
ŝln crystals and cylindric partitions1

Peter Tingley

Massachusetts Institute of Technology

Oregon, March 7, 2011

1Slides and notes available at www-math.mit.edu/∼ptingley/
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Motivation and background Crystals, Characters and Combinatorics

Example: sl3

sl3 is the Lie algerba consisting of 3× 3 matrices with trace 0.

The Lie bracket is given by [A,B] = AB− BA.

The standard generators are:

E1 =

 0 1 0
0 0 0
0 0 0

 , F1 =

 0 0 0
1 0 0
0 0 0

 ,
E2 =

 0 0 0
0 0 1
0 0 0

 , F2 =

 0 0 0
0 0 0
0 1 0

 .
Any representation of sl3 decomposes (as a vector space) into the direct
sum of the simultaneous eigenspaces for the diagonal matrices (weight
spaces).
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Motivation and background ŝln and its crystals

The adjoint representation of sl3

2 dim

There are 6 one dimensional weight spaces and 1 two dimensional
weight space.
The generators F1 and F2 act between weight spaces.
There are 4 distinguished one dimensional spaces in the middle.
If we use Uq(sl3) and ‘rescale’ the operators, then “at q = 0", they match
up. You get a colored directed graph.
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The adjoint representation of sl3

1 1
2

1 2
2

1 1

1 2
3

1 3
2

2 2
3

1 3
3

2 3
3

1

1

1

1

2

2

2

2

3

Often the vertices of the crystal graph can be parametrized by
combinatorial objects.
Then the combinatorics gives information about representation theory,
and vise-versa.
Here you see that the graded dimension of the representation is the
generating function for semi-standard Young tableaux.

If we use Uq(sl3) and ‘rescale’ the operators, then “at q = 0", they match
up. You get a colored directed graph.

Peter Tingley (MIT) ŝln combinatorics Oregon, March 7, 2011 4 / 16



Motivation and background ŝln and its crystals

Tensor product rule
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B(ω1 + ω2)

B(0)

For sl2, crystals are just directed segments.

Lets take the tensor product of two of these.

For other types, just treat each sl2 independently.

As an example, consider B(ω1)⊗ B(ω2) for sl3.
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Peter Tingley (MIT) ŝln combinatorics Oregon, March 7, 2011 5 / 16



Motivation and background ŝln and its crystals
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Tensor product rule

u u u u- - -

⊗ u u u- -

u
u
u
?

?

u u u u
u u u u
u u u u

- - -

?

?

- -

?-

- -u u u⊗

?

?

u
u
u

u u u
u u u
u u u
?

-

?

-

-

-

? ?

B(ω1 + ω2)

B(0)

For sl2, crystals are just directed segments.

Lets take the tensor product of two of these.

For other types, just treat each sl2 independently.

As an example, consider B(ω1)⊗ B(ω2) for sl3.
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Tensor product rule

u u u u- - -

⊗ u u u- -

u
u
u
?

?

u u u u
u u u u
u u u u
- - -

?

?

- -

?-

- -u u u⊗

?

?

u
u
u

u u u
u u u
u u u
?

-

?

-

-

-

? ?

B(ω1 + ω2)

B(0)

For sl2, crystals are just directed segments.

Lets take the tensor product of two of these.

For other types, just treat each sl2 independently.

As an example, consider B(ω1)⊗ B(ω2) for sl3.
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Peter Tingley (MIT) ŝln combinatorics Oregon, March 7, 2011 5 / 16



Motivation and background ŝln and its crystals
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Tensor product rule

u u u u- - -

⊗ u u u- -

u
u
u
?

?

u u u u
u u u u
u u u u
- - -

?

?

- -

?-

- -u u u⊗

?

?

u
u
u

u u u
u u u
u u u
?

-

?

-

-

-

? ?

B(ω1 + ω2)

B(0)

For sl2, crystals are just directed segments.

Lets take the tensor product of two of these.

For other types, just treat each sl2 independently.

As an example, consider B(ω1)⊗ B(ω2) for sl3.
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Peter Tingley (MIT) ŝln combinatorics Oregon, March 7, 2011 5 / 16



Motivation and background ŝln and its crystals
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Littlewood-Richardson rule

# in ⊗
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One is often interested in finding the multiplicity of V(ν) in
V(λ)⊗ V(µ).
Fill the first and second partition with the highest weight tableaux.
The answer is the number of tableaux on the rightmost shape using
exactly the leftover numbers, here {1, 1, 2, 2, 3}, and such that the tensor
product is highest weight (i.e. all ei kill it).
We would need to discuss the actually operators on tableaux to finish, but
the point is it is combinatorial, and reasonably easy to compute.
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Motivation and background ŝln and its crystals

The infinity crystal

Bω1+2ω2⋃
Bω1+ω2

There is a crystal Bλ for each dominant integral weight λ.
{Bλ} forms a directed system.
The limit of this system is B∞.
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Motivation and background ŝln and its crystals

The infinity crystal

Bω1+2ω2⋃
Bω1+ω2

In any realization, I want to understand these injections.
They come from the fact that there is a canonical basis of U−q (g) which
descends to a basis of each V(λ).
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Motivation and background ŝln and its crystals

ŝln and its crystals

Definition 1: ŝl
′
n is a central extension of the Lie algebra of polynomial

loops in sln
sln ⊗ C[t, t−1]⊕ CC

where
1 C is central.
2 [X ⊗ ta,Y ⊗ tb] = [X,Y]⊗ f (t)g(t) + tr(ad(X)ad(Y))δa+b,0C.

Definition 2: ŝln (for n ≥ 3) is the Kac-Moody algebra with dynkin
diagram

u u u u u u
uH
H
HHH

�
�
��� . . .

