Demazure crystals, Kirillov–Reshetikhin crystals, and the energy function

Peter Tingley
(joint with Anne Schilling)

Massachusetts Institute of Technology

Wake forest, Sept. 24, 2011

1Slides and notes available at www-math.mit.edu/~ptingley/
Outline

1 Background
 - Highest weight crystals
 - Demazure crystals
 - Kirillov–Reshetikhin crystals
 - Relationship between KR crystals and Demazure crystals.
 - The energy function

2 Results

3 Applications
 - Macdonald polynomials
 - Whittaker functions

4 Future directions
 - Macdonald polynomials from Demazure characters in type $C_n^{(1)}$?
The adjoint crystal for \mathfrak{sl}_3

There are 6 one-dimensional weight spaces and one two-dimensional weight space. The generators F_1 and F_2 act between weight spaces. There are 4 distinguished one-dimensional spaces in the middle. If we use $U_q(\mathfrak{sl}_3)$ and 'rescale' the operators, then "at $q=0$", they match up. You get a colored directed graph.
The adjoint crystal for \mathfrak{sl}_3

- There are 6 one dimensional weight spaces and one two-dimensional weight space.
The adjoint crystal for \mathfrak{sl}_3

- There are 6 one dimensional weight spaces and one two-dimensional weight space.
The adjoint crystal for \mathfrak{sl}_3

- There are 6 one dimensional weight spaces and one two-dimensional weight space.
- The generators F_1 and F_2 act between weight spaces.
The adjoint crystal for \mathfrak{sl}_3

- There are 6 one dimensional weight spaces and one two-dimensional weight space.
- The generators F_1 and F_2 act between weight spaces.
The adjoint crystal for \mathfrak{sl}_3

- There are 6 one dimensional weight spaces and one two-dimensional weight space.
- The generators F_1 and F_2 act between weight spaces.
- There are 4 distinguished one dimensional spaces in the middle.
There are 6 one dimensional weight spaces and one two-dimensional weight space.

The generators F_1 and F_2 act between weight spaces.

There are 4 distinguished one dimensional spaces in the middle.

If we use $U_q(\mathfrak{sl}_3)$ and ‘rescale’ the operators, then “at $q = 0$", they match up.
There are 6 one-dimensional weight spaces and one two-dimensional weight space.

The generators F_1 and F_2 act between weight spaces.

There are 4 distinguished one-dimensional spaces in the middle.

If we use $U_q(\mathfrak{sl}_3)$ and ‘rescale’ the operators, then “at $q = 0$”, they match up.
There are 6 one dimensional weight spaces and one two-dimensional weight space.

The generators F_1 and F_2 act between weight spaces.

There are 4 distinguished one dimensional spaces in the middle.

If we use $U_q(\mathfrak{sl}_3)$ and ‘rescale’ the operators, then “at $q = 0$", they match up. You get a colored directed graph.
The adjoint crystal for \mathfrak{sl}_3

Often the vertices of the crystal graph can be parametrized by combinatorial objects.
The adjoint crystal for \mathfrak{sl}_3

Often the vertices of the crystal graph can be parametrized by combinatorial objects.
Often the vertices of the crystal graph can be parametrized by combinatorial objects.

Then the combinatorics gives information about representation theory, and vise-versa.
Often the vertices of the crystal graph can be parametrized by combinatorial objects.
Then the combinatorics gives information about representation theory, and vise-versa.
Here you see that the graded dimension of the representation is the generating function for semi-standard Young tableaux.
Tensor product rule

For sl_2, crystals are just directed segments. For other types, just treat each sl_2 independently. Consider $B(\omega_1) \otimes B(\omega_2)$ for sl_3.

Peter Tingley (MIT)
Tensor product rule

- For \mathfrak{sl}_2, crystals are just directed segments.
Tensor product rule

For \mathfrak{sl}_2, crystals are just directed segments.
Tensor product rule

For \mathfrak{sl}_2, crystals are just directed segments.
Tensor product rule

- For \(\mathfrak{sl}_2 \), crystals are just directed segments.
Tensor product rule

For \(\mathfrak{sl}_2\), crystals are just directed segments.
Tensor product rule

For \(\mathfrak{sl}_2 \), crystals are just directed segments.
For \mathfrak{sl}_2, crystals are just directed segments.
Tensor product rule

- For \mathfrak{sl}_2, crystals are just directed segments.
For \mathfrak{sl}_2, crystals are just directed segments.
Tensor product rule

- For \mathfrak{sl}_2, crystals are just directed segments.
Tensor product rule

- For \mathfrak{sl}_2, crystals are just directed segments.
Tensor product rule

- For \mathfrak{sl}_2, crystals are just directed segments.
For \mathfrak{sl}_2, crystals are just directed segments.
For \mathfrak{sl}_2, crystals are just directed segments.
Tensor product rule

- For \mathfrak{sl}_2, crystals are just directed segments.
Tensor product rule

- For \mathfrak{sl}_2, crystals are just directed segments.

For \mathfrak{sl}_3, just treat each \mathfrak{sl}_2 independently.
Tensor product rule

For \(\mathfrak{sl}_2\), crystals are just directed segments.
For \mathfrak{sl}_2, crystals are just directed segments.
Tensor product rule

For \mathfrak{sl}_2, crystals are just directed segments.
Tensor product rule

For \mathfrak{sl}_2, crystals are just directed segments.
For \(\mathfrak{sl}_2\), crystals are just directed segments.
For \mathfrak{sl}_2, crystals are just directed segments.
For \mathfrak{sl}_2, crystals are just directed segments.
Tensor product rule

For \mathfrak{sl}_2, crystals are just directed segments.
Tensor product rule

- For \mathfrak{sl}_2, crystals are just directed segments.
For \mathfrak{sl}_2, crystals are just directed segments.
Tensor product rule

For \mathfrak{sl}_2, crystals are just directed segments.
For \mathfrak{sl}_2, crystals are just directed segments.
Tensor product rule

For \mathfrak{sl}_2, crystals are just directed segments.
For \mathfrak{sl}_2, crystals are just directed segments.
Tensor product rule

- For \mathfrak{sl}_2, crystals are just directed segments.
- For other types, just treat each \mathfrak{sl}_2 independently.
For \mathfrak{sl}_2, crystals are just directed segments.

For other types, just treat each \mathfrak{sl}_2 independently.

Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3.
For \mathfrak{sl}_2, crystals are just directed segments.

For other types, just treat each \mathfrak{sl}_2 independently.

Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3.
Tensor product rule

- For \mathfrak{sl}_2, crystals are just directed segments.
- For other types, just treat each \mathfrak{sl}_2 independently.
- Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3.
Tensor product rule

- For \mathfrak{sl}_2, crystals are just directed segments.
- For other types, just treat each \mathfrak{sl}_2 independently.
- Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3.
Tensor product rule

- For \mathfrak{sl}_2, crystals are just directed segments.
- For other types, just treat each \mathfrak{sl}_2 independently.
- Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3.

Peter Tingley (MIT)
Tensor product rule

- For \mathfrak{sl}_2, crystals are just directed segments.
- For other types, just treat each \mathfrak{sl}_2 independently.
- Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3.
Tensor product rule

- For \mathfrak{sl}_2, crystals are just directed segments.
- For other types, just treat each \mathfrak{sl}_2 independently.
- Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3.
For \(\mathfrak{sl}_2 \), crystals are just directed segments.

For other types, just treat each \(\mathfrak{sl}_2 \) independently.

Consider \(B(\omega_1) \otimes B(\omega_2) \) for \(\mathfrak{sl}_3 \).
Tensor product rule

- For \mathfrak{sl}_2, crystals are just directed segments.
- For other types, just treat each \mathfrak{sl}_2 independently.
- Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3.

