$\widehat{\mathfrak{sl}}_n$ crystals and cylindric partitions¹

Peter Tingley

Massachusetts Institute of Technology

Oregon, March 7, 2011

¹Slides and notes available at www-math.mit.edu/~ptingley/_>

Outline

Motivation and background

- Crystals, Characters and Combinatorics
- \mathfrak{sl}_n and its crystals

Partiton and cylindric partition models

- The Misra-Miwa-Hayashi realization
- Cylindric partitions and higher level representations
- Two applications
- Relationship with the Kyoto path model

3 Current work

- Fayers' crystals
- Future directions

• • • • • • • •

э.

2

• \mathfrak{sl}_3 is the Lie algerba consisting of 3×3 matrices with trace 0.

- \mathfrak{sl}_3 is the Lie algerba consisting of 3×3 matrices with trace 0.
- The Lie bracket is given by [A, B] = AB BA.

- \mathfrak{sl}_3 is the Lie algerba consisting of 3×3 matrices with trace 0.
- The Lie bracket is given by [A, B] = AB BA.
- The standard generators are:

$$E_{1} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \qquad F_{1} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$
$$E_{2} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \qquad F_{2} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$$

- \mathfrak{sl}_3 is the Lie algerba consisting of 3×3 matrices with trace 0.
- The Lie bracket is given by [A, B] = AB BA.
- The standard generators are:

$$E_{1} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \qquad F_{1} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$
$$E_{2} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \qquad F_{2} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$$

• Any representation of \mathfrak{sl}_3 decomposes (as a vector space) into the direct sum of the simultaneous eigenspaces for the diagonal matrices (weight spaces).

• There are 6 one dimensional weight spaces and 1 two dimensional weight space.

• There are 6 one dimensional weight spaces and 1 two dimensional weight space.

- There are 6 one dimensional weight spaces and 1 two dimensional weight space.
- The generators F_1 and F_2 act between weight spaces.

- There are 6 one dimensional weight spaces and 1 two dimensional weight space.
- The generators F_1 and F_2 act between weight spaces.

- There are 6 one dimensional weight spaces and 1 two dimensional weight space.
- The generators F_1 and F_2 act between weight spaces.
- There are 4 distinguished one dimensional spaces in the middle.

- There are 6 one dimensional weight spaces and 1 two dimensional weight space.
- The generators F_1 and F_2 act between weight spaces.
- There are 4 distinguished one dimensional spaces in the middle.
- If we use $U_q(\mathfrak{sl}_3)$ and 'rescale' the operators, then "at q = 0", they match up.

- There are 6 one dimensional weight spaces and 1 two dimensional weight space.
- The generators F_1 and F_2 act between weight spaces.
- There are 4 distinguished one dimensional spaces in the middle.
- If we use $U_q(\mathfrak{sl}_3)$ and 'rescale' the operators, then "at q = 0", they match up.

- There are 6 one dimensional weight spaces and 1 two dimensional weight space.
- The generators F_1 and F_2 act between weight spaces.
- There are 4 distinguished one dimensional spaces in the middle.
- If we use $U_q(\mathfrak{sl}_3)$ and 'rescale' the operators, then "at q = 0", they match up. You get a colored directed graph.

Peter Tingley (MIT)

• Often the vertices of the crystal graph can be parametrized by combinatorial objects.

• Often the vertices of the crystal graph can be parametrized by combinatorial objects.

- Often the vertices of the crystal graph can be parametrized by combinatorial objects.
- Then the combinatorics gives information about representation theory, and vise-versa.

- Often the vertices of the crystal graph can be parametrized by combinatorial objects.
- Then the combinatorics gives information about representation theory, and vise-versa.
- Here you see that the graded dimension of the representation is the generating function for semi-standard Young tableaux.

Peter Tingley (MIT)

• For \mathfrak{sl}_2 , crystals are just directed segments.

• For \mathfrak{sl}_2 , crystals are just directed segments.

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each sl_2 independently.

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each sl_2 independently.
- As an example, consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each sl_2 independently.
- As an example, consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each sl_2 independently.
- As an example, consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each sl_2 independently.
- As an example, consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each sl_2 independently.
- As an example, consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each sl_2 independently.
- As an example, consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each sl_2 independently.
- As an example, consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each sl_2 independently.
- As an example, consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each sl_2 independently.
- As an example, consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each sl_2 independently.
- As an example, consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each sl_2 independently.
- As an example, consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each sl_2 independently.
- As an example, consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each sl_2 independently.
- As an example, consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each sl_2 independently.
- As an example, consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each sl_2 independently.
- As an example, consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each sl_2 independently.
- As an example, consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each sl_2 independently.
- As an example, consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each sl_2 independently.
- As an example, consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each sl_2 independently.
- As an example, consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each sl_2 independently.
- As an example, consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each sl_2 independently.
- As an example, consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each *sl*₂ independently.
- As an example, consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each sl_2 independently.
- As an example, consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each sl_2 independently.
- As an example, consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- One is often interested in finding the multiplicity of $V(\nu)$ in $V(\lambda) \otimes V(\mu)$.
- Fill the first and second partition with the highest weight tableaux.