ŝl
′
n is generated by {Ei,Fi}0≤i≤n−1 subject to the relations that for each

pair 0 ≤ i < j ≤ n− 1, {Ei,Fi,Ej,Fj} generate a copy of{
sl3 if |i− j| = 1 mod(n)

sl2 × sl2 otherwise.

For ŝl4:

E2 =


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 , E0 =


0 0 0 0
0 0 0 0
0 0 0 0
t 0 0 0



Fix n ≥ 3. An (infinite) n-colored directed graph is an ŝln crystal if, for
each pair of colors ci and cj, the graph consisting of all edges of those 2
colors is {

An sl3 crystal graph if |i− j| = 1 mod(n)

An sl2 × sl2 crystal graph otherwise.

In fact, it is a theorem of Kashiwara that, to check a graph is a crystal, it
suffices to look at rank 2 behavior.

.
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For ŝl4:

E2 =


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 , E0 =


0 0 0 0
0 0 0 0
0 0 0 0
t 0 0 0



Fix n ≥ 3. An (infinite) n-colored directed graph is an ŝln crystal if, for
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Definition 2: ŝln (for n ≥ 3) is the Kac-Moody algebra with dynkin
diagram

u u u u u u
uH
H
HHH

�
�
��� . . .

ŝl
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ŝln (for n ≥ 3) is the Kac-Moody algebra with dynkin
diagram

u u u u u u
uH
HHHH

�
���� . . .

ŝl
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For ŝl4:

E2 =


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 , E0 =


0 0 0 0
0 0 0 0
0 0 0 0
t 0 0 0



Fix n ≥ 3. An (infinite) n-colored directed graph is an ŝln crystal if, for
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ŝl
′
n is generated by {Ei,Fi}0≤i≤n−1 subject to the relations that for each

pair 0 ≤ i < j ≤ n− 1, {Ei,Fi,Ej,Fj} generate a copy of{
sl3 if |i− j| = 1 mod(n)

sl2 × sl2 otherwise.

For ŝl4:
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ŝl
′
n is generated by {Ei,Fi}0≤i≤n−1 subject to the relations that for each

pair 0 ≤ i < j ≤ n− 1, {Ei,Fi,Ej,Fj} generate a copy of{
sl3 if |i− j| = 1 mod(n)

sl2 × sl2 otherwise.

For ŝl4:
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′
n is a central extension of the Lie algebra of polynomial

loops in sln
sln ⊗ C[t, t−1]⊕ CC

where
1 C is central.
2 [X ⊗ ta,Y ⊗ tb] = [X,Y]⊗ f (t)g(t) + tr(ad(X)ad(Y))δa+b,0C.
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′
n is a central extension of the Lie algebra of polynomial

loops in sln
sln ⊗ C[t, t−1]⊕ CC

where
1 C is central.
2 [X ⊗ ta,Y ⊗ tb] = [X,Y]⊗ f (t)g(t) + tr(ad(X)ad(Y))δa+b,0C.
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ŝl
′
n is generated by {Ei,Fi}0≤i≤n−1 subject to the relations that for each

pair 0 ≤ i < j ≤ n− 1, {Ei,Fi,Ej,Fj} generate a copy of{
sl3 if |i− j| = 1 mod(n)

sl2 × sl2 otherwise.

For ŝl4:

E2 =


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 , E0 =


0 0 0 0
0 0 0 0
0 0 0 0
t 0 0 0



Fix n ≥ 3. An (infinite) n-colored directed graph is an ŝln crystal if, for
each pair of colors ci and cj, the graph consisting of all edges of those 2
colors is {

An sl3 crystal graph if |i− j| = 1 mod(n)

An sl2 × sl2 crystal graph otherwise.

In fact, it is a theorem of Kashiwara that, to check a graph is a crystal, it
suffices to look at rank 2 behavior.

.
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We define crystal operators on partitions. Here (7, 6, 6, 6, 5, 3, 2).
Color the boxes in the partition periodically with n = 3 colors.
For instance, we now know that the q-character of VΛ0 is equal to the
generating function of 3-regular partitions counted by size.
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�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
��

�
�
�
�
��

�
�
�
�
��

�
�
�
��

��

@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@

@
@

@
@

@
@@

@
@

@
@
@

@@

@
@

@
@
@

@@

@
@
@

@
@@

@
@

@@
@

@@

0̄
2̄

1̄

1̄

0̄

0̄

0̄

2̄

2̄

2̄

2̄

1̄

1̄

1̄

1̄

0̄

0̄

0̄

0̄

0̄

2̄

2̄

2̄

2̄

1̄

1̄

1̄

0̄

0̄

0̄

2̄

2̄

1̄

1̄
0̄

2̄@@��

( ) ( (

2̄@@��

We define crystal operators on partitions.

Here (7, 6, 6, 6, 5, 3, 2).
Color the boxes in the partition periodically with n = 3 colors.
For instance, we now know that the q-character of VΛ0 is equal to the
generating function of 3-regular partitions counted by size.
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�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
��

�
�
�
�
��

�
�
�
�
��

�
�
�
��

��

@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@

@
@

@
@

@
@@

@
@

@
@
@

@@

@
@

@
@
@

@@

@
@
@

@
@@

@
@

@@
@

@@

0̄
2̄

1̄

1̄

0̄

0̄

0̄

2̄

2̄

2̄

2̄

1̄

1̄

1̄

1̄

0̄

0̄

0̄

0̄

0̄

2̄

2̄

2̄

2̄

1̄

1̄

1̄

0̄

0̄

0̄

2̄

2̄

1̄

1̄
0̄

2̄@@��

( ) ( (

2̄@@��

We define crystal operators on partitions.

Here (7, 6, 6, 6, 5, 3, 2).
Color the boxes in the partition periodically with n = 3 colors.
For instance, we now know that the q-character of VΛ0 is equal to the
generating function of 3-regular partitions counted by size.
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F2̄ adds a 2̄ colored box.

