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Background Highest weight crystals

The adjoint crystal for sl3

There are 6 one dimensional weight spaces and one two-dimensional
weight space.
The generators F1 and F2 act between weight spaces.
There are 4 distinguished one dimensional spaces in the middle.
If we use Uq(sl3) and ‘rescale’ the operators, then “at q = 0", they match
up. You get a colored directed graph.

Peter Tingley (MIT) Energy function Wake forest, Sept. 24, 2011 3 / 14



Background Highest weight crystals

The adjoint crystal for sl3

There are 6 one dimensional weight spaces and one two-dimensional
weight space.

The generators F1 and F2 act between weight spaces.
There are 4 distinguished one dimensional spaces in the middle.
If we use Uq(sl3) and ‘rescale’ the operators, then “at q = 0", they match
up. You get a colored directed graph.

Peter Tingley (MIT) Energy function Wake forest, Sept. 24, 2011 3 / 14



Background Highest weight crystals

The adjoint crystal for sl3

2 dim

There are 6 one dimensional weight spaces and one two-dimensional
weight space.

The generators F1 and F2 act between weight spaces.
There are 4 distinguished one dimensional spaces in the middle.
If we use Uq(sl3) and ‘rescale’ the operators, then “at q = 0", they match
up. You get a colored directed graph.

Peter Tingley (MIT) Energy function Wake forest, Sept. 24, 2011 3 / 14



Background Highest weight crystals

The adjoint crystal for sl3

2 dim

There are 6 one dimensional weight spaces and one two-dimensional
weight space.
The generators F1 and F2 act between weight spaces.

There are 4 distinguished one dimensional spaces in the middle.
If we use Uq(sl3) and ‘rescale’ the operators, then “at q = 0", they match
up. You get a colored directed graph.

Peter Tingley (MIT) Energy function Wake forest, Sept. 24, 2011 3 / 14



Background Highest weight crystals

The adjoint crystal for sl3

1

1

1

1

2

2

2

2

2 dim

There are 6 one dimensional weight spaces and one two-dimensional
weight space.
The generators F1 and F2 act between weight spaces.

There are 4 distinguished one dimensional spaces in the middle.
If we use Uq(sl3) and ‘rescale’ the operators, then “at q = 0", they match
up. You get a colored directed graph.

Peter Tingley (MIT) Energy function Wake forest, Sept. 24, 2011 3 / 14



Background Highest weight crystals

The adjoint crystal for sl3

1

1

1

1

2

2

2

2

2 dim

There are 6 one dimensional weight spaces and one two-dimensional
weight space.
The generators F1 and F2 act between weight spaces.
There are 4 distinguished one dimensional spaces in the middle.

If we use Uq(sl3) and ‘rescale’ the operators, then “at q = 0", they match
up. You get a colored directed graph.

Peter Tingley (MIT) Energy function Wake forest, Sept. 24, 2011 3 / 14



Background Highest weight crystals

The adjoint crystal for sl3

1

1

1

1

2

2

2

2

2 dim

There are 6 one dimensional weight spaces and one two-dimensional
weight space.
The generators F1 and F2 act between weight spaces.
There are 4 distinguished one dimensional spaces in the middle.
If we use Uq(sl3) and ‘rescale’ the operators, then “at q = 0", they match
up.

You get a colored directed graph.

Peter Tingley (MIT) Energy function Wake forest, Sept. 24, 2011 3 / 14



Background Highest weight crystals

The adjoint crystal for sl3

1

1

1

1

2

2

2

2

There are 6 one dimensional weight spaces and one two-dimensional
weight space.
The generators F1 and F2 act between weight spaces.
There are 4 distinguished one dimensional spaces in the middle.
If we use Uq(sl3) and ‘rescale’ the operators, then “at q = 0", they match
up.

You get a colored directed graph.

Peter Tingley (MIT) Energy function Wake forest, Sept. 24, 2011 3 / 14



Background Highest weight crystals

The adjoint crystal for sl3

1

1

1

1

2

2

2

2

There are 6 one dimensional weight spaces and one two-dimensional
weight space.
The generators F1 and F2 act between weight spaces.
There are 4 distinguished one dimensional spaces in the middle.
If we use Uq(sl3) and ‘rescale’ the operators, then “at q = 0", they match
up. You get a colored directed graph.
Peter Tingley (MIT) Energy function Wake forest, Sept. 24, 2011 3 / 14



Background Highest weight crystals

The adjoint crystal for sl3

1

1

1

1

2

2

2

2

Often the vertices of the crystal graph can be parametrized by
combinatorial objects.

The generators F1 and F2 act between weight spaces.
There are 4 distinguished one dimensional spaces in the middle.
If we use Uq(sl3) and ‘rescale’ the operators, then “at q = 0", they match
up. You get a colored directed graph.