- One is often interested in finding the multiplicity of $V(\nu)$ in $V(\lambda) \otimes V(\mu)$.
- Fill the first and second partition with the highest weight tableaux.

- One is often interested in finding the multiplicity of $V(\nu)$ in $V(\lambda) \otimes V(\mu)$.
- Fill the first and second partition with the highest weight tableaux.

- One is often interested in finding the multiplicity of $V(\nu)$ in $V(\lambda) \otimes V(\mu)$.
- Fill the first and second partition with the highest weight tableaux.
- The answer is the number of tableaux on the rightmost shape using exactly the leftover numbers,

- One is often interested in finding the multiplicity of $V(\nu)$ in $V(\lambda) \otimes V(\mu)$.
- Fill the first and second partition with the highest weight tableaux.
- The answer is the number of tableaux on the rightmost shape using exactly the leftover numbers, here {1, 1, 2, 2, 3},

- One is often interested in finding the multiplicity of $V(\nu)$ in $V(\lambda) \otimes V(\mu)$.
- Fill the first and second partition with the highest weight tableaux.
- The answer is the number of tableaux on the rightmost shape using exactly the leftover numbers, here {1, 1, 2, 2, 3}, and such that the tensor product is highest weight

- One is often interested in finding the multiplicity of $V(\nu)$ in $V(\lambda) \otimes V(\mu)$.
- Fill the first and second partition with the highest weight tableaux.
- The answer is the number of tableaux on the rightmost shape using exactly the leftover numbers, here $\{1, 1, 2, 2, 3\}$, and such that the tensor product is highest weight (i.e. all e_i kill it).

- One is often interested in finding the multiplicity of $V(\nu)$ in $V(\lambda) \otimes V(\mu)$.
- Fill the first and second partition with the highest weight tableaux.
- The answer is the number of tableaux on the rightmost shape using exactly the leftover numbers, here $\{1, 1, 2, 2, 3\}$, and such that the tensor product is highest weight (i.e. all e_i kill it).

- One is often interested in finding the multiplicity of $V(\nu)$ in $V(\lambda) \otimes V(\mu)$.
- Fill the first and second partition with the highest weight tableaux.
- The answer is the number of tableaux on the rightmost shape using exactly the leftover numbers, here $\{1, 1, 2, 2, 3\}$, and such that the tensor product is highest weight (i.e. all e_i kill it).

- One is often interested in finding the multiplicity of $V(\nu)$ in $V(\lambda) \otimes V(\mu)$.
- Fill the first and second partition with the highest weight tableaux.
- The answer is the number of tableaux on the rightmost shape using exactly the leftover numbers, here $\{1, 1, 2, 2, 3\}$, and such that the tensor product is highest weight (i.e. all e_i kill it).

- One is often interested in finding the multiplicity of $V(\nu)$ in $V(\lambda) \otimes V(\mu)$.
- Fill the first and second partition with the highest weight tableaux.
- The answer is the number of tableaux on the rightmost shape using exactly the leftover numbers, here $\{1, 1, 2, 2, 3\}$, and such that the tensor product is highest weight (i.e. all e_i kill it).

- One is often interested in finding the multiplicity of $V(\nu)$ in $V(\lambda) \otimes V(\mu)$.
- Fill the first and second partition with the highest weight tableaux.
- The answer is the number of tableaux on the rightmost shape using exactly the leftover numbers, here $\{1, 1, 2, 2, 3\}$, and such that the tensor product is highest weight (i.e. all e_i kill it).
- We would need to discuss the actually operators on tableaux to finish, but the point is it is combinatorial, and reasonably easy to compute.

Peter Tingley (MIT)

< A

• There is a crystal B_{λ} for each dominant integral weight λ .

Peter Tingley (MIT)

- There is a crystal B_{λ} for each dominant integral weight λ .
- $\{B_{\lambda}\}$ forms a directed system.

Peter Tingley (MIT)

 $B_{\omega_1+2\omega_2}$

- There is a crystal B_{λ} for each dominant integral weight λ .
- $\{B_{\lambda}\}$ forms a directed system.

- There is a crystal B_{λ} for each dominant integral weight λ .
- $\{B_{\lambda}\}$ forms a directed system.

- There is a crystal B_{λ} for each dominant integral weight λ .
- $\{B_{\lambda}\}$ forms a directed system.
- The limit of this system is B_{∞} .

Peter Tingley (MIT)

• In any realization, I want to understand these injections.

Peter Tingley (MIT)

 \mathfrak{sl}_n combinatorics

Oregon, March 7, 2011 7 / 16

- In any realization, I want to understand these injections.
- They come from the fact that there is a canonical basis of U⁻_q(g) which descends to a basis of each V(λ).