E2̄ would send this partition to 0.
For instance, we now know that the q-character of VΛ0 is equal to the
generating function of 3-regular partitions counted by size.
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E2̄ would send this partition to 0.
For instance, we now know that the q-character of VΛ0 is equal to the
generating function of 3-regular partitions counted by size.
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E2̄ would send this partition to 0.

For instance, we now know that the q-character of VΛ0 is equal to the
generating function of 3-regular partitions counted by size.
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Every connected is a copy of BΛ0 . In particular, the subcrystal generated
by the empty partition is a model for BΛ0 .
The subcrystal generated by the empty partition consists exactly of the
3-regular partitions are a single copy of BΛ0 (no 3 rows of same length).
For instance, we now know that the q-character of VΛ0 is equal to the
generating function of 3-regular partitions counted by size.

Peter Tingley (MIT) ŝln combinatorics Oregon, March 7, 2011 9 / 16



Partiton and cylindric partition models The Misra-Miwa-Hayashi realization

The Misra-Miwa-Hayashi realizarion of BΛ0 for ŝl3
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Every connected is a copy of BΛ0 .

In particular, the subcrystal generated
by the empty partition is a model for BΛ0 .
The subcrystal generated by the empty partition consists exactly of the
3-regular partitions are a single copy of BΛ0 (no 3 rows of same length).
For instance, we now know that the q-character of VΛ0 is equal to the
generating function of 3-regular partitions counted by size.

Peter Tingley (MIT) ŝln combinatorics Oregon, March 7, 2011 9 / 16



Partiton and cylindric partition models The Misra-Miwa-Hayashi realization

The Misra-Miwa-Hayashi realizarion of BΛ0 for ŝl3
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Every connected is a copy of BΛ0 . In particular, the subcrystal generated
by the empty partition is a model for BΛ0 .

The subcrystal generated by the empty partition consists exactly of the
3-regular partitions are a single copy of BΛ0 (no 3 rows of same length).
For instance, we now know that the q-character of VΛ0 is equal to the
generating function of 3-regular partitions counted by size.
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Every connected is a copy of BΛ0 . In particular, the subcrystal generated
by the empty partition is a model for BΛ0 .

The subcrystal generated by the empty partition consists exactly of the
3-regular partitions are a single copy of BΛ0 (no 3 rows of same length).
For instance, we now know that the q-character of VΛ0 is equal to the
generating function of 3-regular partitions counted by size.
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Every connected is a copy of BΛ0 . In particular, the subcrystal generated
by the empty partition is a model for BΛ0 .
The subcrystal generated by the empty partition consists exactly of the
3-regular partitions are a single copy of BΛ0

(no 3 rows of same length).
For instance, we now know that the q-character of VΛ0 is equal to the
generating function of 3-regular partitions counted by size.
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Every connected is a copy of BΛ0 . In particular, the subcrystal generated
by the empty partition is a model for BΛ0 .
The subcrystal generated by the empty partition consists exactly of the
3-regular partitions are a single copy of BΛ0 (no 3 rows of same length).

For instance, we now know that the q-character of VΛ0 is equal to the
generating function of 3-regular partitions counted by size.
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Not 3 regular

Every connected is a copy of BΛ0 . In particular, the subcrystal generated
by the empty partition is a model for BΛ0 .
The subcrystal generated by the empty partition consists exactly of the
3-regular partitions are a single copy of BΛ0 (no 3 rows of same length).

For instance, we now know that the q-character of VΛ0 is equal to the
generating function of 3-regular partitions counted by size.
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Every connected is a copy of BΛ0 . In particular, the subcrystal generated
by the empty partition is a model for BΛ0 .
The subcrystal generated by the empty partition consists exactly of the
3-regular partitions are a single copy of BΛ0 (no 3 rows of same length).

For instance, we now know that the q-character of VΛ0 is equal to the
generating function of 3-regular partitions counted by size.
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Every connected is a copy of BΛ0 . In particular, the subcrystal generated
by the empty partition is a model for BΛ0 .
The subcrystal generated by the empty partition consists exactly of the
3-regular partitions are a single copy of BΛ0 (no 3 rows of same length).

For instance, we now know that the q-character of VΛ0 is equal to the
generating function of 3-regular partitions counted by size.
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Now it is 3 regular

Every connected is a copy of BΛ0 . In particular, the subcrystal generated
by the empty partition is a model for BΛ0 .
The subcrystal generated by the empty partition consists exactly of the
3-regular partitions are a single copy of BΛ0 (no 3 rows of same length).

For instance, we now know that the q-character of VΛ0 is equal to the
generating function of 3-regular partitions counted by size.
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Every connected is a copy of BΛ0 . In particular, the subcrystal generated
by the empty partition is a model for BΛ0 .
The subcrystal generated by the empty partition consists exactly of the
3-regular partitions are a single copy of BΛ0 (no 3 rows of same length).

For instance, we now know that the q-character of VΛ0 is equal to the
generating function of 3-regular partitions counted by size.
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�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
��

�
�
�
�
��

�
�
�
�
��

�
�
�
��

��

@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@

@
@

@
@

@
@@

@
@

@
@
@

@@

@
@

@
@
@

@@

@
@
@

@
@@

@
@

@@
@

@@

0̄
2̄

1̄

1̄

0̄

0̄

0̄

2̄

2̄

2̄

2̄

1̄

1̄

1̄

1̄

0̄

0̄

0̄

0̄

0̄

2̄

2̄

2̄

2̄

1̄

1̄

1̄

0̄

0̄

0̄

2̄

2̄

1̄

1̄
0̄

2̄@@��

( ) ( (

2̄@@��

Every connected is a copy of BΛ0 . In particular, the subcrystal generated
by the empty partition is a model for BΛ0 .
The subcrystal generated by the empty partition consists exactly of the
3-regular partitions are a single copy of BΛ0 (no 3 rows of same length).
For instance, we now know that the q-character of VΛ0 is equal to the
generating function of 3-regular partitions counted by size.
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The following is based on work of Jimbo-Misra-Miwa-Okado.
Vertices of level ` crystals are parameterized by three dimensional
‘cylindric partitions.’ Consider n = 3, level 2.
For a fixed highest weight, e.g, Λ0 + Λ1, color the boxes.

