
FORWARD COMPACTNESS
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Abstract. A real function f is continuous if and only if (f(xn)) is a conver-

gent sequence whenever (xn) is convergent and a subset E of R is compact if
any sequence x = (xn) of points in E has a convergent subsequence whose limit

is in E where R is the set of real numbers. These well known results suggest

us to introduce a concept of forward continuity in the sense that a function
f is forward continuous if limn→∞∆f(xn) = 0 whenever limn→∞∆xn = 0

and a concept of forward compactness in the sense that a subset E of R
is forward compact if any sequence x = (xn) of points in E has a subse-

quence z = (zk) = (xnk ) of the sequence x such that limk→∞∆zk = 0 where

∆yk = yk+1−yk. We prove that any forward continuous function defined on a
forward compact subset of R is uniformly continuous, uniform limit of forward

continuous functions is forward continuous, any forward continuous function

is continuous. Some other results related to forward continuity and continuity
are also obtained and some open problems are discussed.

1. Introduction

A real function f is continuous if and only if (f(xn)) is a convergent sequence
whenever (xn) is convergent. Regardless of limit, this is equivalent to the statement
that (f(xn)) is a Cauchy sequence whenever (xn) is. Using the idea of continuity
of a real function in terms of sequences, we might introduce a concept of forward
continuity in the sense that a function f is forward continuous if it transforms
forward convergent to 0 sequences to forward convergent to 0 sequences, i.e. (f(xn))
is forward convergent to 0 whenever (xn) is forward convergent to 0. Before we
begin, some definitions and notation will be given in the following. Throughout this
paper, N will denote the set of all positive integers. We will use boldface letters x,
y, z, ... for sequences x = (xn), y = (yn), z = (zn), ... of terms in R. c and ∆ will
denote the set of all convergent sequences and the set of all forward convergent to
0 sequences of points in R where a sequence x = (xn) is called forward convergent
to 0 if limn→∞∆xn = 0.

Following the idea given in a 1946 American Mathematical Monthly problem [4],
a number of authors Posner [12], Iwinski [10], Srinivasan [16], Antoni [1], Antoni and
Salat [2], Spigel and Krupnik [15] have studied A-continuity defined by a regular
summability matrix A. Some authors, Öztürk [11], Savaş and Das [13], Borsik
and Salat [3]) have studied A-continuity for methods of almost convergence or for
related methods.

Fast [8] introduced the definition of statistical convergence. Recall that for a
subset M of N the asymptotic density of M , denoted by δ(M), is given by
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δ(M) = lim
n→∞

1
n
|{k ≤ n : k ∈M}|,

if this limit exists, where |{k ≤ n : k ∈ M}| denotes the cardinality of the set
{k ≤ n : k ∈M}. A sequence (xn) is statistically convergent to ` if

δ({n : |xn − `| > ε}) = 0,

for every ε > 0. In this case ` is called the statistical limit of x. st(R) will denote
the set of statistically convergent sequences. Schoenberg [14] studied some basic
properties of statistical convergence and also studied the statistical convergence as
a summability method. Fridy [9] gave charecterizations of statistical convergence.

Recently, Connor and Grosse-Erdman [5] have given sequential definitions of
continuity for real functions calling G-continuity instead of A-continuity and their
results covers the earlier works related to A-continuity where a method of sequential
convergence, or briefly a method, is a linear function G defined on a linear subspace
of s, denoted by cG, into R. A sequence x = (xn) is said to be G-convergent to ` if
x ∈ cG and G(x) = `. In particular, lim denotes the limit function lim x = limn xn

on the linear space c and st− lim denotes the statistical limit function st− lim x =
st − limn xn on the linear space st(R). A function f is called G-continuous at a
point u provided that whenever a sequence x = (xn) of terms in the domain of f is
G-convergent to u, then the sequence f(x) = (f(xn)) is G-convergent to f(u). A
method G is called regular if every convergent sequence x = (xn) is G-convergent
with G(x) = lim x. A method is called subsequential if whenever x is G-convergent
with G(x) = `, then there is a subsequence (xnk

) of x with limk xnk
= `.

The purpose of this note is to introduce a concept of forward continuity of a
function and a concept of forward compactness of a subset of R which cannot be
given by means of any G and that forward continuity implies the ordinary continuity
and is implied by uniform continuity and to prove that any forward continuous
function on a forward compact subset E of R is uniformly continuous and that
uniform limit of a sequence of forward continuous functions is forward continuous.

2. forward compactness

We say that a sequence x = (xn) is forward convergent to a number ` if
limk→∞∆xk = ` where ∆xk = xk+1 − xk. Now we give the definition of forward
compactness of a subset of R.

Definition 1. A subset E of R is called forward compact if whenever x = (xn)
is a sequence of points in E there is a subsequence z = (zk) = (xnk

) of x with
limk→∞∆zk = 0.