Peter Tingley (MIT)

$\widehat{\mathfrak{sl}}_n$ and its crystals

٠

$\widehat{\mathfrak{sl}}_n$ and its crystals

• Definition 1:

2

A D > A A P >
A
Definition 1: sl'_n is a central extension of the Lie algebra of polynomial loops in sl_n

Definition 1: sl_n is a central extension of the Lie algebra of polynomial loops in sl_n

 $\mathfrak{sl}_n\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}C$

 Definition 1: sl_n is a central extension of the Lie algebra of polynomial loops in sl_n

 $\mathfrak{sl}_n\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}C$

where

Definition 1: sl_n is a central extension of the Lie algebra of polynomial loops in sl_n

 $\mathfrak{sl}_n\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}C$

where

• C is central.

 Definition 1: sl_n is a central extension of the Lie algebra of polynomial loops in sl_n

$$\mathfrak{sl}_n\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}C$$

where

C is central.

 $[X \otimes t^a, Y \otimes t^b] = [X, Y] \otimes f(t)g(t) + tr(ad(X)ad(Y))\delta_{a+b,0}C.$

2

Image: A matrix and a matrix

• Definition 2:

2

• Definition 2: $\widehat{\mathfrak{sl}}_n$ (for $n \ge 3$) is the Kac-Moody algebra with dynkin diagram

• Definition 2: $\widehat{\mathfrak{sl}}_n$ (for $n \ge 3$) is the Kac-Moody algebra with dynkin diagram

• $\widehat{\mathfrak{sl}}'_n$ is generated by $\{E_i, F_i\}_{0 \le i \le n-1}$ subject to the relations that for each pair $0 \le i < j \le n-1$, $\{E_i, F_i, E_j, F_j\}$ generate a copy of

 $\begin{cases} \mathfrak{sl}_3 \text{ if } |i-j| = 1 \mod(n) \\ \mathfrak{sl}_2 \times \mathfrak{sl}_2 \text{ otherwise.} \end{cases}$

• Definition 2: $\widehat{\mathfrak{sl}}_n$ (for $n \ge 3$) is the Kac-Moody algebra with dynkin diagram

• $\widehat{\mathfrak{sl}}'_n$ is generated by $\{E_i, F_i\}_{0 \le i \le n-1}$ subject to the relations that for each pair $0 \le i < j \le n-1$, $\{E_i, F_i, E_j, F_j\}$ generate a copy of

 $\begin{cases} \mathfrak{sl}_3 \text{ if } |i-j| = 1 \mod(n) \\ \mathfrak{sl}_2 \times \mathfrak{sl}_2 \text{ otherwise.} \end{cases}$

For $\widehat{\mathfrak{sl}}_4$:

• Definition 2: $\widehat{\mathfrak{sl}}_n$ (for $n \ge 3$) is the Kac-Moody algebra with dynkin diagram

• $\widehat{\mathfrak{sl}}'_n$ is generated by $\{E_i, F_i\}_{0 \le i \le n-1}$ subject to the relations that for each pair $0 \le i < j \le n-1$, $\{E_i, F_i, E_j, F_j\}$ generate a copy of

 $\begin{cases} \mathfrak{sl}_3 \text{ if } |i-j| = 1 \mod(n) \\ \mathfrak{sl}_2 \times \mathfrak{sl}_2 \text{ otherwise.} \end{cases}$

For
$$\widehat{\mathfrak{sl}}_4$$
:

$$E_2 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

• Definition 2: $\widehat{\mathfrak{sl}}_n$ (for $n \ge 3$) is the Kac-Moody algebra with dynkin diagram

• $\widehat{\mathfrak{sl}}'_n$ is generated by $\{E_i, F_i\}_{0 \le i \le n-1}$ subject to the relations that for each pair $0 \le i < j \le n-1$, $\{E_i, F_i, E_j, F_j\}$ generate a copy of

 $\begin{cases} \mathfrak{sl}_3 \text{ if } |i-j| = 1 \mod(n) \\ \mathfrak{sl}_2 \times \mathfrak{sl}_2 \text{ otherwise.} \end{cases}$

2

Image: A matrix and a matrix

Fix n ≥ 3. An (infinite) n-colored directed graph is an st_n crystal if, for each pair of colors c_i and c_j, the graph consisting of all edges of those 2 colors is

Fix n ≥ 3. An (infinite) n-colored directed graph is an st_n crystal if, for each pair of colors c_i and c_j, the graph consisting of all edges of those 2 colors is

$$\begin{cases} An sl_3 crystal graph if $|i - j| = 1 \mod(n) \\ An sl_2 \times sl_2 crystal graph otherwise. \end{cases}$$$

Fix n ≥ 3. An (infinite) n-colored directed graph is an sl_n crystal if, for each pair of colors c_i and c_j, the graph consisting of all edges of those 2 colors is

An sl₃ crystal graph if
$$|i - j| = 1 \mod(n)$$

An sl₂ × sl₂ crystal graph otherwise.

• In fact, it is a theorem of Kashiwara that, to check a graph is a crystal, it suffices to look at rank 2 behavior.

Partiton and cylindric partition models Th

The Misra-Miwa-Hayashi realization

The Misra-Miwa-Hayashi realization of B_{Λ_0} for \mathfrak{sl}_3

Partiton and cylindric partition models The Mi

The Misra-Miwa-Hayashi realization

The Misra-Miwa-Hayashi realization of B_{Λ_0} for \mathfrak{sl}_3

• We define crystal operators on partitions.