People usually denote this by a tupple of partitions.
There are natural crystal operations such that each connected component
is a copy of B(Λ).
A cylindric partition is in the ‘highest copy’ if and only if it does not
have three differently colored piles of the same height.

The embeddings BΛ ↪→ BΛ′ are given by “shifting".The imbedding into B∞ just records the vertical piles, not the
arrangement into an `-tuple of partitions.
The B∞ crystal structure reads boxes in order of height. For f2̄:
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Peter Tingley (MIT) ŝln combinatorics Oregon, March 7, 2011 10 / 16



Partiton and cylindric partition models Cylindric partitions and higher level representations

Higher level crystals

�
�
�
�

�
�
��

��
��

@
@

@
@

@
@

@@
@@
@@2̄

1̄
0̄

2̄
1̄

�
�
�
�

�
���

��

@
@

@
@

@
@@ @
@@

2̄
1̄

1̄
0̄

0̄
1̄
2̄

0̄
1̄

1̄
2̄

1̄ 2̄ A “multi-segment"

)) ( ) ( ) ( ( ( · · ·

2̄

The following is based on work of Jimbo-Misra-Miwa-Okado.
Vertices of level ` crystals are parameterized by three dimensional
‘cylindric partitions.’ Consider n = 3, level 2.
For a fixed highest weight, e.g, Λ0 + Λ1, color the boxes.

People usually denote this by a tupple of partitions.
There are natural crystal operations such that each connected component
is a copy of B(Λ).
A cylindric partition is in the ‘highest copy’ if and only if it does not
have three differently colored piles of the same height.

The embeddings BΛ ↪→ BΛ′ are given by “shifting".The imbedding into B∞ just records the vertical piles, not the
arrangement into an `-tuple of partitions.
The B∞ crystal structure reads boxes in order of height. For f2̄:
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Peter Tingley (MIT) ŝln combinatorics Oregon, March 7, 2011 10 / 16



Partiton and cylindric partition models Cylindric partitions and higher level representations

Higher level crystals

�
�
�
�

�
�
��

��
��

@
@

@
@

@
@

@@
@@
@@2̄

1̄
0̄

2̄
1̄

�
�
�
�

�
���

��

@
@

@
@

@
@@ @
@@

2̄
1̄

1̄
0̄

0̄
1̄
2̄

0̄
1̄

1̄
2̄

1̄ 2̄ A “multi-segment"

)) ( ) ( ) ( ( ( · · ·

2̄

The following is based on work of Jimbo-Misra-Miwa-Okado.
Vertices of level ` crystals are parameterized by three dimensional
‘cylindric partitions.’ Consider n = 3, level 2.
For a fixed highest weight, e.g, Λ0 + Λ1, color the boxes.

People usually denote this by a tupple of partitions.
There are natural crystal operations such that each connected component
is a copy of B(Λ).
A cylindric partition is in the ‘highest copy’ if and only if it does not
have three differently colored piles of the same height.

The embeddings BΛ ↪→ BΛ′ are given by “shifting".

The imbedding into B∞ just records the vertical piles, not the
arrangement into an `-tuple of partitions.
The B∞ crystal structure reads boxes in order of height. For f2̄:
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The following is based on work of Jimbo-Misra-Miwa-Okado.
Vertices of level ` crystals are parameterized by three dimensional
‘cylindric partitions.’ Consider n = 3, level 2.
For a fixed highest weight, e.g, Λ0 + Λ1, color the boxes.

People usually denote this by a tupple of partitions.
There are natural crystal operations such that each connected component
is a copy of B(Λ).
A cylindric partition is in the ‘highest copy’ if and only if it does not
have three differently colored piles of the same height.

The embeddings BΛ ↪→ BΛ′ are given by “shifting".

The imbedding into B∞ just records the vertical piles, not the
arrangement into an `-tuple of partitions.

The B∞ crystal structure reads boxes in order of height. For f2̄:
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is a copy of B(Λ).
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Vertices of level ` crystals are parameterized by three dimensional
‘cylindric partitions.’ Consider n = 3, level 2.
For a fixed highest weight, e.g, Λ0 + Λ1, color the boxes.

People usually denote this by a tupple of partitions.
There are natural crystal operations such that each connected component
is a copy of B(Λ).
A cylindric partition is in the ‘highest copy’ if and only if it does not
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The following is based on work of Jimbo-Misra-Miwa-Okado.
Vertices of level ` crystals are parameterized by three dimensional
‘cylindric partitions.’ Consider n = 3, level 2.
For a fixed highest weight, e.g, Λ0 + Λ1, color the boxes.

People usually denote this by a tupple of partitions.
There are natural crystal operations such that each connected component
is a copy of B(Λ).
A cylindric partition is in the ‘highest copy’ if and only if it does not
have three differently colored piles of the same height.

The embeddings BΛ ↪→ BΛ′ are given by “shifting".The imbedding into B∞ just records the vertical piles, not the
arrangement into an `-tuple of partitions.
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The following is based on work of Jimbo-Misra-Miwa-Okado.
Vertices of level ` crystals are parameterized by three dimensional
‘cylindric partitions.’ Consider n = 3, level 2.
For a fixed highest weight, e.g, Λ0 + Λ1, color the boxes.

