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Abstract. There is a close connection between Demazure crystals and tensor products of Kirillov–Reshetikhin crys-
tals. For example, certain Demazure crystals are isomorphic as classical crystals to tensor products of Kirillov–
Reshetikhin crystals via a canonically chosen isomorphism. Here we show that this isomorphism intertwines the
natural affine grading on Demazure crystals with a combinatorially defined energy function. As a consequence, we
obtain a formula of the Demazure character in terms of the energy function, which has applications to nonsymmetric
Macdonald polynomials and q-deformed Whittaker functions.

Résumé. Les cristaux de Demazure et les produits tensoriels de cristaux Kirillov–Reshetikhin sont étroitement liés.
Par exemple, certains cristaux de Demazure sont isomorphes, en tant que cristaux classiques, à des produits tensoriels
de cristaux Kirillov–Reshetikhin via un isomorphisme que l’on peut choisir canoniquement. Ici, nous montrons que
cet isomorphisme entremêle la graduation affine naturelle des cristaux de Demazure avec une fonction énergie définie
combinatoirement. Comme conséquence, nous obtenons une formule pour le caractère de Demazure exprimée au
moyen de la fonction énergie, avec des applications aux polynômes de Macdonald non symétriques et au fonctions
de Whittaker q-déformées.
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1 Introduction
Kashiwara’s theory of crystal bases [20] provides a remarkable combinatorial tool for studying highest
weight representations of symmetrizable Kac–Moody algebras and their quantized universal enveloping
algebras Uq(g). Here we consider finite-dimensional representations of the derived algebras U ′q(g), where
g is an affine Kac-Moody algebra. These representations do not extend to representations of Uq(g), but
one can nonetheless define the notion of a crystal basis. In this setting crystal bases do not always exist,
but, at least in non-exceptional cases, there is an important class of such modules which do have crystal
bases. These are tensor products of the so-called Kirillov–Reshetikhin modules W r,k [24], where r is a
node in the classical Dynkin diagram and k is a positive integer.

The modules W r,k were first conjectured to admit crystal bases Br,k in [14, Conjecture 2.1], and
moreover it was conjectured that these crystals are perfect whenever k is a multiple of a particular constant
cr (perfectness is a technical condition which allows one to use the finite crystal to construct highest
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weight crystals, see [17]). This conjecture has now been proven in all non-exceptional cases (see [32, 33]
for a proof that the crystals exist, and [7, Theorem 1.2] for a proof that they are perfect). We call the
crystal of such a module a Kirillov–Reshetikhin (KR) crystal.

The perfectness of KR crystals ensures that they are related to crystals of highest weight affine crystals
via the construction in [17]. In [21], Kashiwara proposed that this relationship is connected to the theory of
Demazure crystals [19, 29], by conjecturing that perfect KR crystals are isomorphic as classical crystals
to the Demazure crystals (which are subcrystals of affine highest weight crystals). This was proven in
most cases in [4, 5]. More general relations between Demazure crystals and tensor products of perfect
KR crystals were investigated in [25, 26, 27, 8].

There is a natural grading deg on a highest weight affine crystalB(Λ), where deg(b) records the number
of f0 in a string of fi’s that act on the highest weight element to give b (which is well-defined by weight
considerations). Due to the ideas discussed above, it seems natural that this grading should transfer to a
grading on a tensor product of KR crystals.

Gradings on tensor products of KR crystals have in fact been studied, and are usually referred to as
“energy functions.” These were first defined in full generality in [34] by studying a tensor category of
graded simple crystals following conjectural definitions in [13]. A function D is defined as a sum involv-
ing local energy functions for each pair in the tensor product (see [34, Proposition 2.14]), as well as a term
counting the ‘intrinsic energy’ of each single KR crystal. It was suggested that there is a simple global
characterization of intrinsic energy on B, related to the affine grading on a corresponding highest weight
crystal (see [35, Section 2.5], [13, Proof of Proposition 3.9]), but no precise statement was proven.

