
ELEMENTARY CONSTRUCTION OF LUSZTIG’S CANONICAL BASIS

PETER TINGLEY

Abstract. In these expository notes we present an elementary construction of Lusztig’s
canonical basis in type ADE. The method, which is essentially Lusztig’s original ap-
proach, is to use the braid group to reduce to rank two calculations. Some of the
wonderful properties of the canonical basis are already readily visible; that it descends
to a basis for every highest weight integrable representation, and that it is a crystal basis.
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1. Introduction

Fix a complex simple Lie algebra g and let U−q (g) be the lower triangular part of the
corresponding quantized universal enveloping algebra. Lusztig’s canonical basis B is a
basis for U−q (g), unique once the Chevalley generators are fixed, which has remarkable
properties. Perhaps the three most important are:

(i) For each irreducible representation Vλ the image of B in Vλ = U−q (g)/Iλ is a basis;
equivalently, the intersection of B with every ideal Iλ is a basis for the ideal.

(ii) B is a crystal basis in the sense of Kashiwara.
(iii) In symmetric type, the structure constants of B with respect to multiplication

are Laurent polynomials in q with positive coefficients.

Much has been made of (iii), and it helped give birth to a whole new field of math:
categorification. While this is a wonderful fact, the association of canonical bases with
categorification has, I believe, obscured the fact that Lusztig’s original construction is
quite elementary. Using only basic properties of the braid group action on Uq(g) and rank

1



2 PETER TINGLEY

2 calculations, one can establish the existence and uniqueness of a canonical basis, and
show that it satisfies both (i) and (ii). Property (iii) is mysterious with this approach,
but perhaps that is to be expected, since it does not always hold is non-symmetric type,
and the arguments here essentially work in all finite types.

These notes present Lusztig’s elementary construction. They are fairly self contained,
the biggest exception being that we refer to Lusztig’s book [Lus93] for one elementary
but long calculation in type sl3. The results can all be found in Lusztig’s papers [Lus90a,
Lus90b, Lus90c, Lus90d] and his book [Lus93, Chapters 41 and 42]. Since we are interested
in the connection with crystals, conventions have been chosen to match [Kas91, Sai94].

Lusztig’s canonical basis is the same as Kashiwara’s global crystal basis [Kas91], and
Kashiwara’s construction is also “elementary,” at least in the sense that it does not use
categorification. However, Kashiwara’s construction is quite different from that presented
here, and considerably more difficult. It is based on a complicated induction known as
the “grand loop argument.” Of course, Kashiwara’s construction has a big advantage in
that it works beyond finite type.

We restrict to the ADE case for simplicity. The construction is not much harder in
other finite types, but requires some more notation. The rank two calculations are also
considerably more difficult in types B2 and G2. In fact, I’m not sure they’ve ever been
done as described here; instead, one uses a folding argument to understand the types B2

and G2 in terms of the simply laced types A3 and D4 respectively (see [BZ01, Lus11]).

1.1. Acknowledgements. We thank Steve Doty for comments on an early draft. The
author was partially supported by NSF grant DMS-1265555.

2. Notation

Let g be a complex simple Lie algebra of type ADE, Uq(g) its quantized universal
enveloping algebra, and Ei, Fi, K

±1
i for i ∈ I the standard generators. Here I indexes

the nodes of the corresponding Dynkin diagram, so we can discuss nodes being adjacent.
Conventions are chosen so that

(1) KiEiK
−1
i = q2Ei and EiFj − FjEi =

Ki −K−1i
q − q−1

δij.

We use the standard triangular decomposition,

(2) Uq(g) = U−q (g)⊗ U0
q (g)⊗ U+

q (g),

where U−q (g) is the subalgebra generated by the Fi. Bar involution is the Q algebra
involution of Uq(g) defined on generators by

(3) Ēi = Ei, F̄i = Fi, K̄i = K−1i , q̄ = q−1.

{αi} be the set of simple roots for g. Let (·, ·) be the standard bilinear form on root space.
For a postive root β, define its height ht(β) to be the sum of the coeficients when β is
written as a sum of simple roots.
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3. Braid group action and PBW bases

There is a family of algebra automorphisms Ti of Uq(g), one for each i ∈ I, given by

(4) Ti(Fj) =


Fj i not adjacent to j

FjFi − qFiFj i adjacent to j

−K−1j Ej i = j,

(5) Ti(Ej) =


Ej i not adjacent to j

EjEi − q−1EiEj i adjacent to j

−FjKj i = j,

(6) Ti(Kj) =


Kj i not adjacent to j

KiKj i adjacent to j

K−1j i = j.

