SEQUENCES AND SERIES FROM ALGEBRAIC UNITS

by Constantine Kliorys

The main purpose of this paper is to show the applications that flow from the theorem that all of the coefficients of a unit in an Algebraic number field satisfy the same linear recurrence. While this is true for fields of any degree, for simplicity it is stated here for a cubic field.

Theorem 1. Let $e=a_{1}+b_{1} w+c_{1} w^{2}$ be a unit in the algebraic number field $Q(w)$ where $w=a+b w+c w^{2}$, $a, b, c, \in Q, Q$ the rational numbers. Let $e^{n}=a_{n}+b_{n} w+c_{n} w^{2} n=0,1,2, \ldots$ Then the coefficients a_{n}, b_{n}, c_{n}, all satisfy the same linear recurrence of the form $T_{n+3}=x T_{n+2}+y T_{n+1}+z T_{n}, x, y, z, \in Q$.

From this theorem follow several results for sequences and series. For sequences we have the following corollary that shows the equivalence between zeros of a linear recurrence and solutions of a diophantine equation.

Corollary 1. Suppose $e=a_{1}+b_{1} w+c_{1} w^{2}$ is the single fundamental unit of $Z[w]$ with positive norm where $w^{3}-a w^{2}+$ $\mathrm{bw}-\mathrm{c}=0$ (Z rational integers). Then all units of $\mathrm{Z}[\mathrm{w}]$ have the form
$e^{n}=a_{n}+b_{n} w+c_{n} w^{2} n= \pm 0, \pm 1, \pm 2, \ldots$. Hence, $x^{3}+a x^{2} y+b x y^{2}+c y^{3}=1$, has a solution $x=a_{n}$,
$y=b_{n}$ if and only if $e^{n}=a_{n}+b_{n} w$ is a binary unit, i.e., $c_{n}=0$, in other words, c_{n} is a zero of a linear recurrence.
From the corollary we have the following example. The homogeneous diophantine equation
$x^{3}-x y^{2}+y^{3}=1$ has exactly five solutions, $(1,0),(0,1),(1,1),(-1,1),(4,-3)$ which is equivalent to the result that there are exactly five binary units
$\mathrm{w}^{0}=1+0 \mathrm{w}+0 \mathrm{w}^{2}$
$\mathrm{w}^{1}=0+1 \mathrm{w}+0 \mathrm{w}^{2}$
$\mathrm{w}^{3}=1+1 \mathrm{w}+0 \mathrm{w}^{2}$
$\mathrm{w}^{-4}=-1+1 \mathrm{w}+0 \mathrm{w}^{2}$
$\mathrm{w}^{-13}=4+-3 \mathrm{w}+0 \mathrm{w}^{2}$
in the field $\mathrm{Q}(\mathrm{w})$, where $\mathrm{w}^{3}=1+\mathrm{w}$, which is equivalent to the result that there are exactly five zeros
$a_{1}=a_{2}=a_{4}=r_{3}=r_{12}=0$ in the linear recurrences $a_{n+3}=a_{n}+a_{n+1}\left(a_{0}=1, a_{1}=a_{2}=0\right) ; r_{n+3}=r_{n}-r_{n+2}$
($\mathrm{r}_{0}=1, \mathrm{r}_{1}=-1, \mathrm{r}_{2}=1$).
As an application to series, we can obtain explicit sums from algebraic units in fields of any degree. We illustrate the methods for a quadratic field, $\mathrm{Q}(\mathrm{w})$, where $\mathrm{w}^{2}-\mathrm{w}-1=0$. Here w is itself a unit and all positive powers are given by $w^{k}=F_{k-1}+F_{k} w, k=1,2, \ldots$ where the F_{k} are the Fibonacci numbers. We now have $\left(w^{k}\right)^{-1}==\left(F_{k-1}+F_{k} w\right)^{-1}$. We now expand the right side of the equation as an infinite series, and compute the inverse unit for the left side, yielding $(-1)^{\mathrm{k}} \mathrm{F}_{\mathrm{k}+1}+(-1)^{\mathrm{k}+1} \mathrm{~F}_{\mathrm{k}} \mathrm{w}=$ infinite series. By careful comparison of coefficients on both sides we get, for example, the following explicit sum of an infinite series.
$\mathrm{F}_{2 \mathrm{k} \mid-1}=\left\{\frac{1}{\mathrm{~F}_{21+1}}\right\}^{\mathrm{k}}\left[1+\sum_{\mathrm{n}=1}^{\infty}\binom{\mathrm{k}+\mathrm{n}-1}{\mathrm{n}}\left\{\frac{\mathrm{F}_{21}}{\mathrm{~F}_{21+1}}\right\}^{\mathrm{n}} \mathrm{F}_{\mathrm{n}-1}\right]$.

References

1. C. K. Kliorys "Unsolvability of Binary Forms." Journal of Number Theory 13, no. 3 (1981):334-336.
2. C. K. Kliorys. "Fibonacci Number Identities from Algebraic Units." The Fibonacci Quarterly 19, no. 2 (1981):149-153.