1.1 Demazure crystals and energy

In the present work, we restrict to non-exceptional type (i.e. all affine Kac–Moody algebras except A(2)
2 ,

G
(1)
2 , F (1)

4 , E(1)
6 , E(1)

7 , E(1)
8 , E(2)

6 and D(3)
4 ), where KR crystals are known to exist. We define the

intrinsic energy function Eint on a tensor product B of KR crystals by letting Eint(b) record the minimal
number of f0 in a path from u to b, where u is a certain unique element (see Definition 4.1). We then
recall the explicit construction of the function D from [34] (which we will refer to as the ‘D-function’).
One purpose of this note is to show that D and Eint agree, up to addition of a global constant.

Our main tool is an enhancement of the relationship between KR crystals and Demazure crystals due
to Fourier and Shimozono along with the first author. In [8, Theorem 4.4] it was shown that, under certain
assumptions [8, Assumption 1], there is a unique embedding of the Demazure crystal into the KR crystal
such that their classical crystal structure agrees and all zero edges in the Demazure crystal are taken to zero
edges in the KR crystal (however, the KR crystal has more zero arrows). In most cases these assumptions
follow from [6]. We deal with the remaining cases separately in Section 5, thereby firmly establishing
the relationship between KR crystals and Demazure crystals in all non-exceptional types. We show that
the resulting map intertwines the basic grading on the Demazure crystal with the D-function on the KR
crystal, up to addition of a global constant. This in turn allows us to prove that Eint agrees with D up to a
global constant, and in fact j interwines the basic grading with Eint exactly.

1.2 Applications
We furthermore discuss consequences of the relationship between grading and intrinsic energy in various
contexts. First of all, it allows us to express the character of the Demazure modules in terms of the intrinsic
energy (see Corollary 7.1). In addition, Ion [15] showed that, for the untwisted simply-laced affine root
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systems, the specialization of the nonsymmetric Macdonald polynomials Eλ(x; q, t) at t = 0 coincide
with Demazure characters of level one affine integrable modules (see [36] for type A): Eλ(x; q, 0) =
qc ch(V−λ(Λ0)). Here c is a explicit exponent, while the affine Demazure character is computed by
ignoring xΛ0 and by setting q := x−δ . Note that if λ is dominant, then Eλ(x; q, 0) = Pλ(x; q, 0) is the
symmetric Macdonald polynomial.

As explained above, the Demazure module V−λ(Λ0) can be realized as a tensor product of level one
Kirillov–Reshetikhin crystals Bri,1. Since by Theorem 6.2 the intrinsic energy function intertwines with
affine grading, this implies that the coefficients in the expansion of Pµ(x; q, 0) in terms of the irreducible
characters ch(V (λ)) coincide withX(λ;Br1,1⊗Br2,1⊗· · · ), where V (λ) is the module of highest weight
λ and X(λ;B) is the one-dimensional configuration sum defined in terms of the intrinsic energy [13].

In addition, we discuss a relation between Demazure characters and q-deformed Whittaker functions
for gln [9, Theorem 3.2].

A long version of this paper containing all proofs will appear separately.
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and Nicolas Thiéry for his help with Sage. Most of the KR crystals have been implemented in the
open-source mathematics system Sage (sagemath.org) by the first author.

2 Kac–Moody algebras and Crystals
Let g be a Kac–Moody algebra. Let Γ = (I, E) be its Dynkin diagram, where I is the set of vertices and
E the set of edges. Let ∆ denote the root system associated to g, and let P denote the weight lattice of g
and P∨ the coweight lattice. We denote by {αi | i ∈ I} the set of simple roots and {α∨i | i ∈ I} the set
of simple coroots, with Q =

⊕
i∈I Zαi the root lattice and Q∨ =

⊕
i∈I Zα∨i the coroot lattice.

