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Abstract. There are many combinatorial realizations of the crystals BΛ for the integral highest

weight representations of bsln. One of the earliest and perhaps best known has as it’s underlying set
certain `-tuples of partitions, where ` is the level of the representation. Another more recent model has

as it’s underlying set certain cylindric plane partitions. Here we present a simple crystal isomorphism

between these two realizations. We then consider the infinity crystal B∞. This has a combinatorial
realization where the underlying set consists of acyclic multi-segments. We give a simple description

of the of the ei-equivariant injection of BΛ into B∞ using the cylindric plane partition model. This

has been done previously using `-tuples of partitions, but using cylindric plane partitions appears to
simplify things. We also note that this map to aperiodic multi-segments extends to an ei-equivariant

injection from all cylindric plane partitions into all (possibly reducible) multi-segments. As discussed

in [9], this means one can think of the set of all multi-segments as the infinity crystal for bgln (as

opposed to bsln).
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1. Introduction

In [9] we introduced a model for integrable highest weight ŝln crystals where the underlying set
consists of cylindric partitions. Here we give an explicit isomorphism between between this realization
and an older realization where the underlying set consists of `-tuples of partitions. We also consider the
realization of the direct limit crystal B∞ where the underlying set consists of aperiodic multi-segments.
It turns out that the natural imbedding BΛ ↪→ B∞ is extremely easy to describe in terms of cylindric
partitions.

These bijections allow us to build on the results of [9] in two ways. First, we obtain a slightly
simpler description of the crystal structure on cylindric partitions (see Corollary 7.5). Second, we are
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able to give a simple condition on a cylindric partition to ensure that it is in the connected component
generated by the highest weight element (see Theorem 4.11).

We note that our embedding of BΛ into B∞ extends to an embedding of all cylindric partitions on a
fixed cylinder into all multi-segments (not just the acyclic ones). In fact, the set of all multi-segments
along with their structure as a (reducible) ŝln crystal is the direct limit of the crystals constructed
on all cylindric partitions, as the size of the cylinder to becomes large appropriately. In [9] we noted
that cylindric partitions can be thought of in a natural way as the underlying set for the crystal of
an irreducible ĝln (as opposed to ŝln) crystal. Thus the set of all multi-segments should perhaps be
thought of as forming the underlying set of the ĝln infinity crystal.

These notes consist mainly of bijections, which are explained via examples. We have tried to justify
why the bijections are well defined and preserve the appropriate structure, but where we feel it is clear
from the example we have not always included formal proofs.

1.1. Acknowledgments. I would like to thank Alistair Savage and Jae-Hoon Kwon who explained
to me what “acyclic” should mean for cylindric partitions. I would also like to thank Seok-Jin Kang
and the Korean math society for inviting me to the 2008 meetings in Jeju island, where that discussion
took place.

2. Crystals

We use notation as in [3], and refer the reader to that book for more detail. For us, a crystal is a
set B associated to a representation V of a symmetrizable Kac-Moody algebra g, along with operators
ei : B → B ∪ {0} and fi : B → B ∪ {0}, which satisfy some conditions. The set B records certain
combinatorial data associated to V , and the operators ei and fi correspond to the Chevalley generators
Ei and Fi of g.

Often B will be represented as an edge colored directed graph whose vertices are the elements of B,
and where for x, y ∈ B, there is a ci colored edge from x to y if and only if fi(x) = y. This records all
the information about B, since ei(y) = x if and only if fi(x) = y. For instance, the crystal of the adjoint
representation for sl3 is shown in Figure 1. The graph B is connected if and only if the corresponding
representation V is irreducible. In this paper we are interested in the crystals of integrable highest
weight representations of ŝln. These are always infinite graphs. However, they can be understood in
terms of crystal graphs for sl2 and sl3 by the following, which follows immediately from, for example,
[7, Proposition 2.4.4].

As usual, if there is an arrow a from x to y, we write t(a) = x and h(a) = y.

Proposition 2.1. Fix n ≥ 3. An n-colored directed graph G = (V,E) is the crystal graph of an
irreducible integral highest weight representation of ŝln if and only if all of the following hold:

(i) There is a “source” vhigh ∈ V for which there is no arrow with h(a) = vhigh.
(ii) G is connected.

(iii) For any pair of colors i and j, every connected component of the graph obtained by only
considering edges of colors ci and cj is finite. Furthermore, each such connected component is{

An sl3 crystal if |i− j| = 1 mod(n)
An sl2 × sl2 crystal otherwise.

We also need to use the notion of the infinity crystal B∞, which is defined by giving the set of
irreducible g crystals the structure of a directed system, and then taking the limit of that system.