People usually denote this by a tupple of partitions.
There are natural crystal operations such that each connected component
is a copy of B(Λ).
A cylindric partition is in the ‘highest copy’ if and only if it does not
have three differently colored piles of the same height.

The embeddings BΛ ↪→ BΛ′ are given by “shifting".The imbedding into B∞ just records the vertical piles, not the
arrangement into an `-tuple of partitions.
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The following is based on work of Jimbo-Misra-Miwa-Okado.
Vertices of level ` crystals are parameterized by three dimensional
‘cylindric partitions.’ Consider n = 3, level 2.
For a fixed highest weight, e.g, Λ0 + Λ1, color the boxes.

People usually denote this by a tupple of partitions.
There are natural crystal operations such that each connected component
is a copy of B(Λ).
A cylindric partition is in the ‘highest copy’ if and only if it does not
have three differently colored piles of the same height.

The embeddings BΛ ↪→ BΛ′ are given by “shifting".The imbedding into B∞ just records the vertical piles, not the
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The following is based on work of Jimbo-Misra-Miwa-Okado.
Vertices of level ` crystals are parameterized by three dimensional
‘cylindric partitions.’ Consider n = 3, level 2.
For a fixed highest weight, e.g, Λ0 + Λ1, color the boxes.

People usually denote this by a tupple of partitions.
There are natural crystal operations such that each connected component
is a copy of B(Λ).
A cylindric partition is in the ‘highest copy’ if and only if it does not
have three differently colored piles of the same height.

The embeddings BΛ ↪→ BΛ′ are given by “shifting".The imbedding into B∞ just records the vertical piles, not the
arrangement into an `-tuple of partitions.
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The following is based on work of Jimbo-Misra-Miwa-Okado.
Vertices of level ` crystals are parameterized by three dimensional
‘cylindric partitions.’ Consider n = 3, level 2.
For a fixed highest weight, e.g, Λ0 + Λ1, color the boxes.

People usually denote this by a tupple of partitions.
There are natural crystal operations such that each connected component
is a copy of B(Λ).
A cylindric partition is in the ‘highest copy’ if and only if it does not
have three differently colored piles of the same height.

The embeddings BΛ ↪→ BΛ′ are given by “shifting".The imbedding into B∞ just records the vertical piles, not the
arrangement into an `-tuple of partitions.

The B∞ crystal structure reads boxes in order of height.

For f2̄:
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The following is based on work of Jimbo-Misra-Miwa-Okado.
Vertices of level ` crystals are parameterized by three dimensional
‘cylindric partitions.’ Consider n = 3, level 2.
For a fixed highest weight, e.g, Λ0 + Λ1, color the boxes.

People usually denote this by a tupple of partitions.
There are natural crystal operations such that each connected component
is a copy of B(Λ).
A cylindric partition is in the ‘highest copy’ if and only if it does not
have three differently colored piles of the same height.

The embeddings BΛ ↪→ BΛ′ are given by “shifting".The imbedding into B∞ just records the vertical piles, not the
arrangement into an `-tuple of partitions.

The B∞ crystal structure reads boxes in order of height. For f2̄:
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The following is based on work of Jimbo-Misra-Miwa-Okado.
Vertices of level ` crystals are parameterized by three dimensional
‘cylindric partitions.’ Consider n = 3, level 2.
For a fixed highest weight, e.g, Λ0 + Λ1, color the boxes.

People usually denote this by a tupple of partitions.
There are natural crystal operations such that each connected component
is a copy of B(Λ).
A cylindric partition is in the ‘highest copy’ if and only if it does not
have three differently colored piles of the same height.

The embeddings BΛ ↪→ BΛ′ are given by “shifting".The imbedding into B∞ just records the vertical piles, not the
arrangement into an `-tuple of partitions.
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The following is based on work of Jimbo-Misra-Miwa-Okado.
Vertices of level ` crystals are parameterized by three dimensional
‘cylindric partitions.’ Consider n = 3, level 2.
For a fixed highest weight, e.g, Λ0 + Λ1, color the boxes.

People usually denote this by a tupple of partitions.
There are natural crystal operations such that each connected component
is a copy of B(Λ).
A cylindric partition is in the ‘highest copy’ if and only if it does not
have three differently colored piles of the same height.

The embeddings BΛ ↪→ BΛ′ are given by “shifting".The imbedding into B∞ just records the vertical piles, not the
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The following is based on work of Jimbo-Misra-Miwa-Okado.
Vertices of level ` crystals are parameterized by three dimensional
‘cylindric partitions.’ Consider n = 3, level 2.
For a fixed highest weight, e.g, Λ0 + Λ1, color the boxes.

People usually denote this by a tupple of partitions.
There are natural crystal operations such that each connected component
is a copy of B(Λ).
A cylindric partition is in the ‘highest copy’ if and only if it does not
have three differently colored piles of the same height.

The embeddings BΛ ↪→ BΛ′ are given by “shifting".The imbedding into B∞ just records the vertical piles, not the
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The following is based on work of Jimbo-Misra-Miwa-Okado.
Vertices of level ` crystals are parameterized by three dimensional
‘cylindric partitions.’ Consider n = 3, level 2.
For a fixed highest weight, e.g, Λ0 + Λ1, color the boxes.

People usually denote this by a tupple of partitions.
There are natural crystal operations such that each connected component
is a copy of B(Λ).
A cylindric partition is in the ‘highest copy’ if and only if it does not
have three differently colored piles of the same height.

The embeddings BΛ ↪→ BΛ′ are given by “shifting".The imbedding into B∞ just records the vertical piles, not the
arrangement into an `-tuple of partitions.

The B∞ crystal structure reads boxes in order of height. For f2̄:
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The following is based on work of Jimbo-Misra-Miwa-Okado.
Vertices of level ` crystals are parameterized by three dimensional
‘cylindric partitions.’ Consider n = 3, level 2.
For a fixed highest weight, e.g, Λ0 + Λ1, color the boxes.