Let Uq(g) be the corresponding quantum enveloping algebra, defined over Q(q). Let {Ei, Fi}i∈I be the
standard elements in Uq(g) corresponding to the Chevalley generators of the derived algebra g′. We recall
the triangular decomposition Uq(g) ∼= Uq(g)<0 ⊗ Uq(g)0 ⊗ Uq(g)>0, where Uq(g)<0 is the subalgebra
generated by the Fi, Uq(g)>0 is the subalgebra generated by the Ei, and Uq(g)0 is the abelian group
algebra generated by the usual elements Kw for w ∈ P∨, and the isomorphism is as vector spaces. Let
U ′q(g) be the subalgebra generated by Ei, Fi and Ki := KHi for i ∈ I .

We are particularly interested in the case when g is of affine type. We will use the following conven-
tions: W , P and Λi denote the affine Weyl group, the affine weight lattice, and the affine fundamental
weight corresponding to i ∈ I , respectively, whileW,P and ωi denote the weight lattice, Weyl group and
fundamental weights corresponding to the finite type Dynkin diagram I\{0}.

2.1 Crystals for Uq(g)

We refer the reader to [12] for a detailed explanation of crystals. For us, a crystal is a nonempty set B
along with operators ei : B → B ∪ {0} and fi : B → B ∪ {0} for i ∈ I , which satisfy some conditions.
The set B records certain combinatorial data associated to a representation V of a symmetrizable Kac–
Moody algebra g, and the operators ei and fi correspond to the Chevalley generators Ei and Fi of g.
Often the definition of a crystal includes three functions wt , ϕ, ε : B → P , where P is the weight lattice.
In the case of crystals of integrable modules, these functions can be recovered (up to a global shift in a null
direction in cases where the Cartan matrix is not invertible) from knowledge of the ei and fi. Explicitly,
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we define the weight of the highest weight element in the crystal B(λ) of an irreducible highest weight
module to be λ, and require that each operator fi have weight −αi.

An important theorem of Kashiwara states that every integrable Uq(g)-highest weight module V (λ) has
a crystal basis. We denote the resulting Uq(g) crystal by B(λ).

2.2 U ′q(g) crystals
In the case when the Cartan matrix is not invertible, one can define an extended notion of U ′q(g) crystals
that includes some cases which do not lift to Uq(g) crystals. These crystals are still directed graphs
coming from crystal bases of U ′q(g) modules. See e.g. [22]. We define a weight function on such a crystal
as follows: First set εi(b) := max{m | emi (b) 6= 0} and ϕi(b) := max{m | fmi (b) 6= 0}. These are
always finite because our crystals B correspond to an integrable module. For each b ∈ B, define three
elements in the weight lattice of g by:

ϕ(b) :=
∑
i∈I

ϕi(b)Λi, ε(b) :=
∑
i∈I

εi(b)Λi, and wt (b) := ϕ(b)− ε(b).

Then wt (b) is the weight function. Notice that wt (b) is always in the space P ′ := span{Λi | i ∈ I}. If
the Cartan matrix of g is not invertible, P ′ is a proper sublattice of weight space P .

Remark 2.1 The simple roots αi are not in general in the span of the fundamental weights, so in this
case the weight of the operator fi is not −αi. It is rather the projection of −αi onto the space of the
fundamental weights in the direction which sends the null root to 0.

Remark 2.2 It is straightforward to check that if the Cartan matrix of g is invertible, so that Uq(g) =
U ′q(g), the above notion of weight agrees with the notion of weight from Section 2.1.

2.3 Extended affine Weyl group
Fix g of affine type. Write the null root as δ =

∑
i∈I aiαi. Following [13], for each i ∈ I\{0}, define

ci = max(1, ai/a∨i ). It turns out that ci = 1 in all cases except (1) ci = 2 for g = B
(1)
n and i = n,

g = C
(1)
n and 1 ≤ i ≤ n − 1, g = F

(1)
4 and i = 3, 4, and (2) c2 = 3 for g = G

(1)
2 . Here we use Kac’s

indexing of affine Dynkin diagrams from [16, Table Fin, Aff1 and Aff2]. Consider the sublattices of P
given by

M =
⊕

i∈I\{0}

Zciαi = ZW · θ/a0 and M̃ =
⊕

i∈I\{0}

Zciωi.