The Misra-Miwa-Hayashi realization of B_{Λ_0} for \mathfrak{sl}_3

• We define crystal operators on partitions.

The Misra-Miwa-Hayashi realization of B_{Λ_0} for \mathfrak{sl}_3

• We define crystal operators on partitions. Here (7, 6, 6, 6, 5, 3, 2).

The Misra-Miwa-Hayashi realization of B_{Λ_0} for \mathfrak{sl}_3

- We define crystal operators on partitions. Here (7, 6, 6, 6, 5, 3, 2).
- Color the boxes in the partition periodically with n = 3 colors.

The Misra-Miwa-Hayashi realization of B_{Λ_0} for \mathfrak{sl}_3

- We define crystal operators on partitions. Here (7, 6, 6, 6, 5, 3, 2).
- Color the boxes in the partition periodically with n = 3 colors.

The Misra-Miwa-Hayashi realization of B_{Λ_0} for \mathfrak{sl}_3

The Misra-Miwa-Hayashi realization of B_{Λ_0} for \mathfrak{sl}_3

The Misra-Miwa-Hayashi realization of B_{Λ_0} for \mathfrak{sl}_3

The Misra-Miwa-Hayashi realization of B_{Λ_0} for \mathfrak{sl}_3

Partiton and cylindric partition models The Misra

The Misra-Miwa-Hayashi realization

The Misra-Miwa-Hayashi realization of B_{Λ_0} for \mathfrak{sl}_3

The Misra-Miwa-Hayashi realization of B_{Λ_0} for \mathfrak{sl}_3

- $F_{\overline{2}}$ adds a $\overline{2}$ colored box.
- $E_{\bar{2}}$ would send this partition to 0.

Partiton and cylindric partition models

The Misra-Miwa-Hayashi realization

The Misra-Miwa-Hayashi realization of B_{Λ_0} for \mathfrak{sl}_3

The Misra-Miwa-Hayashi realization of B_{Λ_0} for \mathfrak{sl}_3

• Every connected is a copy of B_{Λ_0} .

The Misra-Miwa-Hayashi realization of B_{Λ_0} for \mathfrak{sl}_3

• Every connected is a copy of B_{Λ_0} . In particular, the subcrystal generated by the empty partition is a model for B_{Λ_0} .

The Misra-Miwa-Hayashi realization of B_{Λ_0} for \mathfrak{sl}_3

• Every connected is a copy of B_{Λ_0} . In particular, the subcrystal generated by the empty partition is a model for B_{Λ_0} .

- Every connected is a copy of B_{Λ_0} . In particular, the subcrystal generated by the empty partition is a model for B_{Λ_0} .
- The subcrystal generated by the empty partition consists exactly of the 3-regular partitions are a single copy of B_{Λ_0}

- Every connected is a copy of B_{Λ_0} . In particular, the subcrystal generated by the empty partition is a model for B_{Λ_0} .
- The subcrystal generated by the empty partition consists exactly of the 3-regular partitions are a single copy of B_{Λ_0} (no 3 rows of same length).

- Every connected is a copy of B_{Λ_0} . In particular, the subcrystal generated by the empty partition is a model for B_{Λ_0} .
- The subcrystal generated by the empty partition consists exactly of the 3-regular partitions are a single copy of B_{Λ_0} (no 3 rows of same length).

- Every connected is a copy of B_{Λ_0} . In particular, the subcrystal generated by the empty partition is a model for B_{Λ_0} .
- The subcrystal generated by the empty partition consists exactly of the 3-regular partitions are a single copy of B_{Λ_0} (no 3 rows of same length).

- Every connected is a copy of B_{Λ_0} . In particular, the subcrystal generated by the empty partition is a model for B_{Λ_0} .
- The subcrystal generated by the empty partition consists exactly of the 3-regular partitions are a single copy of B_{Λ_0} (no 3 rows of same length).

- Every connected is a copy of B_{Λ_0} . In particular, the subcrystal generated by the empty partition is a model for B_{Λ_0} .
- The subcrystal generated by the empty partition consists exactly of the 3-regular partitions are a single copy of B_{Λ_0} (no 3 rows of same length).

- Every connected is a copy of B_{Λ_0} . In particular, the subcrystal generated by the empty partition is a model for B_{Λ_0} .
- The subcrystal generated by the empty partition consists exactly of the 3-regular partitions are a single copy of B_{Λ_0} (no 3 rows of same length).

The Misra-Miwa-Hayashi realization of B_{Λ_0} for \mathfrak{sl}_3

- Every connected is a copy of B_{Λ_0} . In particular, the subcrystal generated by the empty partition is a model for B_{Λ_0} .
- The subcrystal generated by the empty partition consists exactly of the 3-regular partitions are a single copy of B_{Λ_0} (no 3 rows of same length).
- For instance, we now know that the *q*-character of V_{Λ_0} is equal to the generating function of 3-regular partitions counted by size.

• The following is based on work of Jimbo-Misra-Miwa-Okado.

Peter Tingley (1	MIT)
------------------	------

- The following is based on work of Jimbo-Misra-Miwa-Okado.
- Vertices of level ℓ crystals are parameterized by three dimensional 'cylindric partitions.'

