q(w) where w  = a + bw + cw2 , 
a, b, c, ∈  Q, Q the rational numbers.  Let en = an + bnw + cnw2  n = 0,1,2,...  Then the coefficients an, bn, cn,  all satisfy 
the same linear recurrence of the form Tn+3  = xTn+2 + yTn+1 + zTn,  x,y,z, ∈   Q.

From this theorem follow several results for sequences and series.  For sequences we have the following corollary that 
shows the equivalence  between zeros of a linear recurrence and solutions of a diophantine equation.

Corollary 1.  Suppose e = a1 + b1w + c1w2  is the single fundamental unit of Z[w] with positive norm where w3 - aw2 + 
bw - c  = 0 (Z rational integers).  Then all units of Z[w] have the form
 en = an + bnw + cnw2  n = ±0,±1,±2,...  Hence,  x3 + ax2y + bxy2 + cy3  = 1, has a solution x = an,

y = bn if and only if en = an + bnw is a binary unit, i.e., cn = 0, in other words, cn is a zero of a linear recurrence. 

From the corollary we have the following example.  The homogeneous diophantine equation  
x3 - x y2 + y3  = 1 has exactly five solutions, (1,0), (0,1), (1,1), (-1,1), (4,-3) which is equivalent to the result that there are 
exactly five binary units

w0 = 1 + 0w + 0w2  
w1 = 0 + 1w + 0w2  
w3 = 1 + 1w + 0w2  
w-4 = -1 + 1w + 0w2  
w-13 = 4 + -3w + 0w2  

in the field Q(w), where w3 = 1 + w, which is equivalent to the result that there are exactly five zeros
a1 = a2 = a4 = r3 = r12 = 0 in the linear recurrences  an+3 = an + an+1 (a0 = 1, a1 = a2 = 0); rn+3 = rn - rn+2

(r0 = 1, r1 = -1, r2 = 1).

As an application to series, we can obtain explicit sums from algebraic units in fields of any degree.  We illustrate the 
methods for a quadratic field, Q(w), where w2 - w - 1 = 0.  Here w is itself a unit and all positive powers are given by 
wk = Fk-1 + Fk w, k = 1,2,... where the  Fk are the Fibonacci numbers.  We now have (wk )-1 =  = (Fk-1 + Fk w)-1.  We now 
expand the right side of the equation as an infinite series, and compute the inverse unit for the left side, yielding
(-1)k Fk+1 + (-1)k+1 Fk w = infinite series.  By careful comparison of coefficients on both sides we get, for example, the 
following explicit sum of  an infinite series.  
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