MATRIX TRANSFORMATIONS BETWEEN $c_I(\Delta) \cap l_{\infty}(\Delta)$, $c_I(\Delta^2) \cap l_{\infty}(\Delta^2)$, $c_I(\Delta^m) \cap l_{\infty}(\Delta^m)$ AND c_I

Jeff Connor* and Hafize Gök**

 * Ohio University, Department of Mathematics, Athens, Ohio, USA connorj@ohio.edu
** Afyonkarahisar Kocatepe University, Department of Mathematics, Afyonkarahisar/TURKEY hafize 1409@hotmail.com

ABSTRACT

Let l_{∞} , c and c_0 be the linear spaces of bounded, convergent and null sequences, respectively. In 1981, H. Kızmaz defined $l_{\infty}(\Delta)$, $c(\Delta)$, and $c_0(\Delta)$ spaces with $\Delta x = (\Delta x_n) = (x_n - x_{n+1})$ where $n \in \mathbb{N} = \{1, 2, ...\}$. He then characterized some matrix transformations such that $A \in (E', F)$ and $A \in (E, F')$ where E and F denote one of the sequence spaces l_{∞} and c; E' and F' denote one of the sequence spaces $l_{\infty}(\Delta)$ and $c(\Delta)$. In this study we establish some results for matrix transformations such that $A \in (c_I(\Delta) \cap l_{\infty}(\Delta), c_I)$ where $A = (a_{nk})$ is a nonnegative matrix, $I \subseteq 2^{\mathbb{N}}$ is an admissible ideal, c_I is the space of all I-convergent sequences and,

$$c_I(\Delta) = \{x = (x_n) : (\Delta x_n) \in c_I\}$$

$$l_{\infty}(\Delta) = \{x = (x_n) : (\Delta x_n) \in l_{\infty}\}$$

Then we establish some results for matrix transformations such that $A \in (c_I(\Delta^2) \cap l_{\infty}(\Delta^2), c_I)$ where,

$$c_I(\Delta^2) = \{x = (x_n) : (\Delta^2 x_n) \in c_I\}$$

$$l_{\infty}(\Delta^2) = \{x = (x_n) : (\Delta^2 x_n) \in l_{\infty}\}$$

In conclusion we generalize these results for

$$c_I(\Delta^m) = \{x = (x_n) : (\Delta^m x_n) \in c_I\}$$

$$l_{\infty}(\Delta^m) = \{x = (x_n) : (\Delta^m x_n) \in l_{\infty}\}$$

where $m \in \mathbb{N}$ and we establish some results for $A \in (c_I(\Delta^m) \cap l_{\infty}(\Delta^m), c_I)$ matrix transformations.