One can easily check that these respect the defining relations of Uq(g), and that they
satisfy the braid relations (i.e. TiTjTi = TjTiTj for i and j adjacent, and TiTj = TjTi
otherwise). Each Ti performs the Weyl group reflection si on the weight of an element,
where Uq(g) is graded by wt(Ei) = −wt(Fi) = αi, wt(Ki) = 0.

Fix a reduced expression w0 = si1 · · · siN for the longest element of the Weyl group. Let
i denote the sequence i1, i2, . . . , iN . Define “root vectors”

(7)

Fi:β1 = Fi1
Fi:β2 = Ti1Fi2
Fi:β3 = Ti1Ti2Fi3

... .

The notation βk in the subscripts is because the weight of each root vector is a negative
root, and each negative root appears this way exactly once; we think of the root vectors
as indexed by the corresponding roots. When the reduced expression is clear, we leave off
the subscript i. Let

(8) Bi = {F (a1)
i:β1

F
(a2)
i:β2
· · ·F (aN )

i:βN
: a1, . . . , aN ∈ Z≥0}.

Here X(a) is the q-divided power Xa/([a][a−1] · · · [2]), and [n] = qn−1+qn−3+ · · ·+q−n+1.

Lemma 3.1. Fix a reduced expression i.

(i) If ik, ik+1 are not adjacent, then reversing their order gives another reduced ex-
pression, and the root vectors are unchanged (although they are reordered).

(ii) If ik = ik+2 and is adjacent to ik+1, then βk + βk+2 = βk+1, and

Fβk+1
= Fβk+2

Fβk − qFβkFβk+2
.

Furthermore, for the new reduced expression i′ were ikik+1ik is replaced with
ik+1ikik+1, Fi′,β = Fi,β for all β 6= βk+1.
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(iii) For any reduced expression and any simple root αi, Fαi
= Fi. In particular, βN =

Fσ(iN ), where σ is the Dynkin diagram automorphism given by ασ(i) = −w0αi.

Proof. Part (i) and (ii) follow by applying T−1ik−1
· · ·T−1i1

and then doing a rank two calcu-

lation. Part (iii) is an immediate consequence of (ii), since αi is not the sum of any two
positive roots, and if i1 = i then Fαi

= Fi by definition. �

Lemma 3.2. Each root vector Fβk is in U−q (g).

Proof. Proceed by induction on the height of β = βk, the case of a simple root being
immediate from Lemma 3.1 (iii). So assume β is not simple. Fix i so that (αi, β) > 0.
There are reduced expressions i′ and i′′ with i′1 = i, i′′N = σ(i), and so β′1 = β′′N = αi. One
can move from i to either i′ or i′′ by sequences of braid moves, and one of these sequences
must move αi past β. At that step Fβ changes. The first time Fβ changes Lemma 3.1 (ii)
allows us to conclude by induction that Fβ ∈ U−q (g). �

Lemma 3.3. If j ≥ k, then T−1ij
· · ·T−1i1

Fβk ∈ U≥0g (g).

Proof.

(9) T−1ik
· · ·T−1i1

Fβk = −K−1i E−1i ,

and ik+1 · · · , iN , i1, · · · ik is another reduced expression. The claim follows from Lemma 3.2
(with Ei instead of Fi) because the Ti are algebra automorphisms and preserve U0

q (g). �

Lemma 3.4. For any i, Bi is a basis for U−q (g).

Proof. The dimension of each weight space of U−q (g) is given by Kostant’s partition func-
tion, so the size of the proposed basis is correct, and hence it suffices to show that these
elements are linearly independent. Proceed by induction on k, showing that the set of
such elements where aj = 0 for j > k is linearly independent. The key is that

(10) T−1i1
F a = (−K−1i E−1i )(a1) ⊗ F a′

i′ ∈ U≥0q (g)⊗ U−q (g),

where i′ = (i2, i3, · · · , iN , i1) and a′ = (a2, a3, . . . , ak, 0, . . . , 0). The F a′

i′ are linearly inde-
pendant by induction, so the vectors T−1i1

F a
i are linearly independant by the triangular

decomposition of Uq(g). The result follows since T−1i1
is an algebra automorpohism. �

Denote the basis element corresponding to exponents a = (a1, . . . aN) by F a
i , and call

a its Lusztig data.