Firstly, we note that any finite subset of R is forward compact, union of two
forward compact subsets of R is forward compact and intersection of any forward
compact subsets of R is forward compact. Furthermore any subset of a forward
compact set is forward compact and any bounded subset of R is forward compact.
Any compact subset of R is also forward compact and the converse is not always
true and there are forward compact subsets of R which are unbounded. For ex-
ample the set K = {

√
n : n ∈ N} is forward compact, but it is not compact. On

the other hand, the set N is not forward compact. We note that any slowly oscil-
lating compact subset of R is forward compact (see [7] for the definition of slowly
oscillating compactness).
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We note that this definition of forward compactness can not be obtained by
any G-sequential compactness, i.e. by any summability matrix A, even by the
summability matrix A = (ank) defined by ank = −1 if k = n and akn = 1 if
k = n+ 1 and

G(x) = limAx = lim
k→∞

∞∑
n=1

aknxn = lim
k→∞

∆xk (∗)

(see [6] for the definition of G-sequential compactness). Despite that G-sequential
compact subsets of R should include the singleton set {0}, forward compact subsets
of R do not have to include the singleton {0}.

A real function f is continuous if and only if, for each point x0 in the domain,
limn→∞ f(xn) = f(x0) whenever limn→∞ xn = x0. This is equivalent to the state-
ment that (f(xn)) is a convergent sequence whenever (xn) is. This is also equivalent
to the statement that (f(xn)) is a Cauchy sequence whenever (xn) is Cauchy. These
well known results for continuity for real functions in terms of sequences might sug-
gest us to give a new type continuity, namely, forward continuity:

Definition 2. A function f is called forward continuous on E if the sequence
f(x) = (f(xn)) is forward convergent to 0 whenever x = (xn) is a sequence of
terms in E which is forward convergent to 0 .

We note that this definition of continuity can not be obtained by anyA-continuity,
i.e. by any summability matrix A, even by the summability matrix A = (ank) de-
fined by (∗) however for this special summability matrix A if A-continuity of f at
the point 0 implies forward continuity of f , then f(0) = 0; and if forward continuity
of f implies A-continuity of f at the point 0, then f(0) = 0.

We also note that sum of two forward continuous functions is forward continuous
and composite of two forward continuous functions is forward continuous but the
product of two forward continuous functions need not be forward continuous as it
can be seen by considering product of the forward continuous function f(x) = x
with itself.

We note that if f and g are forward continuous functions, then so are max{f, g}
andmin{f, g}. More generally, if (fn) is a sequence of forward continuous functions,
then so are supfn and inffn.

In connection with forward convergent to 0 sequences and convergent sequences
the problem arises to investigate the following types of continuity of functions on
R.

(δ): (xn) ∈ ∆⇒ (f(xn)) ∈ ∆
(δc): (xn) ∈ ∆⇒ (f(xn)) ∈ c
(c): (xn) ∈ c⇒ (f(xn)) ∈ c
(d): (xn) ∈ c⇒ (f(xn)) ∈ ∆

We see that (δ) is forward continuity of f and (c) states the ordinary continuity
of f . It is easy to see that (δc) implies (δ), and (δ) does not imply (δc); and (δ)
implies (d), and (d) does not imply (δ); (δc) implies (c) and (c) does not imply (δc);
and (c) is eqivalent to (d).

Since statistical continuity is equivalent to ordinary continuity, (c) can be re-
placed by statistical continuity, i.e. st − limn→∞ f(xn) = f(`) whenever x = (xn)
is a statisctically convergent sequence with st − limn→∞ xn) = `. More generally
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(c) can be replaced by G-sequential continuity of f for any regular subsequential
method G (see Corollary to Theorem 5 on page 106 of [5]).

Now we give the implication (δ) implies (c), i.e. any forward continuous function
is continuous in the ordinary sense.
Theorem 1 If f is forward continuous on a subset E of R, then it is continuous on
E in the ordinary sense.

Proof. Let (xn) be any convergent sequence with limk→∞ xk = x0. Then the
sequence (x1, x0, x2, x0, ..., x0, xn, x0, ...) also converges to x0, hence limk→∞∆xk =
0. So the sequence (x1, x0, x2, x0, ..., x0, xn, x0, ...) is forward convergent to 0 hence,
by the hypothesis, the sequence

(f(x1), f(x0), f(x2), f(x0), ..., f(x0), f(xn), f(x0), ...)

is forward convergent to 0. It follows from this that the sequence (f(xn)) converges
to f(x0). This completes the proof of the theorem.

The converse is not always true for the function f(x) = x2 is an example since
the sequence (

√
n) is forward convergent to 0 while (f(

√
n)) = (n) is not forward

convergent to 0. �

Now we state the following straightforward result related to statistical continuity.
Corollary 2 If f is forward continuous, then it is statistically continuous.