Peter Tingley (MIT)
Energy function
Wake forest, Sept. 24, 2011
4 / 14
- For \mathfrak{sl}_2, crystals are just directed segments.
- For other types, just treat each \mathfrak{sl}_2 independently.
- Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3.
Tensor product rule

- For \mathfrak{sl}_2, crystals are just directed segments.
- For other types, just treat each \mathfrak{sl}_2 independently.
- Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3.
Tensor product rule

- For \mathfrak{sl}_2, crystals are just directed segments.
- For other types, just treat each \mathfrak{sl}_2 independently.
- Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3.
Tensor product rule

- For \mathfrak{sl}_2, crystals are just directed segments.
- For other types, just treat each \mathfrak{sl}_2 independently.
- Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3.
Tensor product rule

- For \mathfrak{sl}_2, crystals are just directed segments.
- For other types, just treat each \mathfrak{sl}_2 independently.
- Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3.
Tensor product rule

- For \mathfrak{sl}_2, crystals are just directed segments.
- For other types, just treat each \mathfrak{sl}_2 independently.
- Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3.
Tensor product rule

- For \mathfrak{sl}_2, crystals are just directed segments.
- For other types, just treat each \mathfrak{sl}_2 independently.
- Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3.
For \mathfrak{sl}_2, crystals are just directed segments.

For other types, just treat each \mathfrak{sl}_2 independently.

Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3.
For \mathfrak{sl}_2, crystals are just directed segments.

For other types, just treat each \mathfrak{sl}_2 independently.

Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3.
For \mathfrak{sl}_2, crystals are just directed segments.

For other types, just treat each \mathfrak{sl}_2 independently.

Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3.
Tensor product rule

 sí_2, crystals are just directed segments.
 sí_2 in other types, just treat each sí_2 independently.

Consider $B(\omega_1) \otimes B(\omega_2)$ for sí_3.
Tensor product rule

- For \(\mathfrak{sl}_2 \), crystals are just directed segments.
- For other types, just treat each \(\mathfrak{sl}_2 \) independently.
- Consider \(B(\omega_1) \otimes B(\omega_2) \) for \(\mathfrak{sl}_3 \).
Tensor product rule

- For \mathfrak{sl}_2, crystals are just directed segments.
- For other types, just treat each \mathfrak{sl}_2 independently.
- Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3.
For \mathfrak{sl}_2, crystals are just directed segments.

For other types, just treat each \mathfrak{sl}_2 independently.

Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3.

$B(\omega_1 + \omega_2)$
Tensor product rule

For \mathfrak{sl}_2, crystals are just directed segments.
For other types, just treat each \mathfrak{sl}_2 independently.
Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3.
Demazure crystals (for \(\mathfrak{sl}_3\))

For each \(w \in W\), there is a 1-dimensional weight space \(S_w\) of \(V(\lambda)\). The Demazure module \(V_w(\lambda)\) in the \(U^+ q(\mathfrak{g})\) submodule generated by \(S_w\). Kashiwara showed that the global basis restricts to a basis of \(V_w(\lambda)\). Hence, \(V_w(\lambda)\) defines a subset \(B_w(\lambda)\) of \(B(\lambda)\), called the Demazure crystal. \(B_w(\lambda)\) is closed under the \(e_i\) operators, but not the \(f_i\) operators.
Demazure crystals (for \mathfrak{sl}_3)

For each $w \in W$, there is a 1-dimensional weight space S_w of $V(\lambda)$.
Demazure crystals (for \mathfrak{sl}_3)

- For each $w \in W$, there is a 1-dimensional weight space S_w of $V(\lambda)$.
- The Demazure module $V_w(\lambda)$ in the $U_q^+(\mathfrak{g}) (= \langle E_i \rangle)$ submodule generated by S_w.
For each \(w \in W \), there is a 1-dimensional weight space \(S_w \) of \(V(\lambda) \).

- The Demazure module \(V_w(\lambda) \) in the \(U_q^+(\mathfrak{g}) \) (\(\langle E_i \rangle \)) submodule generated by \(S_w \).
- Kashiwara showed that the global basis restricts to a basis of \(V_w(\lambda) \)
Demazure crystals (for \mathfrak{sl}_3)

- For each $w \in W$, there is a 1-dimensional weight space S_w of $V(\lambda)$.
- The Demazure module $V_w(\lambda)$ in the $U_q^+(\mathfrak{g})$ ($= \langle E_i \rangle$) submodule generated by S_w.
- Kashiwara showed that the global basis restricts to a basis of $V_w(\lambda)$.
- Hence, $V_w(\lambda)$ defines a subset $B_w(\lambda)$ of $B(\lambda)$, called the Demazure crystal.
Demazure crystals (for \(\mathfrak{sl}_3\))

\[B(\omega_1 + \omega_2) \]

- For each \(w \in W \), there is a 1-dimensional weight space \(S_w \) of \(V(\lambda) \).
- The Demazure module \(V_w(\lambda) \) in the \(U_q^+(\mathfrak{g}) \) submodule generated by \(S_w \).
- Kashiwara showed that the global basis restricts to a basis of \(V_w(\lambda) \).
- Hence, \(V_w(\lambda) \) defines a subset \(B_w(\lambda) \) of \(B(\lambda) \), called the Demazure crystal.
Demazure crystals (for \mathfrak{sl}_3)

For each $w \in W$, there is a 1-dimensional weight space S_w of $V(\lambda)$.

The Demazure module $V_w(\lambda)$ in the $U_q^+(g) (= \langle E_i \rangle)$ submodule generated by S_w.

Kashiwara showed that the global basis restricts to a basis of $V_w(\lambda)$.

Hence, $V_w(\lambda)$ defines a subset $B_w(\lambda)$ of $B(\lambda)$, called the Demazure crystal.
For each $w \in W$, there is a 1-dimensional weight space S_w of $V(\lambda)$.

The Demazure module $V_w(\lambda)$ in the $U_q^+(g)$ (= $\langle E_i \rangle$) submodule generated by S_w.

Kashiwara showed that the global basis restricts to a basis of $V_w(\lambda)$.

Hence, $V_w(\lambda)$ defines a subset $B_w(\lambda)$ of $B(\lambda)$, called the Demazure crystal.
Demazure crystals (for \(\mathfrak{sl}_3\))

- For each \(w \in W\), there is a 1-dimensional weight space \(S_w\) of \(V(\lambda)\).
- The Demazure module \(V_w(\lambda)\) in the \(U_q^+(\mathfrak{g})\) (= \(\langle E_i \rangle\)) submodule generated by \(S_w\).
- Kashiwara showed that the global basis restricts to a basis of \(V_w(\lambda)\)
- Hence, \(V_w(\lambda)\) defines a subset \(B_w(\lambda)\) of \(B(\lambda)\), called the Demazure crystal.
Demazure crystals (for \mathfrak{sl}_3)

For each $w \in W$, there is a 1-dimensional weight space S_w of $V(\lambda)$.

The Demazure module $V_w(\lambda)$ in the $U^+_q(\mathfrak{g})$ ($= \langle E_i \rangle$) submodule generated by S_w.

Kashiwara showed that the global basis restricts to a basis of $V_w(\lambda)$.