Lemma 3.5. Fix i and 1 ≤ j < k ≤ N . Write FβkFβj =
∑

a paF
a
i . If pa 6= 0 then the

only factors that appear with non-zero exponent in F a are Fβi for j ≤ i ≤ k.

Proof. By Lemmas 3.2 and 3.3, and the fact that the Ti are algebra automorphisms,

(11) T−1ij−1
· · ·T−1i2

T−1i1
(FβkFβj) ∈ U−q (g) and T−1ik

· · ·T−1i2
T−1i1

(FβkFβj) ∈ U≥0q (g).

A linear combination of PBW basis elements can only satisfy these conditions if, in all of
them, the exponents of Fβ are 0 unless j ≤ i ≤ k. �
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4. Equality mod q and piecewise linear functions.

The following is key. Part (i) can be found in [Lus93, Proposition 41.1.4], and (ii) is
part of [Lus93, Proposition 42.1.5]. For non-simply laced types see [Sai94]. Fix i, and let

(12) L = spanZ[q]Bi.

Certainly Bi + qL is a basis for L/qL.

Theorem 4.1. (i) L is independant of i.
(ii) Bi + qL ⊂ L/qL and is independant of i.

Proof. Any two reduced expressions are related by a sequence of braid moves, so it suffices
to consider reduced expressions related by a single braid move. The case of a braid move
TiTj = TjTi where i and j are not adjacent is trivial. For the other case, lets say the braid
move starts with ik = i, ik+1 = j, ik+2 = i. It suffices to check that

(13) spanZ[q]{F
(ak)
i:βk

F
(ak+1)
i:βk+1

F
(ak+2)
i:βk+2

} = spanZ[q]{F
(ak)
i′:βk

F
(ak+1)
i′:βk+1

F
(ak+2)
i′:βk+2

},

and that these monomials conincide modulo q. Applying T−1ik−1
· · ·T−1i1

shows that this is

equivalent to the statement in the sl3 case. That is an explicit (although surprisingly
difficult) calculation, which can be found in [Lus93, Chapter 42]. �

5. Triangularity of bar involution and existence of the canonical basis

There are two natural lexicographical orders on Lusztig data: one where a < b if
a1 > b1 or a1 = b1 and (a2, . . .) < (b2, . . .), and the other where one starts by comparing
aN and bN . Consider the partial order on Lusztig data where a < b if a is less then b for
both of these orders.

Theorem 5.1. For every reduced expression i and every Lustig data a,

F̄ a
i = F a

i +
∑
a′<a

pa
′

a (q)F a′

i ,

where the pa
′

a (q) are Laurent polynomials in q.

Proof. That the coefficients are Laurent polynomials follows from the form of bar and the
braid group operators. The point is the unit triangularity. This is well known, but the
following proof is a little non-standard.

Proceed by induction using the above partial order. If the claim is true for all F
(aj)
βj

,

then F̄ a
i would be equal to F a

i plus terms obtained by replacing some of the Fi:β with
lesser monomials. Then Lemma 3.5 implies that, once this is rearranged, all terms that
appear are still less then F a

i . Hence the minimal counter-example has to be of the form

F
(n)
βj

for some i, j and n.

By Lemma 3.1, F
(n)
αi = F

(n)
i satisfies the condition (it is in fact bar-invariant), so assume

that β = βj is not a simple root; we will use induction on the hieght of this root. Certainly

(14) F̄
(n)
β = p(q)F

(n)
β +

∑
a′<a

pa
′

a (q)F a′ ,



6 PETER TINGLEY

since F
(n)
β is the unique maximal element of its weight. It remains to see that p(q) is 1.

Do braid moves, changing the partial order until Fβ changes (this is possible as discussed
in the proof of Lemma 3.2). For the braid moves where Fβ does not change, terms < (aj)
get sent to linear combinations of terms that are still < (aj), so p(q) does not change.
Thus we can assume we are in a situation where we can apply a single braid move with
j in the middle. By Lemma 3.1, Fβj = Fβj+1

Fβj−1
− qFβj−1

Fβj+1
, so

F
(aj)
βj

= (Fβj+1
Fβj−1

)(aj) + terms which are < (0, · · · , aj, · · · , 0) .