Definition 2.2. Let B, C be g-crystals. We say a map s : B → C is e-equivariant if, for all i ∈ I
and all b ∈ B, s(eib) = ei(s(b)).
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Figure 1. The crystal for the adjoint representation of sl3. The highest weight ele-
ment is the node at the top. The operator f1 moves one step following the red arrows,
if possible, and sends the element to 0 otherwise. f2 acts in the same way, using the
green arrows. The operators ei act in the same way, but moving backwards along
arrows.

Denote by BΛ the crystal of the irreducible representation VΛ of highest weight Λ. The following is
well known (see for example [6, Section 2.2]) for a simple proof):

Proposition 2.3. Let Λ and Λ′ be dominant integral weights for g, and assume Λ′−Λ is also dominant.
Then there is a unique e-equivariant injection ιΛ

′

Λ : BΛ ↪→ BΛ′ . �

Definition 2.4. Let B∞ be the direct limit of all BΛ with respect to the injections in Proposition 2.3.
Let ιΛ : Bλ ↪→ B∞ be the resulting injection.

For the remainder, we will consider crystals which correspond to representations V of ŝln. We will
use Λ to denote a dominant integral weight and Λi to denote one of the fundamental weights, where i
is a residue mod n.

3. The multi-partition realization

In this section we review the combinatorial realization of integrable highest weight ŝln crystals where
the underlying set consists of `-tuples of charged partitions. This realization is essentially due to Jimbo,
Misra, Miwa and Okado [5], although we more closely follow the presentation in [2, Section 2].

Definition 3.1. A level ` multi-charge v is a set of ` residues in Z/nZ. This is written v =
(v0, v1, . . . v`−1), where 0 ≤ v0 ≤ v1 ≤ · · · ≤ v`−1 < n.

Definition 3.2. A v-cylindric multi-partition is an ordered `-tuple of partitions
λ = (λ(0), λ(1), . . . , λ(`−1)) which satisfy the conditions

λ
(k)
i ≥ λ(k+1)

i+vk+1−vk
0 ≤ k ≤ `− 2, i ∈ Z>0

λ
(`−1)
i ≥ λ(0)

i+n+v0−v`−1
i ∈ Z>0.

Comment 3.3. Given a v-cylindric multi-partition λ one can in fact define λ(k) for all k ∈ Z by the
rule vk+` = vk + n, and λ(k)

i = λ
(k+`)
i . Then the conditions of Definition 3.2 can be expressed as

λ
(k)
i ≥ λ(k+1)

i+vk+1−vk
for all k ∈ Z, i ∈ Z>0.

There no longer appear to be two separate conditions. In this form, cylindric multi-partitions look more
like the cylindric plane partitions we use later on.
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Definition 3.4. Let v be a multi-charge. The associated dominant weight is Λ(v) =
`−1∑
i=0

Λvi
.

Definition 3.5. Fix a v-cylindric multi-partition λ. Let b be a square in the young diagram of one of
the λ(k). Find (s, t) so that b is the tth square in row s of λ(k). We say b lies on diagonal d(b) = t−s+vk,
and color b with the reside of d(b) modulo n, which we denote cd(b). See Figure 2.

Definition 3.6. A v-cylindric multi-partition λ = (λ(0), λ(1), . . . , λ(`−1)) is called a highest lift if,
for all m ∈ Z>0, among the colors appearing at the upper left ends of the length m rows of the various
λ(k), at least one of {c0, c1, . . . cn−1} is missing. See Figure 2.

Definition 3.7. Fix a v cylindric multi-partition λ.
(i) AMP

i (λ) is the set of all ci colored squares that can be removed from the Young diagrams of
any of the λ(k), so that the result is still a partition.

(ii) RMP
i (λ) is the set of all ci colored squares that can be removed from the Young diagram of

any of the λ(k), so that the result is still a partition.
Note that adding a box in AMP

i or removing a box in RMP
i can result in a multi-partition which is no

longer v-cylindric.

Definition 3.8. Define a total order on AMP
i (λ) t RMP

i (λ) as follows: For b, b′ ∈ AMP
i t RMP

i , let
0 ≤ k, k′ < ` be such that b ∈ λ(k) and b′ ∈ λ(k′). Then

b ≤ b′ if

{
d(b) < d(b′) or
d(b) = d(b′) and k ≤ k′.

It is clear by doing any reasonable example that this is in fact a total order on AMP
i (λ) tRMP

i (λ).

To calculate fMP
i , construct a string of brackets SMP

i (λ) be placing a ‘(’ for every b ∈ AMP
i (λ) and

a ‘)’ for every b ∈ RMP
i (λ), ordered according to the total order in Definition 3.8. Cancel all pairs ().

fMP
i adds the square b corresponding to the first uncanceled ‘(’ for the left, if there is one, and sends

λ to 0 otherwise. Similarly, eMP
i removes the square b corresponding to the first uncanceled ‘)’ from

the right, if there is one, and sends λ to 0 otherwise. See Figure 2.