- The following is based on work of Jimbo-Misra-Miwa-Okado.
- Vertices of level ℓ crystals are parameterized by three dimensional 'cylindric partitions.' Consider n = 3, level 2.

- The following is based on work of Jimbo-Misra-Miwa-Okado.
- Vertices of level ℓ crystals are parameterized by three dimensional 'cylindric partitions.' Consider n = 3, level 2.

- The following is based on work of Jimbo-Misra-Miwa-Okado.
- Vertices of level ℓ crystals are parameterized by three dimensional 'cylindric partitions.' Consider n = 3, level 2.
- For a fixed highest weight, e.g, $\Lambda_0 + \Lambda_1$, color the boxes.

- The following is based on work of Jimbo-Misra-Miwa-Okado.
- Vertices of level ℓ crystals are parameterized by three dimensional 'cylindric partitions.' Consider n = 3, level 2.
- For a fixed highest weight, e.g, $\Lambda_0 + \Lambda_1$, color the boxes.

- The following is based on work of Jimbo-Misra-Miwa-Okado.
- Vertices of level ℓ crystals are parameterized by three dimensional 'cylindric partitions.' Consider n = 3, level 2.
- For a fixed highest weight, e.g, $\Lambda_0 + \Lambda_1$, color the boxes.

• People usually denote this by a tupple of partitions.

Peter Ting	ley (MIT)
------------	-----------

• There are natural crystal operations such that each connected component is a copy of $B(\Lambda)$.

- There are natural crystal operations such that each connected component is a copy of $B(\Lambda)$.
- A cylindric partition is in the 'highest copy' if and only if it does not have three differently colored piles of the same height.

Peter Tingley (MIT)

$\widehat{\mathfrak{sl}}_n$ combinatorics

• The embeddings $B_{\Lambda} \hookrightarrow B_{\Lambda'}$ are given by "shifting".

• The imbedding into B_{∞} just records the vertical piles, not the arrangement into an ℓ -tuple of partitions.

Peter Tingley (MIT)

• The imbedding into B_{∞} just records the vertical piles, not the arrangement into an ℓ -tuple of partitions.

Peter Tingley (MIT)

 $\widehat{\mathfrak{sl}}_n$ combinatorics

• The B_{∞} crystal structure reads boxes in order of height.

Peter Tingley (MIT)

 $\widehat{\mathfrak{sl}}_n$ combinatorics

Peter Tingley (MIT)

 $\widehat{\mathfrak{sl}}_n$ combinatorics

Peter Tingley (MIT)

 $\widehat{\mathfrak{sl}}_n$ combinatorics

Peter Tingley (MIT)

 $\widehat{\mathfrak{sl}}_n$ combinatorics

Peter Tingley (MIT)

 $\widehat{\mathfrak{sl}}_n$ combinatorics

Peter Tingley (MIT)

 $\widehat{\mathfrak{sl}}_n$ combinatorics

Peter Tingley (MIT)

 $\widehat{\mathfrak{sl}}_n$ combinatorics

Peter Tingley (MIT)

 $\widehat{\mathfrak{sl}}_n$ combinatorics

Peter Tingley (MIT)

 $\widehat{\mathfrak{sl}}_n$ combinatorics

Partiton and cylindric partition models Two

Two applications

Application: generating functions/partition functions

Peter Tingley (MIT)

• The generating function for cylindric partitions on a given cylinder is a specialization of the Weyl character formula.

• The generating function for cylindric partitions on a given cylinder is a specialization of the Weyl character formula. Since we want all cylindric partitions, not just ℓ regular ones, use Weyl character formula for \mathfrak{gl}_n , not \mathfrak{sl}_n .

• The generating function for cylindric partitions on a given cylinder is a specialization of the Weyl character formula. Since we want all cylindric partitions, not just ℓ regular ones, use Weyl character formula for \mathfrak{gl}_n , not \mathfrak{sl}_n .

Corollary

 $q^{|\pi|} = \dim_q(W_\Lambda)$, where W_Λ is an irreducible representation

 π on a given cylinder

of \mathfrak{gl}_n at level ℓ . (Calculated by A. Borodin in a different form).
э.

Theorem

$$Z := \sum_{\substack{\text{cylindric partitions } \pi \\ \text{on a given cylinder }}} q^{|\pi|} = \prod_{k \ge 1} \frac{1}{1 - q^{kN}} \prod_{\substack{i \in \overline{1, N} : A[i] = 1 \\ j \in \overline{1, N} : A[j] = 0}} \frac{1}{1 - q^{(i-j)(N) + (k-1)N}}.$$

Theorem

$$Z := \sum_{\substack{\text{cylindric partitions } \pi \\ \text{on a given cylinder}}} q^{|\pi|} = \prod_{k \ge 1} \frac{1}{1 - q^{kN}} \prod_{\substack{i \in \overline{1, N} : A[i] = 1 \\ j \in \overline{1, N} : A[j] = 0}} \frac{1}{1 - q^{(i-j)(N) + (k-1)N}}.$$

•
$$N = n + \ell$$

Theorem

$$Z := \sum_{\substack{\text{cylindric partitions } \pi \\ \text{on a given cylinder }}} q^{|\pi|} = \prod_{k \ge 1} \frac{1}{1 - q^{kN}} \prod_{\substack{i \in \overline{1, N} : A[i] = 1 \\ j \in \overline{1, N} : A[j] = 0}} \frac{1}{1 - q^{(i-j)(N) + (k-1)N}}.$$

- $N = n + \ell$
- For any k ∈ Z, k(N) is the smallest non-negative integer congruent to k modulo N.