βj+1, βj−1 are of lower height then β, so by induction and convexity of multiplication,
(Fβj+1

Fβj−1
)(n) is bar invariant up to terms that involve Fβk for k 6= j − 1, j, j + 1, and

hence are < (0, · · · aj, · · · 0). This forces p(q) = 1. �

Theorem 5.2. There is a unique basis B of U−q (g) such that

(i) B is contained in L, B + qL is a basis for L/qL, and this agrees with Bi + qL
for some (equivalently any by Theorem 4.1) i.

(ii) B is bar invariant.

Furthermore, the change of basis from any Bi to B is unit-triangular.

Proof. This proof can be found in [DDPW08, Lemma 0.27] in a slightly different setting.
Proceed by induction on the partial order <, proving that there is such a basis for V =
span{F a′}a′≤a. The base case when a is minimal holds since V is one dimensional and
Theorem 5.1 shows that F a is bar-invariant.

So, fix a non-minimal a. By Theorem 5.1,

(15) F̄ a = F a +
∑
a′<a

paa′(q)b
a′

for various Laurent polynomials paa′(q), where the ba
′

are the inductively found elements

of B. But ¯̄F a = F a, which implies that each of these Laurent polynomials is of the form

(16) paa′(q) = qfa
a′(q)− q−1fa

a′(q
−1),

where each fa
a′(q) is a polynomial. Set

(17) ba = F a +
∑
a′<a

qfa
a′(q)b

a′ .

Certainly replacing F a with ba does not change L and ba = F a mod qL. Then

b̄a = F a +
∑
a′<a

(qfa
a′(q)− q−1fa

a′(q
−1))ba

′
+

∑
a′<a

q−1fa
a′(q

−1)ba
′
= F a +

∑
a′<a

qfa
a′(q)b

a′ = ba,

so we have found the desired element.
Uniqueness is clear, since as the induction proceeds there is never any choice. �

The basis B from Theorem 5.2 is Lusztig’s canonical basis (see [Lus90b, Theorem 3.2]).
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6. Properties of the canonical basis

6.1. Descent to modules.

Theorem 6.1. Fix a dominant integral weight λ and write Vλ = U−q (g)/Iλ. Then B ∩ Iλ
spans Iλ. Equivalently, {b+ Iλ : b ∈ B, b 6∈ Iλ} is a basis for Vλ.

Proof. Write λ as a sum of fundamental weights, λ =
∑
ciωi. It is well known that

(18) Iλ =
∑
i∈I

U−q (g)F ci+1
i .

It suffices to show that B ∩ U−q (g)F n
i spans U−q (g)F n

i for all n.
Fix a reduced expression i with iN = σ(i), so that βN = Fi. Then it is clear that

Bi ∩ U−q (g)F n
i spans U−q (g)F n

i . The change of basis from Bi to B is upper triangular, so

the canonical basis elements corresponding to elements in Bi ∩ U−q (g)F n
i are all still in

U−q (g)F ci
i , giving a spanning set. �

6.2. Crystal properties. In a sense we have already shown that the basis B defines a
combinatorial object that could be called its crystal. With that point of view, the crystal

is the basis B + qL of L/qL, and the crystal operators f̃i are defined as follows: Choose
any reduced expression i where i1 = i. On Bi, define

(19) f̃iF
(a1)
i F

(a2)
β2
· · ·F (aN )

βN
= F

(a1+1)
i F

(a2)
β2

. · · ·F (aN )
βN

.

This gives a well defined operation on Bi + qL = B + qL. The full structure is somewhat

complicated, since one must use different reduced expressions to define each f̃i. But all
reduced expression are related by braid moves so one can use Lusztig’s piecewise linear
operations from [Lus93] to do calculations.

We now show that the structure defined above matches Kashiwara’s infinity crystal from
[Kas91]. This has previously been observed by Lusztig [Lus90c] (see also [GL93, Lus11])
and also by Saito [Sai94]. We give a somewhat different proof.

We first review Kashiwara’s construction of the crystal B(∞), roughly following [Kas91,
§3]. For each i ∈ I, elementary calculations show that

(20) EiX = AK−1i +BKi +XEi

for some A,B ∈ U−q (g). Define e′i : U−q (g)→ U−q (g) by e′i(X) = A. As a vector space,

(21) U−q (g) = C[Fi]⊗ kere′i.

Define operators F̃i (the Kashiwara operators) by, for all Y ∈ kere′i and n ≥ 0,

(22) F̃i(F
(n)
i Y ) = F

(n+1)
i Y.

Let L(∞) to be the Q[q]0 lattice generated by all sequences of F̃i acting on 1 ∈ U−q (g).