Definition 3.9. For any multi-charge v, let Bv be the set of v cylindric multi-partitions.

Theorem 3.10. (see [2, Section 2]) Fix n and a multi-charge v.
(i) The operators eMP

i and fMP
i preserve Bv ∪ {0}.

(ii) Bv along with the operators eMP
i and FMP

i is an ŝln crystal.
(iii) Every connected component of the resulting crystal graph Bv is isomorphic to BΛ(v).
(iv) The operators eMP

i and fMP
i preserve the subset Bv,highest ∪ {0} of those v-cylindric multi-

partitions which are highest lifts. The resulting subcrystal is connected, so is isomorphic to a
single copy of BΛ(v). �

4. The cylindric plane partition realization

Here we review the combinatorial realization of the crystals B(Λ) where the underlying set consists
of cylindric plane partitions, as described in [9]. This is quite similar to the realization using multi-
partitions, and the exact relationship is described explicitly in the Section 5. We have set up conventions
here slightly differently that in [9]. In particular, boxes in the cylindric partition are colored in a
different way. The relationship is that a box colored ci in [9] in now colored c−i. This amounts to
twisting by a diagram automorphism. We have done this so that later on we match the conventions
for multi-segments exactly.
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−6,3−3,0 −3,1 −3,2 −3,30,0 0,1 0,2 0,33,0 3,1 3,2

Figure 2. A multi-partition for ŝl3 with multi-charge v = (0, 1, 1, 2). We draw par-
titions in Russian notation, with the convention that the rows of the partition are
drawn sloping up and to the left. Here λ = (4.3.1, 4.3.2.1, 2.1.1.1, 4.1). One can check
that this example is v-cylindric. This example is not a highest lift because there is
are three rows of length 4 whose upper-left boxes contain the three colors c0, c1 and
c2. Above each b ∈ AMP

0 we have placed a ‘(’, and above each b ∈ RMP
0 we have

placed a ‘)’. Below each c0 diagonal, we have written the pair (d, k) from Definition
3.8. The brackets are reordered lexicographically in d and k. f0 acts by adding the
box corresponding to the first uncanceled ‘(’ from the left in this reordered bracket
string, which would end up in λ(1). Since there is no uncanceled “)”, e0 would send
this multi-partition to 0.

Definition 4.1. By a cylinder C we mean a square grid, drawn on a semi-infinite cylinder, with a
chosen boundary, as in Figure 3. we require that when drawn as in Figure 3, the boundary intersect
any vertical line only once.

Definition 4.2. A C-cylindric partition π is a filling of the squares inside the grid C with non-negative
integers, all but finitely many of which are zero, such that the result is weakly decreasing as you move
away from the boundary along the grid. As shown in Figure 4, π can be represented by a 3-dimensional
picture.

Definition 4.3. Let BC denote the set of C cylindric plane partitions.

Definition 4.4. Draw C as in Figure 3. Let `C be the number up steps on the boundary going up
and to the right over one period, and nC the number of steps going down and to the right. When C is
understood, we will leave off the subscripts.

Choose once and for all a single period of the boundary of C, which breaks the cylinder at a
local minimum of the boundary, as shown in Figure 4. Different choices of boundary give crystals
of representations which are related by a Dynkin diagram automorphism. This choice is not very
important, but must be made to fix notation.

Fix π ∈ BC . As in Figure 4, draw a 3-dimensional picture, where πij is the height of a pile of boxes
placed at position (i, j). Label each 1× 1× 1 box with coordinates (x, y, z) as shown in Figure 4, with
the origin placed so that the center of the kth box up in πs,t is given coordinates (s, t, k − 1/2). Note
that due to the periodicity, (x, y, z) labels the same box as (x+ `, y−n, z), so the coordinates are only
well defined up to this type of transformation. Color each box with a residue modulo n by coloring the
box at position (x, y, z) with cy−z (note that this is well defined since y + n− z ' y − z mod n).
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Definition 4.5. ACPi (π) is the set of ci colored boxes that can be added to π so that each slice πi (see
Figure 4) is still weakly decreasing.
RCPi (π) is the set of ci colored boxes that can be removed from π so that each slice πi is still weakly

decreasing.
Note: Adding a box in ACPi (π) or removing a box in RCPi (π) can result in something which is

no longer a cylindric partition, since the slices ci (see Figure 4) may no longer be weakly decreasing.
However it should be clear that if ALL the boxes in ACPi are added to π (or all boxes in RCPi are
removed) the result does remain a cylindric partition.

Definition 4.6. Define t(x, y, z) = nx/` + y − z. Note that t(x, y, z) = t(x + `, y − n, z), so t is well
defined as a function on boxes in a cylindric plane partition. For a box b as in Figure 4, define t(b) to
be t calculated on the coordinates of the center of b.

