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ﬂ Motivation
@ Crystals, Characters and Combinatorics
@ What does “understand" mean anyway?
@ Two examples

© Some structures I understand
@ The multi-partition realization of B(A)
@ Understanding the infinity crystal
@ Relationship with the Kyoto path model

9 A structure I only partly understand
@ Fayers’ crystals
@ Relationship with monomial crystals (partly conjectural)
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@ There are 6 one dimensional weight spaces and 1 two dimensional
weight space.

@ The generators F| and F, act between weight spaces.

@ There are 4 distinguished one dimensional spaces in the middle.
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@ There are 6 one dimensional weight spaces and 1 two dimensional
weight space.

@ The generators F| and F, act between weight spaces.

@ There are 4 distinguished one dimensional spaces in the middle.

o If we use Uy(sl3) and ‘rescale’ the operators, then “at ¢ = 0", they match
up. You get a colored directed graph
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Motivation Cr

The adjoint representation of sl3

@ Often the vertices of the crystal graph can be parametrized by
combinatorial objects.

@ Then the combinatorics gives information about representation theory,
and vise-versa.
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Motivation Crystals, Characters and Combinatorics

The adjoint representation of sl3

@ We will only work with highest weight crystals, and ignore the functions
wt, €, : B — P usually included in the definition. These are recoverable
from the graph (up to global shifting by a null weight in the affine case).
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o sl, (for n > 3) is the Kac-Moody algebra with dynkin diagram

° f/:\[,, is (almost) generated by {E;, Fi}o<i<n—1 subject to the relations that
for each pair 0 < i <j < n— 1, {E;, F;, Ej, F;} generate a copy of

sly if |i — j| = 1 mod(n)
sl, x sl, otherwise.

o Fix n > 3. An (infinite) n-colored directed graph is an ;[n crystal if, for
each pair of colors ¢; and ¢;, the graph consisting of all edges of those 2
colors is

An slz crystal graph if |i — j| = 1 mod(n)
An sly x sl crystal graph otherwise.
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What does “understand" mean anyway?

In order to understand the relationship between two models for B(A) I want:

@ An explicitly description of the unique bijection commuting with the
crystal operators

@ This description should be “better" then using the crystal operators to get
to the highest weight element, then using the crystal operators on the
other side to go back down. “better" here is a bit subjective.

Peter Tingley (MIT) 5 als Korea, September 2009 6/14
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The Misra-Miwa-Hayashi realizarion of By, for 53

@ F5 adds a 2 colored box.
@ E5 would send this partition to 0.
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Motivation Two examples

The Misra-Miwa-Hayashi realizarion of By, for sls

o0
RIS
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@ Every connected is a copy of By,. In particular, the subcrystal generated
by the empty partition is a model for B(Ay).

@ This is not enough to “understand” the model.

@ The subcrystal generated by the empty partition consists exactly of the
3-regular partitions are a single copy of By, (no 3 rows of same length).

@ Now we can say we understand the model.
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@ Consider monomials on variables Yil =/ /nZ, k € Z (here n = 4).
@ Define operators E; and F5 on this set. We show Eq, Fy.

e Puta “(" for every Y- iranda “)" for every Y1 % ordered left to right by
decreasing k.
@ F| multiplies m by A1 rl T Yy Yl_k+2YO PRPCTURE where the first
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corresponding to the first uncanceled “(".
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Some structures I understand The multi-partition realization of B(A)

The multi-partition realization of B(A) JMMO, FLOTW)

OCOCCCC A~ A28 4 A,
00 0@

o Every connected component isa copy of By.

@ The “3-regular”" multi-partitions form a single copy of Bj.

@ 3-regular means no three differently colored rows have the same length.
Our example is not 3-regular.

e I would say we do understand this model for B(A).

Peter Tingley (MIT) 5A[,, crystals Korea, September 2009 9/14
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@ An /-tuple of partitions satisfying the shifted containment conditions fits
together into a three dimensional picture called a “cylindric partition".
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Some structures I understand Understanding the infinity crystal

Understanding embeddings and B(co

@ An /-tuple of partitions satisfying the shifted containment conditions fits
together into a three dimensional picture called a “cylindric partition”.
e Consider n = 3, ¢ = 2, and multi-charge (0, 1).
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N 1 Und

Understanding embeddings and B(co)

@ A cylindric partition is in B(A) if and only if it does not have three
differently colored piles of the same height.
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e To understand the embedding B(Ag + A1) — B(2A; + A;), consider the
“dual" n tuple of partitions.
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Understanding embeddings and B(co)

@ For B(c0), just record the vertical piles, not the arrangement into an
{-tuple of partitions.
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@ One can actually read the boxes according to ANY slope

@ The same result is true, although definition of “illegal hook" is a bit more
complicated.
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A structure I or tly understand Relationship with monomial crystals (partly conjectural)

Horizontal to monomial

@ There is a natural isomorphism between B(A) realized using the
horizontal crystal and B(Ay) realized using the monimial crystal.

e Each “inner" corner corresponds to a ¥ and each “outer" corner to a ¥~!
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Questions

The monomial crystals comes out of deep structures (q-characters, quiver
varieties). Can these be used to give an algebraic/geometric explanation for
Fayers’ other crystal structures?

e Positive evidence: Kim has shown that the Misra-Miwa crystal is naturally
isomorphic to a known modification of the monomial crystal.

The monomial crystals works for higher levels. There are also (multi)
partition models at higher levels. Do Fayers’ crystals generalize beyond level
1?2

¢ Positive evidence: The correspondence in the case studied by Kim does
work at higher levels.

Peter Tingley (MIT) g Korea, September
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