Peter Tingley (MIT) Energy function Wake forest, Sept. 24, 2011 3 / 14



Background Highest weight crystals

The adjoint crystal for sl3

1 1
2

1 2
2

1 1

1 2
3

1 3
2

2 2
3

1 3
3

2 3
3

1

1

1

1

2

2

2

2

3

Often the vertices of the crystal graph can be parametrized by
combinatorial objects.

Then the combinatorics gives information about representation theory,
and vise-versa.
There are 4 distinguished one dimensional spaces in the middle.
If we use Uq(sl3) and ‘rescale’ the operators, then “at q = 0", they match
up. You get a colored directed graph.

Peter Tingley (MIT) Energy function Wake forest, Sept. 24, 2011 3 / 14



Background Highest weight crystals

The adjoint crystal for sl3

1 1
2

1 2
2

1 1

1 2
3

1 3
2

2 2
3

1 3
3

2 3
3

1

1

1

1

2

2

2

2

3

Often the vertices of the crystal graph can be parametrized by
combinatorial objects.
Then the combinatorics gives information about representation theory,
and vise-versa.

There are 4 distinguished one dimensional spaces in the middle.
If we use Uq(sl3) and ‘rescale’ the operators, then “at q = 0", they match
up. You get a colored directed graph.

Peter Tingley (MIT) Energy function Wake forest, Sept. 24, 2011 3 / 14



Background Highest weight crystals

The adjoint crystal for sl3

1 1
2

1 2
2

1 1

1 2
3

1 3
2

2 2
3

1 3
3

2 3
3

1

1

1

1

2

2

2

2

3

Often the vertices of the crystal graph can be parametrized by
combinatorial objects.
Then the combinatorics gives information about representation theory,
and vise-versa.
Here you see that the graded dimension of the representation is the
generating function for semi-standard Young tableaux.
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For sl2, crystals are just directed segments.
For other types, just treat each sl2 independently.
Consider B(ω1)⊗ B(ω2) for sl3.
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Background Demazure crystals

Demazure crystals (for sl3)

B(ω1 + ω2)

�
� �

� �
� �

�

♣Ss2s1

♣
♣ ♣

♣

♣
∪

Bs2s1(ω1 + ω2)

For each w ∈ W, there is a 1-dimensional weight space Sw of V(λ).
The Demazure module Vw(λ) in the U

+
q
(g) (= �Ei�) submodule

generated by Sw.
Kashiwara showed that the global basis restricts to a basis of Vw(λ)
Hence, Vw(λ) defines a subset Bw(λ) of B(λ), called the Demazure
crystal.
Bw(λ) is closed under the ei operators, but not the fi operators.
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Background Kirillov–Reshetikhin crystals

Kirillov–Reshetikhin crystals

For Dn (with n ≥ 7)

B
5,2 ∼= B(2ω5)⊕ B(ω3 + ω5)⊕ B(ω1 + ω5)⊕ B(2ω3)⊕ B(ω1 + ω3)⊕ B(2ω1)

B
1,2 for sl3:

Classically irreducible

✚✚❂

✚✚❂

✚✚❂

⑦

⑦

⑦

✻

✻

✻

1 1

1 2

2 2 1 3

2 3

3 3

For affine g, U
�
q
(g) has finite dimensional representations. But these

usually do not have crystal bases.
In all non-exceptional types, the Kirillov–Reshetikhin crystals B

r,s (for
r ∈ I, s ∈ N) do (Okado, Okado-Schilling).
These have “tableaux" type realizations.
Classical decompositions are known, and are multiplicity free.
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These have “tableaux" type realizations.
Classical decompositions are known, and are multiplicity free.
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Background Relationship between KR crystals and Demazure crsystals.

Relationship between KR crystals and Demazure crsystals

For sl3: B
1,1 ⊗ B

2,1 Bs1s2s1s0(Λ0)

Theorem (Fourier-Littelmann, Naito-Sagaki, Fourier-Schilling-Shimozono, ?)

In non-exceptional types, a tensor product B of level � KR crystals is

isomorphic (as a classical crystal) to a Demazure crystal Bw(�Λτ(0)).