Definition 4.7. Color the grid C as in Figure 3. Let v(C) be the `-tuple of residues mod n which
records the colors of the upper-left squares in the grid C, as shown in Figure 3. Choose the representative
v = (v0, v1, . . . , vn) with 0 ≤ v0 ≤ v1 ≤ · ≤ v`−1 < n. Let λ(π) be the ordered `-tuple of partitions
where, for 0 ≤ i < `, λ(i) is the partition which reads the numbers in the slice of C labeled πi.

Similarly, let v′(C) be the ordered n-tuple of residues mod ` which record the label πi of the upper-
right most squares in the grid C, and choose representative v′ = (v′0, v

′
1, . . . v

′
n−1) with 0 ≤ v′0 ≤ v′1 ≤

· · · ≤ v′n−1 < `. Let λ′ be the ordered n-tuples of partition which read down the slices of the grid labeled
ck.

Definition 4.8. For a cylinder C with v(C) = (v0, v1, . . . v`−1), define Λ(C) :=
∑`
k=0 Λvk

.
Similarly, define Λ′(C) =

∑n
k=0 Λv′k .

Lemma 4.9. Fix π ∈ BC. Let b1, b2 ∈ ACPi (π)
⋃
RCPi (π). Then t(b1) = t(b2) implies b1 = b2.

Proof. We may assume ACPi (π) = 0, since π′ = π ∪ ACPi (π) is still C-cylindric, ACPi (π′) = 0, and
Ri(π′) = ACPi (π)

⋃
RCPi (π). It is reasonable clear for Figure 4 that any plane t(b) = constant intersects

the center of at most one box in ACPi (π) over each period, from which the result follows. Alternatively,
here is an algebraic proof.

Let b1b2 ∈ Ri(π), and assume that t(b1) = t(b2). Use the periodicity to choose coordinate b1 =
(x1, y1, z1), and b2 = (x2, y2, z2) so that 0 ≤ x2 − x1 < `. By definition t(b1) = t(b2) means

(1)
nx1

`
+ y1 − z1 =

nx2

`
+ y2 − z2.

Since both b1 and b2 are colored ci, we have

(2) z1 − y1 ' z2 − y2 modulo n.

Together with the fact that |x2−x1| < `, equations (1) and (2) imply that z1− y1 = z2− y2. But then
from (1) we see that x1 = x2. Hence, b1 and b2 belong to the same slice λ′(r) for some residue r modulo
` (see Definition 4.7). But λ′(r) is a young diagram, which implies that z − y is strictly decreasing as
one moves along its boundary. Thus there can be at most one box on the boundary of this slice with
a given value of t. The result follows since any b ∈ RCPi (π) must be one the boundary of π. �

Definition 4.10. A C-cylindric partition π is called left acyclic if there is no integer m > 0 such
that m is a part of λ′(k) for all residues k mod n.

We are now ready to present the crystal structure on C-cylindric partitions from [9]. Let π be a
C-cylindric partition. Define SCPi (π) to be the string of brackets formed by placing a “(” for every box
in ACPi (π), and a “)” for every box in RCPi (π). These are ordered with the bracket corresponding to
b1 coming before the bracket corresponding to b2 if and only if t(b1) < t(b2) (this is a total order by
Lemma 4.9). Then fCPi (π) is the cylindric plane partition obtained by adding the box corresponding
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Figure 3. A cylinder C refers to a semi-infinite grid drawn on a cylinder as shown,
along with the choice of boundary. This picture is periodic with one period shown
between the two dark lines. To get a cylinder, one should cut the picture along
these two lines, then glue the edges. We require that the grid lines be such that
the boundary intersects any vertical line exactly once. Here `C = 6 and nC = 3.
Note that these two values do not depend on the boundary, but only on the grid.
That is, they could be determined locally far away fro the boundary. A C-cylindric
partition π is a filling of the squares in the grid with non-negative integers so that the
result is weakly decreasing as you follow the grid down, in either of the two possible
directions. We also insist that all but finitely many of the entries be zero (and record
zeros as empty squares). Here the associated multi-charge and multi-partition are
v(C) = (0, 1, 1, 1, 2, 2), and λ(ψ) = (8.3; 6.5.1; 4.4.1; 4.1; 5.3; 3.3). The associated dual
multi-charge and dual multi-partition are obtained by interchanging the roles of ci and
πi. That is, v′(C) = (0, 1, 4), and λ′(ψ) = (8.5.4.1; 6.4.4.3.3; 5.3.3.1.1) This example is
left acyclic, because no k > 0 occurs in all three of the diagonals labeled c0, c1 and c2.

to the first uncanceled “(”, if there is one, and is 0 otherwise. Similarly, eCPi (π) is the cylindric plane
partition obtained by removing the box corresponding to the first uncanceled “)”, if there is one, and
is 0 otherwise. See Figure 4.