People usually denote this by a tupple of partitions.
There are natural crystal operations such that each connected component
is a copy of B(Λ).
A cylindric partition is in the ‘highest copy’ if and only if it does not
have three differently colored piles of the same height.

The embeddings BΛ ↪→ BΛ′ are given by “shifting".The imbedding into B∞ just records the vertical piles, not the
arrangement into an `-tuple of partitions.
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The following is based on work of Jimbo-Misra-Miwa-Okado.
Vertices of level ` crystals are parameterized by three dimensional
‘cylindric partitions.’ Consider n = 3, level 2.
For a fixed highest weight, e.g, Λ0 + Λ1, color the boxes.

People usually denote this by a tupple of partitions.
There are natural crystal operations such that each connected component
is a copy of B(Λ).
A cylindric partition is in the ‘highest copy’ if and only if it does not
have three differently colored piles of the same height.

The embeddings BΛ ↪→ BΛ′ are given by “shifting".The imbedding into B∞ just records the vertical piles, not the
arrangement into an `-tuple of partitions.

The B∞ crystal structure reads boxes in order of height. For f2̄:
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The following is based on work of Jimbo-Misra-Miwa-Okado.
Vertices of level ` crystals are parameterized by three dimensional
‘cylindric partitions.’ Consider n = 3, level 2.
For a fixed highest weight, e.g, Λ0 + Λ1, color the boxes.

People usually denote this by a tupple of partitions.
There are natural crystal operations such that each connected component
is a copy of B(Λ).
A cylindric partition is in the ‘highest copy’ if and only if it does not
have three differently colored piles of the same height.

The embeddings BΛ ↪→ BΛ′ are given by “shifting".The imbedding into B∞ just records the vertical piles, not the
arrangement into an `-tuple of partitions.

The B∞ crystal structure reads boxes in order of height. For f2̄:
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The following is based on work of Jimbo-Misra-Miwa-Okado.
Vertices of level ` crystals are parameterized by three dimensional
‘cylindric partitions.’ Consider n = 3, level 2.
For a fixed highest weight, e.g, Λ0 + Λ1, color the boxes.

People usually denote this by a tupple of partitions.
There are natural crystal operations such that each connected component
is a copy of B(Λ).
A cylindric partition is in the ‘highest copy’ if and only if it does not
have three differently colored piles of the same height.

The embeddings BΛ ↪→ BΛ′ are given by “shifting".The imbedding into B∞ just records the vertical piles, not the
arrangement into an `-tuple of partitions.

The B∞ crystal structure reads boxes in order of height. For f2̄:
Peter Tingley (MIT) ŝln combinatorics Oregon, March 7, 2011 10 / 16



Partiton and cylindric partition models Cylindric partitions and higher level representations

Higher level crystals

�
�
�
�

�
�
��

��
��

@
@

@
@

@
@

@@
@@
@@2̄

1̄
0̄

2̄
1̄

�
�
�
�

�
���

��

@
@

@
@

@
@@ @
@@

2̄
1̄

1̄
0̄

0̄
1̄
2̄

0̄
1̄

1̄
2̄

1̄ 2̄

A “multi-segment"

)) ( ) ( ) ( ( ( · · ·

2̄

The following is based on work of Jimbo-Misra-Miwa-Okado.
Vertices of level ` crystals are parameterized by three dimensional
‘cylindric partitions.’ Consider n = 3, level 2.
For a fixed highest weight, e.g, Λ0 + Λ1, color the boxes.

People usually denote this by a tupple of partitions.
There are natural crystal operations such that each connected component
is a copy of B(Λ).
A cylindric partition is in the ‘highest copy’ if and only if it does not
have three differently colored piles of the same height.

The embeddings BΛ ↪→ BΛ′ are given by “shifting".The imbedding into B∞ just records the vertical piles, not the
arrangement into an `-tuple of partitions.

The B∞ crystal structure reads boxes in order of height. For f2̄:
Peter Tingley (MIT) ŝln combinatorics Oregon, March 7, 2011 10 / 16
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The following is based on work of Jimbo-Misra-Miwa-Okado.
Vertices of level ` crystals are parameterized by three dimensional
‘cylindric partitions.’ Consider n = 3, level 2.
For a fixed highest weight, e.g, Λ0 + Λ1, color the boxes.

People usually denote this by a tupple of partitions.
There are natural crystal operations such that each connected component
is a copy of B(Λ).
A cylindric partition is in the ‘highest copy’ if and only if it does not
have three differently colored piles of the same height.

The embeddings BΛ ↪→ BΛ′ are given by “shifting".The imbedding into B∞ just records the vertical piles, not the
arrangement into an `-tuple of partitions.

Cylindric partitions are only needed to describe the image of BΛ.
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Peter Tingley (MIT) ŝln combinatorics Oregon, March 7, 2011 11 / 16



Partiton and cylindric partition models Two applications

Application: generating functions/partition functions

Peter Tingley (MIT) ŝln combinatorics Oregon, March 7, 2011 11 / 16



Partiton and cylindric partition models Two applications

Application: generating functions/partition functions
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Application: generating functions/partition functions

The generating function for cylindric partitions on a given cylinder is a
specialization of the Weyl character formula.

Since we want all cylindric
partitions, not just ` regular ones, use Weyl character formula for ĝln, not
ŝln.

Corollary∑
πon a given cylinder

q|π| = dimq(WΛ), where WΛ is an irreducible representation

of ĝln at level `.

(Calculated by A. Borodin in a different form).
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Borodin’s result

Theorem
(Borodin 2006) The partition function for cylindric plane partitions is given
by:

Z :=
∑

cylindric partitions π
on a given cylinder

q|π| =
∏
k≥1

1
1− qkN

∏
i ∈ 1,N : A[i] = 1
j ∈ 1,N : A[j] = 0

1
1− q(i−j)(N)+(k−1)N

.