Hence, $V_w(\lambda)$ defines a subset $B_w(\lambda)$ of $B(\lambda)$, called the Demazure crystal.
Demazure crystals (for \mathfrak{sl}_3)

For each $w \in W$, there is a 1-dimensional weight space S_w of $V(\lambda)$.
- The Demazure module $V_w(\lambda)$ in the $U_q^+(\mathfrak{g}) (= \langle E_i \rangle)$ submodule generated by S_w.
- Kashiwara showed that the global basis restricts to a basis of $V_w(\lambda)$.
- Hence, $V_w(\lambda)$ defines a subset $B_w(\lambda)$ of $B(\lambda)$, called the Demazure crystal.

$B(\omega_1 + \omega_2) \cup S_{s_2s_1}$
Demazure crystals (for \mathfrak{sl}_3)

For each $w \in W$, there is a 1-dimensional weight space S_w of $V(\lambda)$.

- The Demazure module $V_w(\lambda)$ in the $U_q^+(\mathfrak{g}) (= \langle E_i \rangle)$ submodule generated by S_w.
- Kashiwara showed that the global basis restricts to a basis of $V_w(\lambda)$.
- Hence, $V_w(\lambda)$ defines a subset $B_w(\lambda)$ of $B(\lambda)$, called the Demazure crystal.
Demazure crystals (for \mathfrak{sl}_3)

For each $w \in W$, there is a 1-dimensional weight space S_w of $V(\lambda)$.

The Demazure module $V_w(\lambda)$ in the $U_q^+(\mathfrak{g})$ (= $\langle E_i \rangle$) submodule generated by S_w.

Kashiwara showed that the global basis restricts to a basis of $V_w(\lambda)$

Hence, $V_w(\lambda)$ defines a subset $B_w(\lambda)$ of $B(\lambda)$, called the Demazure crystal.

$B_w(\lambda)$ is closed under the e_i operators, but not the f_i operators.
Kirillov–Reshetikhin crystals

For D_n (with $n \geq 7$):

\[B_5^{(2)} \cong B_5^{(2) \omega_5} \oplus B_5^{(\omega_3 + \omega_5)} \oplus B_5^{(\omega_1 + \omega_5)} \oplus B_5^{(2 \omega_3)} \oplus B_5^{(\omega_1 + \omega_3)} \oplus B_1^{(2)} \]

for sl_3

Classically irreducible

But these usually do not have crystal bases.

In all non-exceptional types, the Kirillov–Reshetikhin crystals B_r,s (for $r \in I$, $s \in \mathbb{N}$) do (Okado, Okado-Schilling).

These have "tableaux" type realizations.

Classical decompositions are known, and are multiplicity free.
Kirillov–Reshetikhin crystals

For affine g, $U'_q(g)$ has finite dimensional representations.
Kirillov–Reshetikhin crystals

- For affine \mathfrak{g}, $U'_q(\mathfrak{g})$ has finite dimensional representations. But these usually do not have crystal bases.
Kirillov–Reshetikhin crystals

- For affine \mathfrak{g}, $U'_q(\mathfrak{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov–Reshetikhin crystals $B^{r,s}$ (for $r \in I, s \in \mathbb{N}$) do
For affine \mathfrak{g}, $U'_q(\mathfrak{g})$ has finite dimensional representations. But these usually do not have crystal bases.

In all non-exceptional types, the Kirillov–Reshetikhin crystals $B^{r,s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).
Kirillov–Reshetikhin crystals

- For affine \mathfrak{g}, $U'_q(\mathfrak{g})$ has finite dimensional representations. But these usually do not have crystal bases.

- In all non-exceptional types, the Kirillov–Reshetikhin crystals $B^{r,s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).

- These have "tableaux" type realizations.
For affine \mathfrak{g}, $U'_q(\mathfrak{g})$ has finite dimensional representations. But these usually do not have crystal bases.

In all non-exceptional types, the Kirillov–Reshetikhin crystals $B^{r,s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).

These have “tableaux" type realizations.

Classical decompositions are known,
Kirillov–Reshetikhin crystals

- For affine g, $U_q'(g)$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov–Reshetikhin crystals $B^{r,s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).
- These have “tableaux" type realizations.
- Classical decompositions are known, and are multiplicity free.
Kirillov–Reshetikhin crystals

- For affine \mathfrak{g}, $U_q'(\mathfrak{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov–Reshetikhin crystals $B^{r,s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).
- These have “tableaux" type realizations.
- Classical decompositions are known, and are multiplicity free.
Kirillov–Reshetikhin crystals

For affine \mathfrak{g}, $U'_q(\mathfrak{g})$ has finite dimensional representations. But these usually do not have crystal bases.

In all non-exceptional types, the Kirillov–Reshetikhin crystals $B^{r,s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).

These have "tableaux" type realizations.

Classical decompositions are known, and are multiplicity free.
Kirillov–Reshetikhin crystals

For affine \mathfrak{g}, $U'_q(\mathfrak{g})$ has finite dimensional representations. But these usually do not have crystal bases.

In all non-exceptional types, the Kirillov–Reshetikhin crystals $B^{r,s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).

These have “tableaux" type realizations.

Classical decompositions are known, and are multiplicity free.
Kirillov–Reshetikhin crystals

For affine \mathfrak{g}, $U'_q(\mathfrak{g})$ has finite dimensional representations. But these usually do not have crystal bases.

In all non-exceptional types, the Kirillov–Reshetikhin crystals $B^{r,s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).

These have “tableaux" type realizations.

Classical decompositions are known, and are multiplicity free.
For affine \(\mathfrak{g} \), \(U'_q(\mathfrak{g}) \) has finite dimensional representations. But these usually do not have crystal bases.

In all non-exceptional types, the Kirillov–Reshetikhin crystals \(B^{r,s} \) (for \(r \in I, s \in \mathbb{N} \)) do (Okado, Okado-Schilling).

These have “tableaux" type realizations.

Classical decompositions are known, and are multiplicity free.
Kirillov–Reshetikhin crystals

For D_n (with $n \geq 7$)

- For affine \mathfrak{g}, $U'_q(\mathfrak{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov–Reshetikhin crystals $B^{r,s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).
- These have “tableaux” type realizations.
- Classical decompositions are known, and are multiplicity free.
Kirillov–Reshetikhin crystals

For D_n (with $n \geq 7$)

$$B_{5,2} \cong B(2\omega_5) \oplus B(\omega_3 + \omega_5) \oplus B(\omega_1 + \omega_5) \oplus B(2\omega_3) \oplus B(\omega_1 + \omega_3) \oplus B(2\omega_1)$$

- For affine g, $U'_q(g)$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov–Reshetikhin crystals $B^{r,s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).
- These have “tableaux" type realizations.
- Classical decompositions are known, and are multiplicity free.
Kirillov–Reshetikhin crystals

For D_n (with $n \geq 7$)

$$B^{5,2} \cong B(2\omega_5) \oplus B(\omega_3 + \omega_5) \oplus B(\omega_1 + \omega_5) \oplus B(2\omega_3) \oplus B(\omega_1 + \omega_3) \oplus B(2\omega_1)$$

- For affine \mathfrak{g}, $U'_q(\mathfrak{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov–Reshetikhin crystals $B^{r,s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).
- These have “tableaux" type realizations.
- Classical decompositions are known, and are multiplicity free.
Kirillov–Reshetikhin crystals

For D_n (with $n \geq 7$)

$$B^{5,2} \cong B(2\omega_5) \oplus B(\omega_3 + \omega_5) \oplus B(\omega_1 + \omega_5) \oplus B(2\omega_3) \oplus B(\omega_1 + \omega_3) \oplus B(2\omega_1)$$

• For affine g, $U'_q(g)$ has finite dimensional representations. But these usually do not have crystal bases.
• In all non-exceptional types, the Kirillov–Reshetikhin crystals $B^{r,s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).
• These have “tableaux" type realizations.
• Classical decompositions are known, and are multiplicity free.
Kirillov–Reshetikhin crystals