Theorem 4.11. (see [9]) Fix a cylinder C. Then:
(i) eCPi and fCPi preserve BC ∪ {0}.
(ii) BC along with the operators eCPi and fCPi is an ŝln crystal.

(iii) Each irreducible component of BC is isomorphic to BΛ(C).
(iv) The set of left acyclic C cylindric partitions forms a single connected component of BC, and

thus is isomorphic to Bλ(C).

Parts (i), (ii) and (iii) of Theorem 4.11 are proven in [9]. Part (iv) can also be proven directly
by examining the crystal structure on C cylindric partitions. However, we delay the proof since it is
immediate from the bijection developed in Section 5.

5. The crystal isomorphism between `-partitions and cylindric plane partitions

Theorem 5.1. The map π → (λ(π)) from definition 4.7 is an isomorphism of crystals.

Proof. It is clear that π → λ(π) induces a bijection between ACPi (π) and AMP
i (λ(π)) (respectively

RCPi (π) and RMP
i (λ(π)). So we must establish that the strings of brackets SCP and SMP read the

boxes in AitRi in exactly the same order. Consider the cylindric partition in Figure 4. λ(π) consists of
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y

z

x

Figure 4. The three dimensional representation of the cylindric plane partition shown
in Figure 3. The picture is periodic, with one period shown between the dark lines.
The first layer of boxes should be colored with c0, c1 and c2 according to which of these
diagonals they lie on (see Figure 3). Higher levels are colored according to the rule
that if a box b′ is immediately above b, and b is colored ci, then b′ is colored ci+1. The
planes t(x, y, z) = C intersect the “floor” of the picture in a line which is horizontal in
the projection shown, and are angled so that (x, y, z) and (x, y + 1, z + 1) are always
on the same plane. For any i ∈ I, each such plane intersects the center of at most one
ci colored box that could be added or removed to/from π in each period. The crystal
operator fCPi acts on π by placing a “(” for each box in ACPi (π) and a “)” for each
box in RCPi (π), ordered by t calculated on the coordinates of the center of the box.
fCPi adds a box corresponding to the first uncanceled “(”, if there is one, and sends
the element to 0 otherwise. Note that adding a box from RCPi (π) to π need not result
in a cylindric plane partition. However, it turns out that fCPi (π) is always a cylindric
plane partition.

a 6-tuple of partitions, corresponding to the six slices πk. These six partitions, along with the coloring
of their squares inherited from the coloring of the boxes of π, are shown in Figure 5. We have placed
this 6-tuple of partitions such that the function t evaluated on the center of a box is equal to the
horizontal position of the center of the corresponding square in the diagram. Thus, SCP is calculated
using the string of brackets as shown. One should then convince oneself that this is equivalent to the
construction of SMP shown in Figure 2. The best way is to redraw this example with the partitions
placed as in Example 2, and see that SMP and SCP agree. �

This bijection allows us to finish the proof of Theorem 4.11.

Proof of Theorem 4.11 Part (iv). By Theorem 3.10 Part (iv), it suffices to check that the condition of
π being left acyclic is equivalent to λ(π)being a highest lift. This is immediate from definitions. �

6. The multi-segment realization

Here we review a realization of the direct limit crystal B∞ where the underlying set consists of
multi-segments. We mostly follow the conventions of [8].
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Figure 5. Calculation of fCP1 for the cylindric partition shown in Figures 3 and 4.
The six partitions here are the partitions πi from Figure 4. They are placed so that
t(b), as used in calculating fCPi (π), is the horizontal location of the b. The string of
brackets SCP (π) is shown above. These 6 partitions form a v-cylindric multi-partition,
where v = (0, 1, 1, 1, 2, 2). If one then calculates SMP , one sees that the same brackets
appear in exactly the same order. This is essentially the proof that this bijection
between cylindric partitions and multi-partitions preserves the crystal structure.
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Definition 6.1. An n-segment is an interval [a, b] on the real line, with endpoints a, b ∈ Z + 1/2,
and considered up to shifting in either direction by integer multiplies of n. In particular, [a, b] and
[a+ n, b+ n] are considered the same.

For any reside i ∈ Z/nZ and any k ∈ Z, we use the notation [i; k) to mean the segment [i− 1/2, i+
k − 1/2]. Similarly, we use the notation (k; i] to mean the segment [i− k + 1/2, i+ 1/2].

Definition 6.2. A type n multi-segment ψ is a finite collection of n-segments. Note that the empty
collection is allowed, and is denoted ∅. Note also that ψ can contain several copies of the same segment.
We often just say “multi-segment”, where n is understood.

Definition 6.3. A multi-segment ψ is called cyclic if there is a positive integer k, such that, for all i
mod n, there is a copy of (k, i] in ψ. Otherwise, ψ is called acyclic.