Although the following result seems to be obvious, we state it to include a more
general case.
Corollary 3 If f is forward continuous, then it is G-continuous for any regular
subsequential method G.
Theorem 4 Forward continuous image of any forward compact subset of R is forward
compact.

Proof. Let f be a forward continuous function and E be a forward compact subset of
R. Take any sequence y = (yn) of terms in f(E). Write yn = f(xn) where xn ∈ E
for each n ∈ N. Forward compactness of E implies that there is a subsequence
z = (zk) = (xnk

) of x with limk→∞∆zk = 0. Since f is forward continuous,
(tk) = f(z) = (f(zk)) is forward convergent to 0. Thus (tk) is a subsequence of the
sequence f(x) with limk→∞∆tk = 0. This completes the proof of the theorem. �

Corollary 5 Forward continuous image of any compact subset of R is compact.
The proof of this theorem follows from the preceeding theorem.

Theorem 6 If a function f on a subset E of R is uniformly continuous, then it is
forward continuous on E.

Proof. Let f be a uniformly continuous function and x = (xn) be any sequence
of points in E such that limn→∞∆xn = 0. To prove that (f(xn)) is forward
convergent to 0, take any ε > 0. Uniform continuity of f implies that there exists
a δ > 0, depending on ε, such that |f(x) − f(y)| < ε whenever |x − y| < δ. Since
(xn) is forward convergent to 0, for this δ > 0, there exist an N = N(δ) = N1(ε)
such that |∆xn| < δ whenever n > N . Hence |∆f(xn)| < ε if n > N . It follows
from this that (f(xn)) is forward convergent to 0. This completes the proof of the
theorem. �

It is well known that any continuous function on a compact subset E of R is
also uniformly continuous on E. It is also true for a regular subsequential method
G that any forward continuous function on a G-sequentially compact subset E of
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R is also uniformly continuous on E (see [6]). Furthermore, for forward continuous
functions, we have the following:
Theorem 7 If a function is forward continuous on a forward compact subset E of
R, then it is uniformly continuous on E.

Proof. Suppose that f is not uniformly continuous on E so that there exist an
ε0 > 0 and sequences (xn) and (yn) of points in E such that

|xn − yn| < 1/n

and
|f(xn)− f(yn)| ≥ ε0

for all n ∈ N. Since E is forward compact, there is a subsequence of (xnk
) of (xn)

that is forward convergent to 0. Since E is forward compact, there is a subsequence
of (ynkj

) of (ynk
) that is forward convergent to 0. It is clear that the corresponding

sequence (xnkj
) is also forward convergent to 0, since (ynkj

) is forward convergent
to 0 and

|xnkj
− xnkj+1

| ≤ |xnkj
− ynkj

|+ |ynkj
− ynkj+1

|+ |ynkj+1
− xnkj+1

|.

Now define a sequence z = (zj) by setting z1 = xnk1
, z2 = ynk1

, z3 = xnk2
, z4 =

ynk2
, z5 = xnk3

, z6 = ynk3
, and so on. Thus the sequence z = (zj) defined in this

way is forward convergent to 0 while f(z) = (f(zj)) is not forward convergent
to 0. Hence this establishes a contradiction so this completes the proof of the
theorem. �

It is a known result that uniform limit of a sequence of continuous functions is
continuous. This is also true in case forward continuity, i.e. uniform limit of a
sequence of forward continuous functions is forward continuous.
Theorem 8 If (fn) is a sequence of forward continuous functions defined on a sub-
set E of R and (fn) is uniformly convergent to a function f , then f is forward
continuous on E.

Proof. Let x = (xn) be any sequence of points in E such that limn→∞∆xn = 0.
Let ε > 0. Then there exists a positive integer N such that |fn(x)− f(x)| < ε

3 for
all x ∈ E whenever n ≥ N . As fN is forward continuous, there exists a positive
integer N1, depending on ε, and greater than N such that |fN (xn+1)−fN (xn)| < ε

3
for n ≥ N1. Now for n ≥ N1 we have

|f(xn+1)−f(xn)| ≤ |f(xn+1)−fN (xn+1)|+ |fN (xn+1)−fN (xn)|+ |fN (xn)−f(xn)|

≤ ε

3
+
ε

3
+
ε

3
= ε.

This completes the proof of the theorem. �
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[11] E.Öztürk, On almost-continuity and almost A-continuity of real functions, Comm.Fac.Sci.
Univ.Ankara Ser. A1 Math. 32, 1983, 25-30. MR 86h:26003

[12] E.C.Posner, Summability preserving functions, Proc.Amer.Math.Soc. 12, 1961, 73-76. MR

2212327
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