For D_n (with $n \geq 7$)

$$B^{5,2} \cong B(2\omega_5) \oplus B(\omega_3 + \omega_5) \oplus B(\omega_1 + \omega_5) \oplus B(2\omega_3) \oplus B(\omega_1 + \omega_3) \oplus B(2\omega_1)$$

- For affine \mathfrak{g}, $U'_q(\mathfrak{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov–Reshetikhin crystals $B^{r,s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).
- These have “tableaux" type realizations.
- Classical decompositions are known, and are multiplicity free.
Kirillov–Reshetikhin crystals

For D_n (with $n \geq 7$)

$$B^{5,2} \cong B(2\omega_5) \oplus B(\omega_3 + \omega_5) \oplus B(\omega_1 + \omega_5) \oplus B(2\omega_3) \oplus B(\omega_1 + \omega_3) \oplus B(2\omega_1)$$

- For affine \mathfrak{g}, $U'_q(\mathfrak{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov–Reshetikhin crystals $B^{r,s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).
- These have “tableaux" type realizations.
- Classical decompositions are known, and are multiplicity free.
Kirillov–Reshetikhin crystals

For D_n (with $n \geq 7$)

\[B^{5,2} \cong B(2\omega_5) \oplus B(\omega_3 + \omega_5) \oplus B(\omega_1 + \omega_5) \oplus B(2\omega_3) \oplus B(\omega_1 + \omega_3) \oplus B(2\omega_1) \]

- For affine \mathfrak{g}, $U'_q(\mathfrak{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov–Reshetikhin crystals $B^{r,s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).
- These have “tableaux" type realizations.
- Classical decompositions are known, and are multiplicity free.
Kirillov–Reshetikhin crystals

For D_n (with $n \geq 7$)

$$B^{5,2} \cong B(2\omega_5) \oplus B(\omega_3 + \omega_5) \oplus B(\omega_1 + \omega_5) \oplus B(2\omega_3) \oplus B(\omega_1 + \omega_3) \oplus B(2\omega_1)$$

- For affine \mathfrak{g}, $U'_q(\mathfrak{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov–Reshetikhin crystals $B^{r,s}$ (for $r \in I$, $s \in \mathbb{N}$) do (Okado, Okado-Schilling).
- These have "tableaux" type realizations.
- Classical decompositions are known, and are multiplicity free.
Background

Relationship between KR crystals and Demazure crystals.

Theorem (Fourier-Littelmann, Naito-Sagaki, Fourier-Schilling-Shimozono, ?)

In non-exceptional types, a tensor product B of level \mathfrak{g} KR crystals is isomorphic (as a classical crystal) to a Demazure crystal $B_{\omega}(\Lambda^\tau(0))$. There is a unique isomorphism such that the pullbacks of \mathfrak{g}-arrows in the Demazure crystal are ω-arrows in B.

Peter Tingley (MIT)
Relationship between KR crystals and Demazure crystals.

Theorem (Fourier-Littelmann, Naito-Sagaki, Fourier-Schilling-Shimozono, ?)

In non-exceptional types, a tensor product B of level τ KR crystals is isomorphic (as a classical crystal) to a Demazure crystal $B_{\lambda(\tau)}$. There is a unique isomorphism such that the pullbacks of 0-arrows in the Demazure crystal are 0-arrows in B.

Peter Tingley (MIT)
Theorem (Fourier-Littelmann, Naito-Sagaki, Fourier-Schilling-Shimozono, ?)

- In non-exceptional types, a tensor product B of level ℓ KR crystals is isomorphic (as a classical crystal) to a Demazure crystal $B_w(\ell \Lambda_{\tau}(0))$.
Relationship between KR crystals and Demazure crystals

Theorem (Fourier-Littelmann, Naito-Sagaki, Fourier-Schilling-Shimozono, ?)

- In non-exceptional types, a tensor product B of level ℓ KR crystals is isomorphic (as a classical crystal) to a Demazure crystal $B_w(\ell\Lambda_\tau(0))$.
- There is a unique isomorphism such that the pullbacks of 0 arrows in the Demazure crystal are 0-arrows in B.
Relationship between KR crystals and Demazure crystals

For \(\mathfrak{sl}_3 \):

\[B_1 \otimes B_2 \otimes B_{s_1} B_{s_2} B_{s_0} (\Lambda_0) \]

Theorem (Fourier-Littelmann, Naito-Sagaki, Fourier-Schilling-Shimozono, ?)

- In non-exceptional types, a tensor product \(B \) of level \(\ell \) KR crystals is isomorphic (as a classical crystal) to a Demazure crystal \(B_w (\ell \Lambda_{\tau(0)}) \).
- There is a unique isomorphism such that the pullbacks of 0 arrows in the Demazure crystal are 0-arrows in \(B \).
Relationship between KR crystals and Demazure crystals

For \mathfrak{sl}_3: \[B^{1,1} \otimes B^{2,1} \]

Theorem (Fourier-Littelmann, Naito-Sagaki, Fourier-Schilling-Shimozono, ?)

- In non-exceptional types, a tensor product B of level ℓ KR crystals is isomorphic (as a classical crystal) to a Demazure crystal $B_w(\ell\Lambda_{\tau}(0))$.
- There is a unique isomorphism such that the pullbacks of 0 arrows in the Demazure crystal are 0-arrows in B.
Relationship between KR crystals and Demazure crystals

For \mathfrak{sl}_3: $B^{1,1} \otimes B^{2,1}$

Theorem (Fourier-Littelmann, Naito-Sagaki, Fourier-Schilling-Shimozono, ?)

- In non-exceptional types, a tensor product B of level ℓ KR crystals is isomorphic (as a classical crystal) to a Demazure crystal $B_w(\ell \Lambda_{\tau}(0))$.
- There is a unique isomorphism such that the pullbacks of 0 arrows in the Demazure crystal are 0-arrows in B.
Theorem (Fourier-Littelmann, Naito-Sagaki, Fourier-Schilling-Shimozono, ?)

- In non-exceptional types, a tensor product \(B \) of level \(\ell \) KR crystals is isomorphic (as a classical crystal) to a Demazure crystal \(B_w(\ell \Lambda_\tau(0)) \).
- There is a unique isomorphism such that the pullbacks of 0 arrows in the Demazure crystal are 0-arrows in \(B \).
Relationship between KR crystals and Demazure crystals

For \mathfrak{sl}_3:

$B^{1,1} \otimes B^{2,1}$

$B_{s_1 s_2 s_1 s_0}(\Lambda_0)$

Theorem (Fourier-Littelmann, Naito-Sagaki, Fourier-Schilling-Shimozono, ?)