Example 6.4. For n = 3, a possible multi-segment would be {(1; 2], (1; 2], (2; 3], (0; 5], (1; 7]}. This
example is acyclic because, for any fixed k, it is missing at least one of the possible segments (k; i]. An
example of a cyclic multi-segment would be {(2; 0], (2; 1], (2; 2]}.

We now put a crystal structure on the set of multi-segments. We follow [8], although we have
reworded the rule using string of brackets instead of the function Sk,i used there. This is done in order
to more closely match the conventions of [9].

Let ψ be a multi-segment. For each residue i ∈ Z/nZ, construct a string of brackets SMS
i as follows:

For each k ∈ Z>0, let SMS
i,k be the string of brackets ((· · · (()) · · · )), where the number of ‘(’ is the

number of copies of (k; i − 1] in ψ, and the number of ‘)’ is the number of copies of (k; i] in ψ. Let
SMS
i = · · ·SMS

i,3 SMS
i,2 SMS

i,1 . Then fMS
i (ψ) is obtained form ψ by:{

changing one (k; i− 1] to (k + 1, i] if the first uncanceled ‘(’ from the left corresponds to a (k; i− 1].
changing ψ to ψ t {(1; i]} if there is no uncanceled ‘(’

eMS
i (ψ) is obtained from ψ by{
changing one (k; i] to (k − 1, i− 1] if the first uncanceled ‘)’ from the right corresponds to a (k; i].
ei(ψ) = 0 if there is no uncanceled ‘)’

Definition 6.5. Let BMS be the edge colored directed graph with a vertex for every multi-segment ψ
and a ci-colored edge from ψ to ψ′ if and only if fMS

i (ψ) = ψ′.

Theorem 6.6. (see [8, Section 4.4]) Each connected component of BMS is a copy of the direct limit
crystal B∞. The set of aperiodic multi-segments forms the vertices of a single copy of B∞.

Example 6.7. Consider ŝl3 and the multi-segment

ψ = {[0; 8), [1; 6), [0; 5), [2; 5), [0; 4), [1; 4), [1; 4), [1; 3), [1; 3), [2; 3), [2; 3), [0; 1), [2; 1), [2; 1)}
= {(8; 1], (6; 0], (5; 1], (5; 0], (4; 0], (4; 1], (4; 1], (3; 0], (3; 0], (3; 1], (3; 1], (1; 0], (1; 2], (1; 2]}.

Let us calculate fMS
1 (ψ). We need to consider only those segments (·; 0] and (·; 1]. These are shown

below, ordered from largest to smallest, with the appropriate bracket drawn above:

(8; 1] (6; 0] (5; 0] (5; 1] (4; 0] (4; 1] (4; 1] (3; 0] (3; 0] (3; 1] (3; 1] (1; 0]
) ( ( ) ( ) ) ( ( ) ) (
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Then

fMS
1 (ψ) = {(8; 1], (6; 0], (5; 1], (5; 0], (4; 0], (4; 1], (4; 1], (3; 0], (3; 0], (3; 1], (3; 1], (2; 1], (1; 2], (1; 2]}.

(fMS
1 )2(ψ) = {(8; 1], (6; 0], (5; 1], (5; 0], (4; 0], (4; 1], (4; 1], (3; 0], (3; 0], (3; 1], (3; 1], (2; 1], (1; 2], (1; 2], (1; 1]}.

eMS
1 (ψ) = {(7; 0], (6; 0], (5; 1], (5; 0], (4; 0], (4; 1], (4; 1], (3; 0], (3; 0], (3; 1], (3; 1], (1; 0], (1; 2], (1; 2]}.

(eMS
1 )2(ψ) = 0.

Comment 6.8. ψ in the above example is acyclic. If one takes the union of ψ with, for example
{(2; 0], (2; 1], (2; 2]}, then this would insert a pair of canceling brackets into each string SMS

i . One can
see that this operation commutes with all eMS

i and fMS
i . From this one can show that the subset of

acyclic multi-segments is closed under the crystal operations.

7. The relationship between the cylindric plane partitions and the multi-segments

As discussed in Section 2, for any highest weight Λ there is an e-equivariant injection ιΛ : BΛ → B∞.
Left acyclic C cylindric partitions give a realization of BΛ(C) and acyclic multisegments give a realization
of B∞. In this section we explicitly describe ιΛ using these realizations. In fact, we construct an e-
equivariant injection ιC : BC → BMS , which agrees with ιΛ when restricted to the left-acyclic C cylindric
partitions. We then study the inverse to ιC . That is, for any given multi-segment ψ, we determine for
which C there is a C-cylindric partition πψ such that ιC(πψ) = ψ. In the case that it exists, we describe
πψ.