N = n + `

For any k ∈ Z, k(N) is the smallest non-negative integer congruent to k
modulo N.
1,N is the set of integers modulo N.

A[i] =

{
1 if the boundary is sloping up and to the right at i
0 otherwise

Peter Tingley (MIT) ŝln combinatorics Oregon, March 7, 2011 12 / 16
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Peter Tingley (MIT) ŝln combinatorics Oregon, March 7, 2011 12 / 16



Partiton and cylindric partition models Two applications

Borodin’s result

In fact, Borodin also calculated correlation functions for a system of
random cylindric partitions.

To do that, he needed to use “shift-mixing." It seems you don’t get a
determinental process otherwise (I’m quoting Borodin, and he says this
hasn’t been proven).

But ‘shift mixing’ is meaningful in representation theory as well. It
means you are looking at a representation of ŝln ⊕ Cl, where Cl is an
infinite dimensional Clifford algebra. This is actually done quite often.

Question: what do Borodin’s results mean representation theoretically?

Answer: They tell you something about expected behavior of randomly
chosen basis vectors...but it is really a statistic on the combinatorial
indexing set, I don’t know what it means in any deeper sense.

Peter Tingley (MIT) ŝln combinatorics Oregon, March 7, 2011 12 / 16
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infinite dimensional Clifford algebra. This is actually done quite often.

Question: what do Borodin’s results mean representation theoretically?

Answer: They tell you something about expected behavior of randomly
chosen basis vectors...but it is really a statistic on the combinatorial
indexing set, I don’t know what it means in any deeper sense.
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infinite dimensional Clifford algebra. This is actually done quite often.

Question: what do Borodin’s results mean representation theoretically?

Answer: They tell you something about expected behavior of randomly
chosen basis vectors...but it is really a statistic on the combinatorial
indexing set, I don’t know what it means in any deeper sense.
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Peter Tingley (MIT) ŝln combinatorics Oregon, March 7, 2011 12 / 16



Partiton and cylindric partition models Two applications

Borodin’s result

In fact, Borodin also calculated correlation functions for a system of
random cylindric partitions.

To do that, he needed to use “shift-mixing." It seems you don’t get a
determinental process otherwise (I’m quoting Borodin, and he says this
hasn’t been proven).

But ‘shift mixing’ is meaningful in representation theory as well.

It
means you are looking at a representation of ŝln ⊕ Cl, where Cl is an
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You can interpret a given cylinder as a level ` highest weight for ŝln or a
level n highest weight for ŝl`. Thus we observe:

Theorem (originally due to I. Frenkel)

Let WΛ be an irreducible integrable level ` representation of ĝln. There is a
corresponding level n irreducible integral representation WΛ′ of ĝl` so that

dimq(WΛ) = dimq(WΛ′).
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Current work Fayers’ crystals

Recent developement: Berg/Fayers’ crystals
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Define new operators Ēi and F̄i on the set of partitions.
for ī = 2̄, constuct a string of brackets as before, but ordered
lexicographically by height, then right to left.
F2̄ adds the box corresponding to the first uncanceled _.

The component generated by the empty partition is a copy of B(Λ0).
CAUTION: other components are not all crystals.
A partition is in B(Λ0) if and only if there are no illegal hooks.

One can actually read the boxes according to ANY slope (in a certain
range)
The same result is true, although definition of "illegal hook" is a bit more
complicated.
This gives uncountably many realizations of BΛ0 .
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A partition is in B(Λ0) if and only if there are no illegal hooks.

One can actually read the boxes according to ANY slope (in a certain
range)
The same result is true, although definition of "illegal hook" is a bit more
complicated.
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F2̄ adds the box corresponding to the first uncanceled _.

The component generated by the empty partition is a copy of B(Λ0).
CAUTION: other components are not all crystals.
A partition is in B(Λ0) if and only if there are no illegal hooks.
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lexicographically by height, then right to left.
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A partition is in B(Λ0) if and only if there are no illegal hooks.
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Peter Tingley (MIT) ŝln combinatorics Oregon, March 7, 2011 15 / 16



Current work Fayers’ crystals

Recent developement: Berg/Fayers’ crystals
y x

�
�
�
�
�
�
�
�
�
�
�
���

�
�
�
�
�
�
�
�
�
��

�
�
�
��

�
�
��

�
�
��

�
���

���
����

��
��

��

@
@
@

@
@
@

@
@
@

@
@

@@I

@
@

@
@

@
@
@

@
@

@
@@

@
@

@
@
@

@
@@

@
@
@

@@

@
@@ @@

@@
@@
@@
@@
@@

@@��

2̄
1̄

0̄
3̄

2̄
1̄

1̄
0̄

0̄
3̄

3̄
2̄

2̄

1̄

1̄

1̄

0̄

0̄

0̄

3̄

3̄

2̄

2̄
1̄

0̄
3̄

2̄
1̄

0̄
3̄

∗

∗

∗

∗

∗ _̂

*2̄

_

_

^

�
�
�
�
�
�
��

@
@

@
@

@
@@

�
�
�
�
�
��

@
@

@
@

@@

@@
@@
@@
@@
@@
@@
@@

��
��

��
��

��
��̄2

1̄
0̄

3̄
2̄

1̄
0̄

3̄
2̄

1̄
0̄

3̄

3̄

HH
HHH

HHH
HHH

HHH
HHH

HHj

HHH
HHH

HHH
HHH

HHH
HHHHj

HH
HHH

HHH
HHH

HHH
HHH

HHj
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for ī = 2̄, constuct a string of brackets as before, but ordered
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F2̄ adds the box corresponding to the first uncanceled _.
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CAUTION: other components are not all crystals.
A partition is in B(Λ0) if and only if there are no illegal hooks.
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for ī = 2̄, constuct a string of brackets as before, but ordered
lexicographically by height, then right to left.
F2̄ adds the box corresponding to the first uncanceled _.