- In non-exceptional types, a tensor product B of level ℓ KR crystals is isomorphic (as a classical crystal) to a Demazure crystal $B_w(\ell \Lambda_{\tau(0)})$.
- There is a unique isomorphism such that the pullbacks of 0 arrows in the Demazure crystal are 0-arrows in B.
Energy function for a prime KR crystal

The energy function counts the number of vertical dominoes that can be removed. In other types it is similar, but the shape being removed changes a bit.
Energy function for a prime KR crystal

For $D_n^{(1)}$ (non-spin nodes):
Energy function for a prime KR crystal

For $D_n^{(1)}$ (non-spin nodes):

$$B^{5,2} \cong B(2\omega_5) \oplus B(\omega_3 + \omega_5) \oplus B(\omega_1 + \omega_5) \oplus B(2\omega_3) \oplus B(\omega_1 + \omega_3) \oplus B(2\omega_1)$$
Energy function for a prime KR crystal

For $D_n^{(1)}$ (non-spin nodes):

$$B^{5,2} \cong B(2\omega_5) \oplus B(\omega_3 + \omega_5) \oplus B(\omega_1 + \omega_5) \oplus B(2\omega_3) \oplus B(\omega_1 + \omega_3) \oplus B(2\omega_1)$$
Energy function for a prime KR crystal

For $D_n^{(1)}$ (non-spin nodes):

$$B^{5,2} \cong B(2\omega_5) \oplus B(\omega_3 + \omega_5) \oplus B(\omega_1 + \omega_5) \oplus B(2\omega_3) \oplus B(\omega_1 + \omega_3) \oplus B(2\omega_1)$$
Energy function for a prime KR crystal

For $D_n^{(1)}$ (non-spin nodes):

$$B^{5,2} \cong B(2\omega_5) \oplus B(\omega_3 + \omega_5) \oplus B(\omega_1 + \omega_5) \oplus B(2\omega_3) \oplus B(\omega_1 + \omega_3) \oplus B(2\omega_1)$$

$$E = 4$$
Energy function for a prime KR crystal

For $D_n^{(1)}$ (non-spin nodes):

$$B^{5,2} \cong B(2\omega_5) \oplus B(\omega_3 + \omega_5) \oplus B(\omega_1 + \omega_5) \oplus B(2\omega_3) \oplus B(\omega_1 + \omega_3) \oplus B(2\omega_1)$$

![Diagram of dominoes removed](image)

$$E = 4 \quad 3$$
Energy function for a prime KR crystal

For $D_n^{(1)}$ (non-spin nodes):

$$B^{5,2} \cong B(2\omega_5) \oplus B(\omega_3 + \omega_5) \oplus B(\omega_1 + \omega_5) \oplus B(2\omega_3) \oplus B(\omega_1 + \omega_3) \oplus B(2\omega_1)$$

$E = 4 \quad 3 \quad 2$
Energy function for a prime KR crystal

For $D_n^{(1)}$ (non-spin nodes):

$$B^{5,2} \cong B(2\omega_5) \oplus B(\omega_3 + \omega_5) \oplus B(\omega_1 + \omega_5) \oplus B(2\omega_3) \oplus B(\omega_1 + \omega_3) \oplus B(2\omega_1)$$

\[E = \begin{array}{cccccc}
4 & 3 & 2 & 2 & 1 & 1
\end{array} \]
Energy function for a prime KR crystal

For $D_n^{(1)}$ (non-spin nodes):

$$B_5^{5,2} \cong B(2\omega_5) \oplus B(\omega_3 + \omega_5) \oplus B(\omega_1 + \omega_5) \oplus B(2\omega_3) \oplus B(\omega_1 + \omega_3) \oplus B(2\omega_1)$$

$E = \begin{array}{cccccc}
4 & 3 & 2 & 2 & 1 & \end{array}$
Energy function for a prime KR crystal

For $D_n^{(1)}$ (non-spin nodes):

$$B^{5,2} \cong B(2\omega_5) \oplus B(\omega_3 + \omega_5) \oplus B(\omega_1 + \omega_5) \oplus B(2\omega_3) \oplus B(\omega_1 + \omega_3) \oplus B(2\omega_1)$$

\[E = \begin{array}{cccccc}
4 & 3 & 2 & 2 & 1 & 0
\end{array} \]
Energy function for a prime KR crystal

For $D_n^{(1)}$ (non-spin nodes):

$$E = B^{5,2} \cong B(2\omega_5) \oplus B(\omega_3 + \omega_5) \oplus B(\omega_1 + \omega_5) \oplus B(2\omega_3) \oplus B(\omega_1 + \omega_3) \oplus B(2\omega_1)$$

The energy function counts the number of vertical dominoes that can be removed.
Energy function for a prime KR crystal

For $D_n^{(1)}$ (non-spin nodes):

$$B^{5,2} \cong B(2\omega_5) \oplus B(\omega_3 + \omega_5) \oplus B(\omega_1 + \omega_5) \oplus B(2\omega_3) \oplus B(\omega_1 + \omega_3) \oplus B(2\omega_1)$$

The energy function counts the number of vertical dominoes that can be removed.

In other types it is similar, but the shape being removed changes a bit.
Energy function for a composite KR crystal

There is a unique $H = H_{B_2} \otimes H_{B_1} \rightarrow \mathbb{Z}$ such that

$$H_{B_2}, B_1(u_{B_2} \otimes u_{B_1}) = 0$$

for all $b_2 \in B_2, b_1 \in B_1$.

$$H(e_i(b_2 \otimes b_1)) = H(b_2 \otimes b_1) + \begin{cases} \mathbb{L}L & \text{if } i = 0 \\
\mathbb{R}R & \text{otherwise.} \end{cases} \quad (1)$$

LL means: e_0 acts on the left in both $b_2 \otimes b_1$ and $\sigma(b_2 \otimes b_1)$.

RR means: e_0 acts on the left in both $b_2 \otimes b_1$ and $\sigma(b_2 \otimes b_1)$.
Energy function for a composite KR crystal

There is a unique $H = H_{B_2, B_1} : B_2 \otimes B_1 \to \mathbb{Z}$ such that
There is a unique $H = H_{B_2,B_1} : B_2 \otimes B_1 \to \mathbb{Z}$ such that

$$H_{B_2,B_1}(u_{B_2} \otimes u_{B_1}) = 0$$
Energy function for a composite KR crystal

There is a unique $H = H_{B_2,B_1} : B_2 \otimes B_1 \to \mathbb{Z}$ such that

- $H_{B_2,B_1}(u_{B_2} \otimes u_{B_1}) = 0$
- For all $b_2 \in B_2$, $b_1 \in B_1$, $i \in \{0,1\}$,

$$H(e_i(b_2 \otimes b_1)) = \begin{cases} -1 & \text{if } i = 0 \text{ and LL} \\ 1 & \text{if } i = 0 \text{ and RR} \\ 0 & \text{otherwise.} \end{cases}$$
There is a unique $H = H_{B_2,B_1} : B_2 \otimes B_1 \to \mathbb{Z}$ such that

- $H_{B_2,B_1}(u_{B_2} \otimes u_{B_1}) = 0$
- For all $b_2 \in B_2, b_1 \in B_1$,

$$H(e_i(b_2 \otimes b_1)) = \begin{cases}
-1 & \text{if } i = 0 \text{ and LL} \\
1 & \text{if } i = 0 \text{ and RR} \\
0 & \text{otherwise.}
\end{cases}$$

LL means: e_0 acts on the left in both $b_2 \otimes b_1$ and $\sigma(b_2 \otimes b_1)$.
RR means: e_0 acts on the left in both $b_2 \otimes b_1$ and $\sigma(b_2 \otimes b_1)$.
Energy function for a composite KR crystal
For $B = B^r_N,s_N \otimes \cdots \otimes B^r_1,s_1$, $1 \leq i \leq N$ and $i < j \leq N$, set

$$E_i := E_{B^r_i,s_i} \sigma_1 \sigma_2 \cdots \sigma_{i-1} \quad \text{and} \quad H_{j,i} := H_i \sigma_{i+1} \sigma_{i+2} \cdots \sigma_{j-1},$$

where σ_i and H_i act on the i-th and $(i+1)$-st tensor factors. Then

$$E_B := \sum_{N \geq j > i \geq 1} H_{j,i} + \sum_{i=1}^{N} E_i.$$
Main Theorem

Theorem (Schilling-T-, conjectured by HKOTT)

Fix g of non-exceptional affine type, and let $B = B^{r_1}_{c}, \cdots \otimes B^{r_k}_{c}$ be a composite KR crystal of level $\tilde{\gamma}$. Then the isomorphism between B and the corresponding Demazure crystal $B^w(\tilde{\Lambda}^0(0))$ intertwines the energy function with the affine grading.