The map ιΛ was described in [1, Theorem 5.11] as a map from highest lift multi-partitions to multi-
segments. Our results on the inverse of ιC correspond to results on multi-partitions studied in [4]. So
the construction is not new, but it does seem to be cleaner in the language of cylindric partitions.

Another advantage of our approach is that we are considering all cylindric partitions and all multi-
segments. For this reason our construction can be interpreted as saying that the crystal BMS consisting
of all multisegments is a direct limit of the crystals of irreducible ĝln representations.

Lemma 7.1. Fix π ∈ BC. Let b1, b2 ∈ ACPi (π) t RCPi (π), and assume b1 and b2 have coordinates
(x1, y1, z1) and (x2, y2, z2) respectively. Then t(b1) < t(b2) implies z1 ≥ z2.

Comment 7.2. Note that the coordinates (x, y, z) are not uniquely defined due to the periodicity. The
z coordinate however is well defined, so the statement of Lemma 7.1 is precise.

Proof of Lemma 7.1. If one adds all boxes in ACPi (π) to π, the result is a new C-cylindric partition
π′ with Ai(π′) = ∅ and Ri(π′) = Ai(π) ∪ Ri(π). Thus without loss of generality, we may assume
that ACPi (π) = ∅. Choose b1, b2 ∈ RCPi (π). Use the periodicity to choose coordinates (x1, y1, z1) for
b1 and (x2, y2, z2) for b2 with 0 ≤ x2 − x1 < ` (see Figure 3 for the coordinate axes). Assume for a
contradiction that t(b1) < t(b2) and z1 < z2.

The boxes b1, b2 are both colored ci, so

(3) z1 − y1
∼= z2 − y2 modulo n.

By definition, t(b1) < t(b2) is equivalent to

(4)
nx1

`
+ y1 − z1 <

nx2

`
+ y2 − z2.

We chose coordinates so that |x1 − x2| < `. Hence (3) and (4) imply y1 − z1 = y2 − z2. Since we
assumed z1 < z2, this implies that y1 < y2.

But now y1 < y2 and x1 < x2. Since π is a cylindric partition the coordinate z of a box at the top
edge of π is weakly decreasing in both the x and y direction. This implies that z1 > z2, contradicting
our assumption. �
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Lemma 7.3. If b1 ∈ ACPi (π) and b2 ∈ RCPi (π) have the same height z, then t(b) > t(b′).

Proof. Assume b1 ∈ ACPi (π) and b2 ∈ RCPi (π) have the same height z. Since b1 and b2 are the same
height and the same color, the must both be in λ′(k) for the same residue k mod n, and thus they can
be give coordinates b1 = (x1, y, z), b2 = (x2, y, z). Then πx1,y = z − 1 and πx2,y = z. Since λ′(k) is a
partition, this implies x1 > x2, which in turn implies t(b1) > t(b2). �

Lemma 7.4. Fix z0 ∈ Z>0. There is at most one b ∈ Ai(π) of height z0 such that π ∪ b is still
C-cylindric.

Proof. Every b ∈ Ai(π) of height z0 lies in λ′(k) for the same residue k mod n. The lemma follows
because there is at most one box that can be added to λ′(k) at height z0 so that the result is still a
partition. �

The above Lemmas allow a new description of the crystal structure on cylindric partitions. This
description is slightly easier to remember in that it does require introducing the function t.

Corollary 7.5. The crystal operators eCPi and fCPi on BC can be calculated as follows:
• ACPi (π) and RCPi (π) are as in Definition 4.5.
• Construct a string of brackets SCP

′

i by placing a ‘(’ for every b ∈ ACPi (π) and a ‘)’ for every
b ∈ RCPi (π). These are ordered so that, if z1 > z2, then all brackets corresponding to boxes of height
z1 are to the left of all brackets corresponding to boxes of height z2, and all ‘)’ corresponding to boxes
of height zi come to the left of all ‘(’ corresponding to boxes of height zi.
• To calculate fi(π), find the first uncanceled ‘(’ from the left. If this corresponds to a box of height

z, then by Lemma 7.4 there will be a unique b ∈ ACPi (π) of height z such that π ∪ b is still C-cylindric.
Then fi(π) = π ∪ b. If there is no uncanceled ‘(’, then fi(π) = 0.
• To calculate ei(π), find the first uncanceled ‘)’ from the right. If this corresponds to a box of height

k, then there will be a unique b ∈ RCPi (π) such that π\b is still C-cylindric. Then ei(π) = π\b. If there
is no uncanceled ‘)’, then ei(π) = 0.