There is a unique isomorphism such that the pullbacks of 0 arrows in the

Demazure crystal are 0-arrows in B.
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Background The energy function

Energy function for a prime KR crystal

For D
(1)
n (non-spin nodes):

E = 4 3 2 2 1 0

B
5,2 ∼= B(2ω5)⊕ B(ω3 + ω5)⊕ B(ω1 + ω5)⊕ B(2ω3)⊕ B(ω1 + ω3)⊕ B(2ω1)

The energy function counts the number of vertical dominoes that can be
removed.
In other types it is similar, but the shape being removed changes a bit.
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Background The energy function

Energy function for a composite KR crystal

There is a unique H = HB2,B1 : B2 ⊗ B1 → Z such that
HB2,B1(uB2 ⊗ uB1) = 0

For all b2 ∈ B2, b1 ∈ B1,

H(ei(b2 ⊗ b1)) = H(b2 ⊗ b1) +






− 1 if i = 0 and LL
1 if i = 0 and RR
0 otherwise.

LL means: e0 acts on the left in both b2 ⊗ b1 and σ(b2 ⊗ b1).
RR means: e0 acts on the left in both b2 ⊗ b1 and σ(b2 ⊗ b1).
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Background The energy function

Energy function for a composite KR crystal

For B = B
rN ,sN ⊗ · · · ⊗ B

r1,s1 , 1 ≤ i ≤ N and i < j ≤ N, set

Ei := EB
ri,siσ1σ2 · · ·σi−1 and Hj,i := Hiσi+1σi+2 · · ·σj−1,

where σi and Hi act on the i-th and (i + 1)-st tensor factors . Then

EB :=
�

N≥j>i≥1

Hj,i +
N�

i=1

Ei.
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Results

Main Theorem

Theorem (

Schilling-T-, conjectured by HKOTT

)

Fix g of non-exceptional affine type, and let B = B
r1,cr1� ⊗ · · · ⊗ B

rk,cr
k
�

be a

composite KR crystal of level �. Then the isomorphism between B and the

corresponding Demazure crystal Bw(�Λτ(0)) intertwines the energy function

with the affine grading.

Sketch of proof
Using explicit models show that, for all b ∈ B

r,cr�, E(f0(b)) ≤ E(b) + 1.
Furthermore, if εi(b) > �, then this is equality.
An inductive argument gives the same statement for B a composite KR
crystal of level �.
Since ϕ(b�Λ0) = �, the result follows for tensor product rule.

Corollary

E(b)− E(u) records the minimal number of f0 in a sequence of operators

taking the ground state path u to b.
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Applications Macdonald polynomials

Macdonald polynomials

Work of Sanderson and Ion shows that, in types A
(1)
n ,D

(1)
n and E

(1)
n , the

non-symmetric Macdonald polynomials satisfy

Eλ(q, 0) = q
c ch(Vw(Λτ(0)))|eδ=q, e

Λ0=1.

Our results imply that, in types A
(1)
n and D

(1)
n , the symmetric Macdonald

polynomials satisfy.

Pλ(q, 0) =
�

b∈B

q
−E(b)

e
wt(b),

where E is the combinatorial energy function (called D in our paper).
We also see the non-symmetric Macdonald polytomials as partial sums
over KR crystals.
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Applications Macdonald polynomials

Example

P−2ω2(x; q, 0) = x
2
1 + (q + 1)x1x2 + x

2
2 + (q + 1)x1x3 + (q + 1)x2x3 + x

2
3

= q(x1x2 + x1x3 + x2x3)

+ x
2
1 + x1x2 + x

2
2 + x1x3 + x2x3 + x

2
3

In sl3, B
1,1 ⊗ B

1,1 looks like:

2 ⊗ 1 2−→ 3 ⊗ 1 0−→ 1 ⊗ 1 1−→ 1 ⊗ 2 1−→ 2 ⊗ 2 2−→ 2 ⊗ 3 2−→ 3 ⊗ 3,
1
� 3 ⊗ 2

2
� 1 ⊗ 3

1
�

where to simplify the diagram we also show the 0 arrows that survive in the
corresponding Demazure crystal.
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Applications Whittaker functions

Whittaker functions

Gerasimov, Lebedev, Oblezin showed that q-deformed gln-Whittaker
functions are Macdonald polynomials specialized at t = 0.
So, by Sanderson and Ion, they can be expressed using Demazure
characters.
Hence, by our results they can be expressed in terms of KR crystals and
the energy function.
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Future directions Macdonald polynomials from Demazure characters in type C
(1)
n ?

Future directions

B
1,1 ⊗ B

1,1 ⊗ bΛ0

=

Bs1s2s1s2s0(Λ0) Bs2s1s2(Λ2)

Lenart recently showed that type C
(1)
n Macdonlad polynomials (at t = 0)

can be expressed as sums over tensor products of KR-crystals, where q

counts energy.
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=

Bs1s2s1s2s0(Λ0) Bs2s1s2(Λ2)

These tensor products seem to break up as unions of Demazure modules.
Via Lenart’s results, this would give a formula for Macdonald
polynomials as sums of Demazure Characters.
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