Sketch of proof

Using explicit models show that, for all $b \in B^{r_1}_{c}, \cdots$, $E(f_0(b)) \leq E(b) + 1$.

Furthermore, if $\epsilon_i(b) > \tilde{\gamma}$, then this is equality.

An inductive argument gives the same statement for B a composite KR crystal of level $\tilde{\gamma}$.

Since $\phi(b^0_{\Lambda 0}) = \tilde{\gamma}$, the result follows for tensor product rule.

Corollary

$E(b) - E(u)$ records the minimal number of f_0 in a sequence of operators taking the ground state path u to b.
Main Theorem

Theorem (Schilling-T-, conjectured by HKOTT)

Fix g of non-exceptional affine type, and let $B = B_{r_1}^{c_1} \otimes \cdots \otimes B_{r_k}^{c_k}$ be a composite KR crystal of level Λ_0. Then the isomorphism between B and the corresponding Demazure crystal $B_w(\Lambda_{\tau}(0))$ intertwines the energy function with the affine grading.

Sketch of proof

Using explicit models show that, for all $b \in B_{r_i}^{c_i}$,

$$E(f_0(b)) \leq E(b) + 1.$$

Furthermore, if $\epsilon_i(b) > \Lambda_0$, then this is equality.

An inductive argument gives the same statement for B a composite KR crystal of level Λ_0.

Since $\phi(b_\Lambda(0)) = \epsilon_0$, the result follows for tensor product rule.

Corollary

$E(b) - E(u)$ records the minimal number of f_0 in a sequence of operators taking the ground state path u to b.

Peter Tingley (MIT)
Main Theorem

Theorem (Schilling-T-, conjectured by HKOTT)

Fix g of non-exceptional affine type, and let $B = B^{r_1,c_{r_1}} \otimes \cdots \otimes B^{r_k,c_{r_k}}$ be a composite KR crystal of level ℓ. Then the isomorphism between B and the corresponding Demazure crystal $B_w(\ell \Lambda_{\tau(0)})$ intertwines the energy function with the affine grading.

Sketch of proof
Using explicit models show that, for all $b \in B^{r_1,c_{r_1}}$, $E(f_0(b)) \leq E(b) + 1$. Furthermore, if $\epsilon_i(b) > 0$, then this is equality. An inductive argument gives the same statement for B a composite KR crystal of level ℓ. Since $\phi(b^{\ell \Lambda_{\tau(0)}}) = 0$, the result follows for tensor product rule.

Corollary

$E(b) - E(u)$ records the minimal number of f_0 in a sequence of operators taking the ground state path u to b.

Peter Tingley (MIT)

Energy function

Wake forest, Sept. 24, 2011 10 / 14
Main Theorem

Theorem (Schilling-T-, conjectured by HKOTT)

Fix g of non-exceptional affine type, and let $B = B^{r_1,c_{r_1}} \otimes \cdots \otimes B^{r_k,c_{r_k}}$ be a composite KR crystal of level ℓ. Then the isomorphism between B and the corresponding Demazure crystal $B_w(\ell \Lambda_{\tau(0)})$ intertwines the energy function with the affine grading.

Sketch of proof
Main Theorem

Theorem (Schilling-T-, conjectured by HKOTT)

Fix \mathfrak{g} of non-exceptional affine type, and let $B = B^{r_1, c_{r_1} \ell} \otimes \ldots \otimes B^{r_k, c_{r_k} \ell}$ be a composite KR crystal of level ℓ. Then the isomorphism between B and the corresponding Demazure crystal $B_w(\ell \Lambda_{\tau(0)})$ intertwines the energy function with the affine grading.

Sketch of proof

- Using explicit models show that, for all $b \in B^{r, c_r \ell}$, $E(f_0(b)) \leq E(b) + 1$. Furthermore, if $\varepsilon_i(b) > \ell$, then this is equality.
Main Theorem

Theorem (Schilling-T-, conjectured by HKOTT)

Fix \mathfrak{g} of non-exceptional affine type, and let $B = B^{r_1,c_{r_1}} \otimes \cdots \otimes B^{r_k,c_{r_k}}$ be a composite KR crystal of level ℓ. Then the isomorphism between B and the corresponding Demazure crystal $B_w(\ell \Lambda_{\tau(0)})$ intertwines the energy function with the affine grading.

Sketch of proof

- Using explicit models show that, for all $b \in B^{r,c_{\ell}}$, $E(f_0(b)) \leq E(b) + 1$. Furthermore, if $\varepsilon_i(b) > \ell$, then this is equality.
- An inductive argument gives the same statement for B a composite KR crystal of level ℓ.
Main Theorem

Theorem (Schilling-T-, conjectured by HKOTT)

Fix g of non-exceptional affine type, and let $B = B^{r_1,c_{r_1}} \otimes \cdots \otimes B^{r_k,c_{r_k}}$ be a composite KR crystal of level ℓ. Then the isomorphism between B and the corresponding Demazure crystal $B_w(\ell \Lambda_{\tau(0)})$ intertwines the energy function with the affine grading.

Sketch of proof

- Using explicit models show that, for all $b \in B^{r,c_{r\ell}}$, $E(f_0(b)) \leq E(b) + 1$. Furthermore, if $\varepsilon_i(b) > \ell$, then this is equality.
- An inductive argument gives the same statement for B a composite KR crystal of level ℓ.
- Since $\varphi(b_{\ell\Lambda_0}) = \ell$, the result follows for tensor product rule.
Main Theorem

Theorem (Schilling-T-, conjectured by HKOTT)

Fix g of non-exceptional affine type, and let $B = B^{r_1,c_{r_1}} \otimes \cdots \otimes B^{r_k,c_{r_k}}$ be a composite KR crystal of level ℓ. Then the isomorphism between B and the corresponding Demazure crystal $B_w(\ell \Lambda_{\tau(0)})$ intertwines the energy function with the affine grading.

Sketch of proof

- Using explicit models show that, for all $b \in B^{r,c_{r\ell}}$, $E(f_0(b)) \leq E(b) + 1$. Furthermore, if $\varepsilon_i(b) > \ell$, then this is equality.
- An inductive argument gives the same statement for B a composite KR crystal of level ℓ.
- Since $\varphi(b_{\ell\Lambda_0}) = \ell$, the result follows for tensor product rule.

Corollary
Main Theorem

Theorem (Schilling-T-, conjectured by HKOTT)

Fix \mathfrak{g} of non-exceptional affine type, and let $B = B^{r_1,c_{r_1}} \otimes \ldots \otimes B^{r_k,c_{r_k}}$ be a composite KR crystal of level ℓ. Then the isomorphism between B and the corresponding Demazure crystal $B_w(\ell \Lambda_{\tau(0)})$ intertwines the energy function with the affine grading.

Sketch of proof

- Using explicit models show that, for all $b \in B^{r,c_\ell}$, $E(f_0(b)) \leq E(b) + 1$. Furthermore, if $\varepsilon_i(b) > \ell$, then this is equality.
- An inductive argument gives the same statement for B a composite KR crystal of level ℓ.
- Since $\varphi(b_{\ell\Lambda_0}) = \ell$, the result follows for tensor product rule.