Proof. Let eCP
′

and fCP
′

be the operators calculated as described above. By Lemmas 7.1 and 7.3,
SCP

′

i is equal to SCPi , and corresponding brackets in SCP
′

i and SCPi correspond to boxes of the same
height. Thus both fCP

′

i and fCPi add a box b at the same height, or else both send π to 0. By Lemma
7.4 this implies fCP

′

i = fCPi . The argument for ei is completely analogous. �

Theorem 7.6. Fix a cylinder C whose diagonals have been labeled πi and cj for i, j ∈ Z, as in Figure
3. Recall that πij is the number in the box at the intersection of πi and cj. There is an e-equivariant
injection ιC : BC ↪→ BMS given by

(5)
ιCB

C −→ BMS

π −→ ιC(π) := {[−j;πi,j) : πi,j 6= 0}.

Comment 7.7. Note that finding ιC(π) takes essentially no calculation. However, the segments in
ιC(π) are written in the form [i; z) for residues i modulo n. To calculate eMS

i and fMS
i , one would

need to rewrite these in the form (z, i′].

Proof of Theorem 7.6. Let SCP
′

i be the string of brackets introduced in Corollary 7.5, and SMS
i the

string of brackets from Section 6. By Corollary 7.5, it suffices to show that
(i) SCP

′

i (π) has an uncanceled ‘)’ if an only if SMS(ιC(π)) has an uncanceled ‘)’.
(ii) Assume SCP

′

i (π) has an uncanceled ‘)”, and let z be the height of the box b ∈ RCPi (π)
corresponding to the first uncanceled ‘)’ from the right in SCP

′

i . Then the first uncanceled ‘)’
in SMS(ιC(π)) corresponds to a segment (z; i].



EXPLICIT CRYSTAL MAPS 13

In order to show this, introduce another string of brackets SgCP
i (π) as follows. There is a ‘(’ for every

pair of coordinates (x, y) such that the top box in the stack of boxes πx,y is colored ci−1, and a ‘)’ for
every pair of coordinates (x, y) such that the top box in the stack of boxes πx,y is colored ci. These are
ordered so that brackets corresponding to higher stacks always come before brackets corresponding to
lower stacks, and ‘(’ corresponding to stack of a given height z come to the left of all ‘)’ corresponding
to parts of height z.

It should be clear that SgCP and SCP
′

are the same except for the insertion of canceling pairs of
brackets ‘()’ Thus the uncanceled brackets of SgCP

i (π) and SCP
′

i (π) correspond to boxes of exactly the
same heights.

It is also clear from the definitions that SgCP
i (π) = SMS

i (ιC(π)), and that any bracket in S
gCP
i (π)

coming from a box of height z corresponds to a bracket in SMS
i (ιC(π)) coming from a segment (z, i].

The result follows. �

Corollary 7.8. Fix C with nC = n and `C = `. Let ψ be any multi-segment. If there exists a C
cylindric partition πψ with ψ = ιC(πψ), then π is given as follows:
• write the multi-segment ψ in the form

ψ = {[0; z0,1), [0; z0,2), . . . , [0; z0,k0), [1; z1,1), . . . , [1, z1,k1), . . . , [n− 1, zn−1,1), . . . , [n− 1, zn−1,kn−1)}.

• π is the C cylindric partition such that, for each j ∈ Z and s > 0,

πv′j(C)+s,j =

{
zj,s if s ≤ kj
0 otherwise,

where v′j(C) is as in Definition 4.7, but extended to be well defined for all j ∈ Z using the rule v′j+n =
v′j + `.

Proof of Corollary 7.8. This is immediate from Theorem 7.6 and the definition of ιC . �

Comment 7.9. Corollary 7.8 also gives an effective way to check if ψ is in im ιC. One simply writes
down the corresponding πψ according to the above rule, and ψ ∈ im ιC exactly if the result is C cylindric.

Comment 7.10. Fix cylinders C1 and C2 with v′(C1) = (v′10, v
′1
1, . . . , v

′1
n−1) and v′(C2) = (v′20, v

′2
1, . . . v

′2
n−1)

(see Definition 4.7). Assume that, for all 0 ≤ j < n, v′2j ≥ v′
1
j . Then Corollary 7.8 can be modified to

give an injection ιC2C1 : BC1 ↪→ BC2 by, for all π ∈ BC1 , 0 ≤ k < n and s > 0,

(6) ι(π)v′2k+s,k = πv′1k+s,k.

That is, ι(π) is the unique C2 cylindric partition that has the same dual multi-partition (λ′(1)
, . . . , λ′

(n−1))
as π. It follows from Theorem 7.6 that this map is e-equivariant, since ιC2 ◦ ι

C2
C1(π) = ιC1(π).

In this way, {BC} becomes a directed system. It is straightforward to see that the limit of this
system is naturally identified with BMS. As discussed in [9], BC can be thought of as the crystal of an
irreducible ĝln (as opposed to ŝln) representation. Thus is some sense one can think of BMS as the
infinity crystal for ĝln.
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