Theorem

$$Z := \sum_{\substack{\text{cylindric partitions } \pi \\ \text{on a given cylinder }}} q^{|\pi|} = \prod_{k \ge 1} \frac{1}{1 - q^{kN}} \prod_{\substack{i \in \overline{1, N} : A[i] = 1 \\ j \in \overline{1, N} : A[j] = 0}} \frac{1}{1 - q^{(i-j)(N) + (k-1)N}}.$$

- $N = n + \ell$
- For any k ∈ Z, k(N) is the smallest non-negative integer congruent to k modulo N.
- $\overline{1,N}$ is the set of integers modulo N.

Theorem

$$Z := \sum_{\substack{\text{cylindric partitions } \pi \\ \text{on a given cylinder}}} q^{|\pi|} = \prod_{k \ge 1} \frac{1}{1 - q^{kN}} \prod_{\substack{i \in \overline{1, N} : A[i] = 1 \\ j \in \overline{1, N} : A[j] = 0}} \frac{1}{1 - q^{(i-j)(N) + (k-1)N}}.$$

- $N = n + \ell$
- For any k ∈ Z, k(N) is the smallest non-negative integer congruent to k modulo N.
- $\overline{1,N}$ is the set of integers modulo N.
- $A[i] = \begin{cases} 1 & \text{if the boundary is sloping up and to the right at } i \\ 0 & \text{otherwise} \end{cases}$

э.

• In fact, Borodin also calculated correlation functions for a system of random cylindric partitions.

э.

э.

• In fact, Borodin also calculated correlation functions for a system of random cylindric partitions.

- In fact, Borodin also calculated correlation functions for a system of random cylindric partitions.
- To do that, he needed to use "shift-mixing." It seems you don't get a determinental process otherwise

- In fact, Borodin also calculated correlation functions for a system of random cylindric partitions.
- To do that, he needed to use "shift-mixing." It seems you don't get a determinental process otherwise (I'm quoting Borodin, and he says this hasn't been proven).

- In fact, Borodin also calculated correlation functions for a system of random cylindric partitions.
- To do that, he needed to use "shift-mixing." It seems you don't get a determinental process otherwise (I'm quoting Borodin, and he says this hasn't been proven).
- But 'shift mixing' is meaningful in representation theory as well.

- In fact, Borodin also calculated correlation functions for a system of random cylindric partitions.
- To do that, he needed to use "shift-mixing." It seems you don't get a determinental process otherwise (I'm quoting Borodin, and he says this hasn't been proven).
- But 'shift mixing' is meaningful in representation theory as well. It means you are looking at a representation of $\widehat{\mathfrak{sl}}_n \oplus Cl$, where *Cl* is an infinite dimensional Clifford algebra.

- In fact, Borodin also calculated correlation functions for a system of random cylindric partitions.
- To do that, he needed to use "shift-mixing." It seems you don't get a determinental process otherwise (I'm quoting Borodin, and he says this hasn't been proven).
- But 'shift mixing' is meaningful in representation theory as well. It means you are looking at a representation of $\widehat{\mathfrak{sl}_n} \oplus Cl$, where *Cl* is an infinite dimensional Clifford algebra. This is actually done quite often.

- In fact, Borodin also calculated correlation functions for a system of random cylindric partitions.
- To do that, he needed to use "shift-mixing." It seems you don't get a determinental process otherwise (I'm quoting Borodin, and he says this hasn't been proven).
- But 'shift mixing' is meaningful in representation theory as well. It means you are looking at a representation of $\widehat{\mathfrak{sl}_n} \oplus Cl$, where *Cl* is an infinite dimensional Clifford algebra. This is actually done quite often.
- Question: what do Borodin's results mean representation theoretically?

- In fact, Borodin also calculated correlation functions for a system of random cylindric partitions.
- To do that, he needed to use "shift-mixing." It seems you don't get a determinental process otherwise (I'm quoting Borodin, and he says this hasn't been proven).
- But 'shift mixing' is meaningful in representation theory as well. It means you are looking at a representation of $\widehat{\mathfrak{sl}_n} \oplus Cl$, where *Cl* is an infinite dimensional Clifford algebra. This is actually done quite often.
- Question: what do Borodin's results mean representation theoretically?
- Answer: They tell you something about expected behavior of randomly chosen basis vectors...