Corollary

$E(b) - E(u)$ records the minimal number of f_0 in a sequence of operators taking the ground state path u to b.
Work of Sanderson and Ion shows that, in types A_1^n, D_1^n and E_1^n, the non-symmetric Macdonald polynomials satisfy

$$E_\lambda(q, 0) = q^{c_{\text{ch}}(V_w(\Lambda_\tau(0)))} |_{e_\delta = q, e\Lambda_0 = 1}.$$

Our results imply that, in types A_1^n and D_1^n, the symmetric Macdonald polynomials satisfy

$$P_\lambda(q, 0) = \sum_{b \in B} q^{-E(b)} e^{\text{wt}(b)},$$

where E is the combinatorial energy function (called D in our paper).

We also see the non-symmetric Macdonald polynomials as partial sums over KR crystals.
Work of Sanderson and Ion shows that, in types \(A_n^{(1)} \), \(D_n^{(1)} \) and \(E_n^{(1)} \), the non-symmetric Macdonald polynomials satisfy

\[
E_{\lambda}(q, 0) = q^{c} \operatorname{ch}(V_w(\Lambda_{\tau}(0)))|_{e^\delta=q, e^{\Lambda_0}=1}.
\]
Macdonald polynomials

- Work of Sanderson and Ion shows that, in types $A_n^{(1)}$, $D_n^{(1)}$ and $E_n^{(1)}$, the non-symmetric Macdonald polynomials satisfy

$$E_\lambda(q,0) = q^c \text{ch}(V_w(\Lambda_{\tau(0)}))|_{e^\delta=q, e^{\Lambda_0}=1}.$$

- Our results imply that, in types $A_n^{(1)}$ and $D_n^{(1)}$, the symmetric Macdonald polynomials satisfy

$$P_\lambda(q,0) = \sum_{b \in B} q^{-E(b)} e^{\text{wt}(b)},$$

where E is the combinatorial energy function (called D in our paper).
Work of Sanderson and Ion shows that, in types $A_n^{(1)}$, $D_n^{(1)}$ and $E_n^{(1)}$, the non-symmetric Macdonald polynomials satisfy

$$E_\lambda(q, 0) = q^c \operatorname{ch}(V_w(\Lambda_{\tau(0)}))|_{e^\delta=q, e^{\Lambda_0}=1}.$$

Our results imply that, in types $A_n^{(1)}$ and $D_n^{(1)}$, the symmetric Macdonald polynomials satisfy

$$P_\lambda(q, 0) = \sum_{b \in B} q^{-E(b)} e^{\operatorname{wt}(b)},$$

where E is the combinatorial energy function (called D in our paper).

We also see the non-symmetric Macdonald polynomials as partial sums over KR crystals.
Example

In \text{sl}_3, B_1 \otimes B_1,1 \rightarrow B_1,1 \otimes B_1,1 \rightarrow B_1,1 \otimes B_1,2 \rightarrow B_2,1 \otimes B_2,2 \rightarrow B_2,2 \otimes B_2,3 \rightarrow B_3,2 \otimes B_3,3,

where to simplify the diagram we also show the 0 arrows that survive in the corresponding Demazure crystal.
Example

\[P_{-2\omega_2}(x; q, 0) = x_1^2 + (q + 1)x_1x_2 + x_2^2 + (q + 1)x_1x_3 + (q + 1)x_2x_3 + x_3^2 \]
Example

\[P_{-2\omega_2}(x; q, 0) = x_1^2 + (q + 1)x_1x_2 + x_2^2 + (q + 1)x_1x_3 + (q + 1)x_2x_3 + x_3^2 \]

In \(\mathfrak{sl}_3 \), \(B^{1,1} \otimes B^{1,1} \) looks like:

\[
\begin{array}{c}
2 \otimes 1 \rightarrow 3 \otimes 1 \\
0 \rightarrow 1 \otimes 1 \rightarrow 1 \otimes 2 \\
1 \rightarrow 2 \otimes 2 \rightarrow 2 \otimes 3 \rightarrow 3 \otimes 3,
\end{array}
\]
Example

\[P_{-2\omega_2}(x; q, 0) = x_1^2 + (q + 1)x_1x_2 + x_2^2 + (q + 1)x_1x_3 + (q + 1)x_2x_3 + x_3^2 \]

In \(\mathfrak{sl}_3 \), \(B^{1,1} \otimes B^{1,1} \) looks like:

where to simplify the diagram we also show the 0 arrows that survive in the corresponding Demazure crystal.
Example

\[P_{-2\omega_2}(x; q, 0) = x_1^2 + (q + 1)x_1x_2 + x_2^2 + (q + 1)x_1x_3 + (q + 1)x_2x_3 + x_3^2 = \]

In \(\mathfrak{sl}_3 \), \(B^{1,1} \otimes B^{1,1} \) looks like:

\[
\begin{align*}
2 \otimes 1 & \xrightarrow{2} 3 \otimes 1 \\
& \xrightarrow{0} 1 \otimes 1 \xrightarrow{1} 1 \otimes 2 \\
& \xrightarrow{1} 2 \otimes 2 \xrightarrow{2} 2 \otimes 3 \xrightarrow{2} 3 \otimes 3, \\
& \xrightarrow{1} 3 \otimes 2 \\
& \xrightarrow{2} 1 \otimes 3 \\
& \xrightarrow{1} 1 \otimes 3 \\
& \xrightarrow{1} 3 \otimes 3,
\end{align*}
\]

where to simplify the diagram we also show the 0 arrows that survive in the corresponding Demazure crystal.
Example

\[P_{-2\omega_2}(x; q, 0) = x_1^2 + (q + 1)x_1x_2 + x_2^2 + (q + 1)x_1x_3 + (q + 1)x_2x_3 + x_3^2 \]

\[= q(x_1x_2 + x_1x_3 + x_2x_3) \]

In \(\mathfrak{sl}_3 \), \(B^{1,1} \otimes B^{1,1} \) looks like:

\[
\begin{array}{c}
2 \otimes 1 \xrightarrow{2} 3 \otimes 1 \xrightarrow{0} 1 \otimes 1 \xrightarrow{1} 1 \otimes 2 \xrightarrow{1} 2 \otimes 2 \xrightarrow{2} 2 \otimes 3 \xrightarrow{2} 3 \otimes 3,
\end{array}
\]

where to simplify the diagram we also show the 0 arrows that survive in the corresponding Demazure crystal.
Example

\[P_{-2\omega_2}(x; q, 0) = x_1^2 + (q + 1)x_1x_2 + x_2^2 + (q + 1)x_1x_3 + (q + 1)x_2x_3 + x_3^2 \]
\[= q(x_1x_2 + x_1x_3 + x_2x_3) \]

In \(\mathfrak{sl}_3 \), \(B^{1,1} \otimes B^{1,1} \) looks like:

\[
\begin{array}{cccccccc}
2 \otimes 1 & \xrightarrow{2} & 3 \otimes 1 & \xrightarrow{0} & 1 \otimes 1 & \xrightarrow{1} & 1 \otimes 2 & \xrightarrow{1} & 2 \otimes 2 & \xrightarrow{2} & 2 \otimes 3 & \xrightarrow{2} & 3 \otimes 3, \\
\downarrow & & \downarrow \\
3 \otimes 2 & & 1 \otimes 3 & & 2 \otimes 3 & & 3 \otimes 3, & & & & & & \\
\end{array}
\]

where to simplify the diagram we also show the 0 arrows that survive in the corresponding Demazure crystal.
Example

\[
P_{-2\omega_2}(x; q, 0) = x_1^2 + (q + 1)x_1x_2 + x_2^2 + (q + 1)x_1x_3 + (q + 1)x_2x_3 + x_3^2
= q(x_1x_2 + x_1x_3 + x_2x_3)
\]