The component generated by the empty partition is a copy of B(Λ0).
CAUTION: other components are not all crystals.
A partition is in B(Λ0) if and only if there are no illegal hooks.

One can actually read the boxes according to ANY slope (in a certain
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for ī = 2̄, constuct a string of brackets as before, but ordered
lexicographically by height, then right to left.
F2̄ adds the box corresponding to the first uncanceled _.

The component generated by the empty partition is a copy of B(Λ0).
CAUTION: other components are not all crystals.
A partition is in B(Λ0) if and only if there are no illegal hooks.
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Define new operators Ēi and F̄i on the set of partitions.
for ī = 2̄, constuct a string of brackets as before, but ordered
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Peter Tingley (MIT) ŝln combinatorics Oregon, March 7, 2011 15 / 16



Current work Fayers’ crystals

Recent developement: Berg/Fayers’ crystals
y x

�
�
�
�
�
�
�
�
�
�
�
���

�
�
�
�
�
�
�
�
�
��

�
�
�
��

�
�
��

�
�
��

�
���

���
����

��
��

��

@
@
@

@
@
@

@
@
@

@
@

@@I

@
@

@
@

@
@
@

@
@

@
@@

@
@

@
@
@

@
@@

@
@
@

@@

@
@@ @@

@@
@@
@@
@@
@@

@@��

2̄
1̄

0̄
3̄

2̄
1̄

1̄
0̄

0̄
3̄

3̄
2̄

2̄

1̄

1̄

1̄

0̄

0̄

0̄

3̄

3̄

2̄

2̄
1̄

0̄
3̄

2̄
1̄

0̄
3̄

∗

∗

∗

∗

∗ _̂

*

2̄

_

_

^

�
�
�
�
�
�
��

@
@

@
@

@
@@

�
�
�
�
�
��

@
@

@
@

@@

@@
@@
@@
@@
@@
@@
@@

��
��

��
��

��
��̄2

1̄
0̄

3̄
2̄

1̄
0̄

3̄
2̄

1̄
0̄

3̄

3̄

HH
HHH

HHH
HHH

HHH
HHH

HHj

HHH
HHH

HHH
HHH

HHH
HHHHj

HH
HHH

HHH
HHH

HHH
HHH

HHj
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for ī = 2̄, constuct a string of brackets as before, but ordered
lexicographically by height, then right to left.
F2̄ adds the box corresponding to the first uncanceled _.

The component generated by the empty partition is a copy of B(Λ0).
CAUTION: other components are not all crystals.
A partition is in B(Λ0) if and only if there are no illegal hooks.

One can actually read the boxes according to ANY slope (in a certain
range)
The same result is true, although definition of "illegal hook" is a bit more
complicated.
This gives uncountably many realizations of BΛ0 .
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for ī = 2̄, constuct a string of brackets as before, but ordered
lexicographically by height, then right to left.
F2̄ adds the box corresponding to the first uncanceled _.

The component generated by the empty partition is a copy of B(Λ0).
CAUTION: other components are not all crystals.
A partition is in B(Λ0) if and only if there are no illegal hooks.

One can actually read the boxes according to ANY slope (in a certain
range)
The same result is true, although definition of "illegal hook" is a bit more
complicated.
This gives uncountably many realizations of BΛ0 .
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The same result is true, although definition of "illegal hook" is a bit more
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Future directions

I established a connection between one case of Fayers’ crystal and a case
of Nakajima’s monomial crystal

Nakajima’s monomial crystal comes from deep algebraic and geometric
structures (q-characters; quiver varieties). Perhaps these can be used to
understand why Fayers’ crystals exist.

The rest of the picture works at higher level. Can Fayers’ rule be
extended beyond level 1?

Current work with Steven Sam is going to answer at least some of this.
We can show that the ‘slope’ in Fayers model comes from a choice of C∗
action on Nakajima’s quiver varieties. This should work at higher levels,
and in fact in more general quiver varieties. Maybe we’ll even find some
new combinatorics.
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Peter Tingley (MIT) ŝln combinatorics Oregon, March 7, 2011 16 / 16



Current work Future directions

Future directions

I established a connection between one case of Fayers’ crystal and a case
of Nakajima’s monomial crystal

Nakajima’s monomial crystal comes from deep algebraic and geometric
structures (q-characters; quiver varieties). Perhaps these can be used to
understand why Fayers’ crystals exist.

The rest of the picture works at higher level. Can Fayers’ rule be
extended beyond level 1?

Current work with Steven Sam is going to answer at least some of this.
We can show that the ‘slope’ in Fayers model comes from a choice of C∗
action on Nakajima’s quiver varieties.

This should work at higher levels,
and in fact in more general quiver varieties. Maybe we’ll even find some
new combinatorics.

Peter Tingley (MIT) ŝln combinatorics Oregon, March 7, 2011 16 / 16



Current work Future directions

Future directions

I established a connection between one case of Fayers’ crystal and a case
of Nakajima’s monomial crystal

Nakajima’s monomial crystal comes from deep algebraic and geometric
structures (q-characters; quiver varieties). Perhaps these can be used to
understand why Fayers’ crystals exist.

The rest of the picture works at higher level. Can Fayers’ rule be
extended beyond level 1?

Current work with Steven Sam is going to answer at least some of this.
We can show that the ‘slope’ in Fayers model comes from a choice of C∗
action on Nakajima’s quiver varieties. This should work at higher levels,
and in fact in more general quiver varieties.

Maybe we’ll even find some
new combinatorics.
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