- In fact, Borodin also calculated correlation functions for a system of random cylindric partitions.
- To do that, he needed to use "shift-mixing." It seems you don't get a determinental process otherwise (I'm quoting Borodin, and he says this hasn't been proven).
- But 'shift mixing' is meaningful in representation theory as well. It means you are looking at a representation of $\widehat{\mathfrak{sl}_n} \oplus Cl$, where *Cl* is an infinite dimensional Clifford algebra. This is actually done quite often.
- Question: what do Borodin's results mean representation theoretically?
- Answer: They tell you something about expected behavior of randomly chosen basis vectors...but it is really a statistic on the combinatorial indexing set, I don't know what it means in any deeper sense.

Partiton and cylindric partition models Two

Two applications

Application: Level-rank duality

Peter Tingley (MIT)

You can interpret a given cylinder as a level ℓ highest weight for sl_n or a level n highest weight for sl_ℓ. Thus we observe:

You can interpret a given cylinder as a level ℓ highest weight for sl_n or a level n highest weight for sl_ℓ. Thus we observe:

Theorem (originally due to I. Frenkel)

You can interpret a given cylinder as a level ℓ highest weight for sl_n or a level n highest weight for sl_ℓ. Thus we observe:

Theorem (originally due to I. Frenkel)

Let W_{Λ} be an irreducible integrable level ℓ representation of $\widehat{\mathfrak{gl}}_n$.

You can interpret a given cylinder as a level ℓ highest weight for sl_n or a level n highest weight for sl_ℓ. Thus we observe:

Theorem (originally due to I. Frenkel)

Let W_{Λ} be an irreducible integrable level ℓ representation of $\widehat{\mathfrak{gl}}_n$. There is a corresponding level n irreducible integral representation $W_{\Lambda'}$ of $\widehat{\mathfrak{gl}}_{\ell}$ so that

• You can interpret a given cylinder as a level ℓ highest weight for $\widehat{\mathfrak{sl}}_n$ or a level *n* highest weight for \mathfrak{sl}_{ℓ} . Thus we observe:

Theorem (originally due to I. Frenkel)

Let W_{Λ} be an irreducible integrable level ℓ representation of $\widehat{\mathfrak{gl}}_n$. There is a corresponding level n irreducible integral representation $W_{\Lambda'}$ of \mathfrak{gl}_{ℓ} so that

$$\dim_q(W_\Lambda) = \dim_q(W_{\Lambda'}).$$

• Define new operators $E_{\overline{i}}$ and $F_{\overline{i}}$ on the set of partitions.

Recent developement: Berg/Fayers' crystals

• Define new operators $E_{\overline{i}}$ and $F_{\overline{i}}$ on the set of partitions.

- Define new operators $E_{\overline{i}}$ and $F_{\overline{i}}$ on the set of partitions.
- for i = 2, constuct a string of brackets as before, but ordered lexicographically by height, then right to left.

- Define new operators $E_{\overline{i}}$ and $F_{\overline{i}}$ on the set of partitions.
- for i = 2, constuct a string of brackets as before, but ordered lexicographically by height, then right to left.

- Define new operators $E_{\overline{i}}$ and $F_{\overline{i}}$ on the set of partitions.
- for i = 2, constuct a string of brackets as before, but ordered lexicographically by height, then right to left.

- Define new operators $E_{\overline{i}}$ and $F_{\overline{i}}$ on the set of partitions.
- for i = 2, constuct a string of brackets as before, but ordered lexicographically by height, then right to left.

- Define new operators $E_{\overline{i}}$ and $F_{\overline{i}}$ on the set of partitions.
- for $\overline{i} = \overline{2}$, constuct a string of brackets as before, but ordered lexicographically by height, then right to left.

- Define new operators $E_{\overline{i}}$ and $F_{\overline{i}}$ on the set of partitions.
- for i = 2, constuct a string of brackets as before, but ordered lexicographically by height, then right to left.

- Define new operators $E_{\overline{i}}$ and $F_{\overline{i}}$ on the set of partitions.
- for $\overline{i} = \overline{2}$, constuct a string of brackets as before, but ordered lexicographically by height, then right to left.

- Define new operators $E_{\overline{i}}$ and $F_{\overline{i}}$ on the set of partitions.
- for $\overline{i} = \overline{2}$, constuct a string of brackets as before, but ordered lexicographically by height, then right to left.

- Define new operators $E_{\overline{i}}$ and $F_{\overline{i}}$ on the set of partitions.
- for i = 2, constuct a string of brackets as before, but ordered lexicographically by height, then right to left.

- Define new operators $E_{\overline{i}}$ and $F_{\overline{i}}$ on the set of partitions.
- for i = 2, constuct a string of brackets as before, but ordered lexicographically by height, then right to left.

- Define new operators $E_{\overline{i}}$ and $F_{\overline{i}}$ on the set of partitions.
- for i = 2, constuct a string of brackets as before, but ordered lexicographically by height, then right to left.

- Define new operators $E_{\overline{i}}$ and $F_{\overline{i}}$ on the set of partitions.
- for $\overline{i} = \overline{2}$, constuct a string of brackets as before, but ordered lexicographically by height, then right to left.
- $F_{\overline{2}}$ adds the box corresponding to the first uncanceled \frown .

- Define new operators $E_{\overline{i}}$ and $F_{\overline{i}}$ on the set of partitions.
- for $\overline{i} = \overline{2}$, constuct a string of brackets as before, but ordered lexicographically by height, then right to left.
- $F_{\overline{2}}$ adds the box corresponding to the first uncanceled \frown .