In \(\mathfrak{sl}_3\), \(B^{1,1} \otimes B^{1,1}\) looks like:

\[
\begin{array}{ccccccccc}
2 \otimes 1 & \rightarrow & 3 \otimes 1 & \rightarrow & 1 \otimes 1 & \rightarrow & 1 \otimes 2 & \rightarrow & 2 \otimes 2 & \rightarrow & 2 \otimes 3 & \rightarrow & 3 \otimes 3,
\end{array}
\]

where to simplify the diagram we also show the 0 arrows that survive in the corresponding Demazure crystal.
Example

\[P_{-2\omega_2}(x; q, 0) = x_1^2 + (q + 1)x_1x_2 + x_2^2 + (q + 1)x_1x_3 + (q + 1)x_2x_3 + x_3^2 \]
\[= q(x_1x_2 + x_1x_3 + x_2x_3) + x_1^2 + x_1x_2 + x_2^2 + x_1x_3 + x_2x_3 + x_3^2 \]

In \(\mathfrak{sl}_3 \), \(B^{1,1} \otimes B^{1,1} \) looks like:

\[
\begin{array}{ccccccc}
2 \otimes 1 & \rightarrow & 3 \otimes 1 & \rightarrow & 1 \otimes 1 & \rightarrow & 1 \otimes 2 & \rightarrow & 2 \otimes 2 & \rightarrow & 2 \otimes 3 & \rightarrow & 3 \otimes 3,
\end{array}
\]

where to simplify the diagram we also show the 0 arrows that survive in the corresponding Demazure crystal.
Gerasimov, Lebedev, Oblezin showed that q-deformed \mathfrak{gl}_n-Whittaker functions are Macdonald polynomials specialized at $t = 0$. So, by Sanderson and Ion, they can be expressed using Demazure characters. Hence, by our results they can be expressed in terms of KR crystals and the energy function.
Gerasimov, Lebedev, Oblezin showed that q-deformed \mathfrak{gl}_n-Whittaker functions are Macdonald polynomials specialized at $t = 0$.
Gerasimov, Lebedev, Oblezin showed that q-deformed \mathfrak{gl}_n-Whittaker functions are Macdonald polynomials specialized at $t = 0$.

So, by Sanderson and Ion, they can be expressed using Demazure characters.
Gerasimov, Lebedev, Oblezin showed that q-deformed \mathfrak{gl}_n-Whittaker functions are Macdonald polynomials specialized at $t = 0$.

So, by Sanderson and Ion, they can be expressed using Demazure characters.

Hence, by our results they can be expressed in terms of KR crystals and the energy function.
Future directions

Macdonald polynomials from Demazure characters in type $C_n^{(1)}$.

Lenart recently showed that type $C_n^{(1)}$ Macdonald polynomials (at $t = 0$) can be expressed as sums over tensor products of KR-crystals, where q counts energy.
Future directions

Macdonald polynomials from Demazure characters in type $C_n^{(1)}$?

Lenart recently showed that type $C_n^{(1)}$ Macdonald polynomials (at $t = 0$) can be expressed as sums over tensor products of KR-crystals, where q counts energy.
Type $C_n^{(1)}$ Macdonald polynomials and Demazure crystals?
Lenart recently showed that type $C_n^{(1)}$ Macdonald polynomials (at $t = 0$) can be expressed as sums over tensor products of KR-crystals, where q counts energy.
Lenart recently showed that type $C_n^{(1)}$ Macdonald polynomials (at $t = 0$) can be expressed as sums over tensor products of KR-crystals, where q counts energy.
Type $C^{(1)}_n$ Macdonald polynomials and Demazure crystals?

$$B^{1,1} \otimes B^{1,1}$$

Lenart recently showed that type $C^{(1)}_n$ Macdonald polynomials (at $t = 0$) can be expressed as sums over tensor products of KR-crystals, where q counts energy.
Type $C_n^{(1)}$ Macdonald polynomials and Demazure crystals?

$B^{1,1} \otimes B^{1,1}$

- Lenart recently showed that type $C_n^{(1)}$ Macdonald polynomials (at $t = 0$) can be expressed as sums over tensor products of KR-crystals, where q counts energy.
Future directions Macdonald polynomials from Demazure characters in type $C_n^{(1)}$?

Type $C_n^{(1)}$ Macdonald polynomials and Demazure crystals?

$B^{1,1} \otimes B^{1,1} \otimes b_{\Lambda_0}$

- Lenart recently showed that type $C_n^{(1)}$ Macdonald polynomials (at $t = 0$) can be expressed as sums over tensor products of KR-crystals, where q counts energy.
Type $C_n^{(1)}$ Macdonald polynomials and Demazure crystals?

$$B^{1,1} \otimes B^{1,1} \otimes b_{\Lambda_0}$$

- Lenart recently showed that type $C_n^{(1)}$ Macdonald polynomials (at $t = 0$) can be expressed as sums over tensor products of KR-crystals, where q counts energy.
Future directions

Macdonald polynomials from Demazure characters in type $C_n^{(1)}$?

Type $C_n^{(1)}$ Macdonald polynomials and Demazure crystals?

\[B^{1,1} \otimes B^{1,1} \otimes b_{\Lambda_0} \]

- Lenart recently showed that type $C_n^{(1)}$ Macdonald polynomials (at $t = 0$) can be expressed as sums over tensor products of KR-crystals, where q counts energy.
Type $C_n^{(1)}$ Macdonald polynomials and Demazure crystals?

Lenart recently showed that type $C_n^{(1)}$ Macdonald polynomials (at $t = 0$) can be expressed as sums over tensor products of KR-crystals, where q counts energy.
Type $C_n^{(1)}$ Macdonald polynomials and Demazure crystals?

$B^{1,1} \otimes B^{1,1} \otimes b_{\Lambda_0} = B_{s_1 s_2 s_1 s_2 s_0}(\Lambda_0)$

- Lenart recently showed that type $C_n^{(1)}$ Macdonlad polynomials (at $t = 0$) can be expressed as sums over tensor products of KR-crystals, where q counts energy.
Future directions
Macdonald polynomials from Demazure characters in type $C_n^{(1)}$?

Type $C_n^{(1)}$ Macdonald polynomials and Demazure crystals?

Lenart recently showed that type $C_n^{(1)}$ Macdonald polynomials (at $t = 0$) can be expressed as sums over tensor products of KR-crystals, where q counts energy.
Type $\mathcal{C}_n^{(1)}$ Macdonald polynomials and Demazure crystals?

$$B_{1,1} \otimes B_{1,1} \otimes b_{\Lambda_0} = B_{s_1 s_2 s_1 s_2 s_0} (\Lambda_0) \quad \text{and} \quad B_{s_2 s_1 s_2} (\Lambda_2)$$

These tensor products seem to break up as unions of Demazure modules. Via Lenart's results, this would give a formula for Macdonald polynomials as sums of Demazure characters.
Type $C_n^{(1)}$ Macdonald polynomials and Demazure crystals?

\[B_{1,1} \otimes B_{1,1} \otimes b_{\Lambda_0} = B_{s_1s_2s_1s_2s_0}(\Lambda_0) \]

- These tensor products seem to break up as unions of Demazure modules.

Peter Tingley (MIT)
Energy function
Wake forest, Sept. 24, 2011 14 / 14
These tensor products seem to break up as unions of Demazure modules.

Via Lenart’s results, this would give a formula for Macdonald polynomials as sums of Demazure Characters.