There is a unique basis B(∞) for L(∞)/qL(∞) such that the residues of all the F̃i act
by partial permutations. This is the infinity crystal B(∞).



8 PETER TINGLEY

Theorem 6.2. Let B be the canonical basis from Theorem 5.2. Then L(∞) = spanQ[q]0B,
and B(∞) = B + qL(∞).

Before proving Theorem 6.2 we need some preliminary Lemmas.

Lemma 6.3. Fix i ∈ I, a reduced expression i, and a root β with 〈β, αi〉 ≤ 0. Then there
is a sequence of braid moves, none of which affect the relative positions of αi and β in the
corresponding order on roots, with the last move being a three term braid move with β the
middle root (so that Fβ changes).

Proof. Fix j, k so that βj = αi and βk = β. Without loss of generality j < k. The
prefix w = si1 · · · sij satisfies w−1αi = −αj, which is a negative root, so w has a reduced
expression of the form si · · · . One can perform a sequence of braid moves relating these
two reduced expressions which do not change the position of β. Thus we may assume
i1 = i. 〈β, αi〉 ≤ 0 and 〈β, ρ〉 > 0, so we must have 〈β, α`〉 > 0 for some other `. Consider
two cases:

If (αi, α`) = 0, then there are reduced expressions for w0 of the form

(23) sis` · · · and si · · · sσ(`),
and both can be reached by performing braid moves that do not change the position of
αi. Certainly the relative positions of β and α` are different in these two expressions, so
one of these sequences moves β past α`. Since 〈β, α`〉 > 0, at that step β is the middle
root for a 3 term braid move.

If (αi, α`) = −1, then there are reduced expressions for w0 of the form

(24) sis`si · · · and si · · · sσ(`),
and the same argument works. �

Lemma 6.4. Fix a reduced expression i, and let j be such that βj = αi is a simple root.
For all k > j,

EiFβk − FβkEi ∈ U−q (g)Ki.

Proof. Proceed by induction on the height of βk, the case where βk is a simple root αj 6= αi
being trivial since EiFβk − FβkEi = 0 by the Serre’s relations.

So, assume the height is at least 2. If (βk, αi) ≤ 0, then by Lemma 6.3 we can do a
sequence of braid moves that don’t change the relative positions of αi and βk and so that
the last move is a three term move with β as the middle root. At that step,

(25) Fβk = Fβk−1
Fβk+1

− qFβk+1
Fβk−1

where βk−1, βk+1 are both roots of smaller height. The claim holds for Fβk−1
and Fβk+1

by
induction, and so it follows for Fβk by a short calculation.

If 〈βk, αi〉 > 0, perform any sequence of braid moves until βk is the middle term of a
three term move. If βk has moved past αi in that sequence, at the step βk is the middle
term of a three term move affecting the roots αi, βk, βk − αi, so

(26) Fβk = FiFβk−αi
− qFβk−αi

Fi,
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and the result follows by induction. Otherwise, αi has not moved past βk, and the result
follows as in the previous paragraph. �

Lemma 6.5. Fix i and i such that i1 = i. Then

ker e′i = span{F (a2)
β2
· · ·F (aN )

βN
};

that is, the span of PBW basis elements where the exponent of Fi is 0. In particular, F̃i
acts on Bi by simply increasing the exponent on Fi.

Proof. Certainly EiF
(a2)
β2
· · ·F (aN )

βN
is equal to F

(a2)
β2
· · ·F (aN )

βN
Ei plus a sum of terms each

of which is a PBW monomial but with one root vector Fβ replaced by EiFβ − FβEi. By
Lemma 6.4, along with the fact that KiFβ = q−〈β,α

∨
i 〉FβKi, each of these factors is in

U−q (g)Ki. Therefore by definition each of the vectors F
(a2)
β2
· · ·F (aN )

βN
is in ker e′i. It follows

from (21) that the span of these vectors has the correct graded dimension, so it is the
whole kernel. �

Proof of Theorem 6.2. Fix i, and choose i such that i1 = i. By Lemma 6.5, F̃i acts
by partial permutations on the basis Bi. By a simple inductive argument, this implies

that spanQ[q]0Bi = spanQ[q]0B is the lattice generated by all sequences of F̃i acting on

1 ∈ U−q (g). That is, it is L(∞). It also shows that F̃i acts by partial permutations on Bi,
and hence on B + L(∞) = Bi + L(∞). �
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