- Define new operators $E_{\overline{i}}$ and $F_{\overline{i}}$ on the set of partitions.
- for $\overline{i} = \overline{2}$, constuct a string of brackets as before, but ordered lexicographically by height, then right to left.
- $F_{\overline{2}}$ adds the box corresponding to the first uncanceled \frown .

Recent developement: Berg/Fayers' crystals

• The component generated by the empty partition is a copy of $B(\Lambda_0)$.

- The component generated by the empty partition is a copy of $B(\Lambda_0)$.
- CAUTION: other components are not all crystals.

- The component generated by the empty partition is a copy of $B(\Lambda_0)$.
- CAUTION: other components are not all crystals.
- A partition is in $B(\Lambda_0)$ if and only if there are no illegal hooks.

- The component generated by the empty partition is a copy of $B(\Lambda_0)$.
- CAUTION: other components are not all crystals.
- A partition is in $B(\Lambda_0)$ if and only if there are no illegal hooks.

- The component generated by the empty partition is a copy of $B(\Lambda_0)$.
- CAUTION: other components are not all crystals.
- A partition is in $B(\Lambda_0)$ if and only if there are no illegal hooks.

- The component generated by the empty partition is a copy of $B(\Lambda_0)$.
- CAUTION: other components are not all crystals.
- A partition is in $B(\Lambda_0)$ if and only if there are no illegal hooks.

- The component generated by the empty partition is a copy of $B(\Lambda_0)$.
- CAUTION: other components are not all crystals.
- A partition is in $B(\Lambda_0)$ if and only if there are no illegal hooks.

- The component generated by the empty partition is a copy of $B(\Lambda_0)$.
- CAUTION: other components are not all crystals.
- A partition is in $B(\Lambda_0)$ if and only if there are no illegal hooks.

Recent developement: Berg/Fayers' crystals

- One can actually read the boxes according to ANY slope (in a certain range)
- The same result is true, although definition of "illegal hook" is a bit more complicated.

- One can actually read the boxes according to ANY slope (in a certain range)
- The same result is true, although definition of "illegal hook" is a bit more complicated.
- This gives uncountably many realizations of B_{Λ_0} .

Future directions

2

Image: A matrix and a matrix

-

Future directions

• I established a connection between one case of Fayers' crystal and a case of Nakajima's monomial crystal

Future directions

- I established a connection between one case of Fayers' crystal and a case of Nakajima's monomial crystal
- Nakajima's monomial crystal comes from deep algebraic and geometric structures (q-characters; quiver varieties). Perhaps these can be used to understand why Fayers' crystals exist.

- I established a connection between one case of Fayers' crystal and a case of Nakajima's monomial crystal
- Nakajima's monomial crystal comes from deep algebraic and geometric structures (q-characters; quiver varieties). Perhaps these can be used to understand why Fayers' crystals exist.
- The rest of the picture works at higher level. Can Fayers' rule be extended beyond level 1?

- I established a connection between one case of Fayers' crystal and a case of Nakajima's monomial crystal
- Nakajima's monomial crystal comes from deep algebraic and geometric structures (q-characters; quiver varieties). Perhaps these can be used to understand why Fayers' crystals exist.
- The rest of the picture works at higher level. Can Fayers' rule be extended beyond level 1?
- Current work with Steven Sam is going to answer at least some of this.

- I established a connection between one case of Fayers' crystal and a case of Nakajima's monomial crystal
- Nakajima's monomial crystal comes from deep algebraic and geometric structures (q-characters; quiver varieties). Perhaps these can be used to understand why Fayers' crystals exist.
- The rest of the picture works at higher level. Can Fayers' rule be extended beyond level 1?
- Current work with Steven Sam is going to answer at least some of this. We can show that the 'slope' in Fayers model comes from a choice of \mathbb{C}^* action on Nakajima's quiver varieties.

- I established a connection between one case of Fayers' crystal and a case of Nakajima's monomial crystal
- Nakajima's monomial crystal comes from deep algebraic and geometric structures (q-characters; quiver varieties). Perhaps these can be used to understand why Fayers' crystals exist.
- The rest of the picture works at higher level. Can Fayers' rule be extended beyond level 1?
- Current work with Steven Sam is going to answer at least some of this. We can show that the 'slope' in Fayers model comes from a choice of \mathbb{C}^* action on Nakajima's quiver varieties. This should work at higher levels, and in fact in more general quiver varieties.

- I established a connection between one case of Fayers' crystal and a case of Nakajima's monomial crystal
- Nakajima's monomial crystal comes from deep algebraic and geometric structures (q-characters; quiver varieties). Perhaps these can be used to understand why Fayers' crystals exist.
- The rest of the picture works at higher level. Can Fayers' rule be extended beyond level 1?
- Current work with Steven Sam is going to answer at least some of this. We can show that the 'slope' in Fayers model comes from a choice of C^{*} action on Nakajima's quiver varieties. This should work at higher levels, and in fact in more general quiver varieties. Maybe we'll even find some new combinatorics.