Here the finite type Weyl group W acts on P by linearizing the rules siλ = λ − 〈α∨i , λ〉αi. Clearly
M ⊂ M̃ and the action of W on P restricts to actions on M and M̃ . Let T (M̃) (resp. T (M)) be the
subgroup of T (P ) generated by the translations tλ by λ ∈ M̃ (resp. λ ∈M ).

There is an isomorphism [16, Prop. 6.5] W ∼= W n T (M) as subgroups of Aut(P ), where W is the
affine Weyl group. Under this isomorphism we have s0 = tθ/a0sθ, where θ is the highest root of I\{0}.
Define the extended affine Weyl group to be the subgroup of Aut(P ) given by W̃ = W n T (M̃).

Let C ⊂ P ⊗Z R be the fundamental chamber, the set of elements λ such that 〈α∨i , λ〉 ≥ 0 for all i ∈ I .
Let Σ ⊂ W̃ be the subgroup of W̃ consisting of those elements that send C into itself. Then W̃ = WΣ,
and in particular every element x ∈ W̃ can be written uniquely as x = wτ for some w ∈ W and τ ∈ Σ.
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An 1
1 // 2

2 // · · · n−1 // n
n // n+ 1

Bn 1
1 // · · · n−1 // n

n // 0
n // n

n−1 // · · · 1 // 1

Cn 1
1 // · · · n−1 // n

n // n
n−1 // · · · 1 // 1

Dn n
n

((QQQQQQ

1
1 // · · · n−2// n− 1

n−1 66mmmmmm

n ((QQQQQQ n− 1
n−1 // · · · 1 // 1

n
n−1

66mmmmmm

Fig. 1: Standard crystals B(ω1)

The usual affine Weyl group W is a normal subgroup of W̃ , so Σ acts on W by conjugation. Each τ ∈ Σ
induces an automorphism (also denoted τ ) of the affine Dynkin diagram Γ, which is characterized as the
unique automorphism so that τsiτ−1 = sτ(i) for each i ∈ I .

Remark 2.3 When g is of untwisted type, M ∼= Q∨, M̃ ∼= P∨, with the isomorphism given by ciωi =
ν(ω∨i ), and ciαi = ν(α∨i ) for i ∈ I\{0}.

2.4 Demazure modules and crystals
Let λ be a dominant integral weight for g. Define Wλ := {w ∈ W | wλ = λ}. Fix µ ∈ Wλ, and recall
that the µ weight space in V (λ) is one-dimensional. Let uµ be a non-zero element of the µ weight space
in V (λ). Write µ = wλ where w is the shortest element in the coset wWλ.

Define the Demazure module
Vw(λ) := Uq(g)>0 · uw(λ).

It is known that Vw(λ) has a crystal base Bw(λ) (see [19]). Define the set

fw(b) := { fmNiN
· · · fm1

i1
(b) | mk ∈ Z≥0}, (2.1)

where w = siN · · · si1 is any fixed reduced decomposition of w. By [19, Proposition 3.2.3], we know
that, as sets, Bw(λ) = fw(uλ).

For g affine, we extend this definition to give a Demazure module and crystal Bw(λ) for each w ∈ W̃
as follows. We may express w uniquely as w = zτ where z ∈ W and τ ∈ Σ. We define the Demazure
module to be Vw(λ) := Vz(τ(λ)). Its crystal graph is denoted Bw(λ) = Bz(τλ).

2.5 Non-exceptional finite type crystals
We call the set of symbols that show up in the boxes of the standard crystal of typeXn = An, Bn, Cn, Dn

the type Xn alphabet. Impose a partial order ≺ on this alphabet by saying x ≺ y iff x is to the left of y in
the presentation of the standard crystals in Figure 1 (in type Dn, the symbols n and n are incomparable).

Definition 2.4 Fix g of type Xn, for X = A,B,C,D. Fix a dominant integral weight γ for g = Xn.
Write γ = m1ω1 +m2ω2 + · · ·+mn−1ωn−1 +mnωn. Define a generalized partition Λ(γ) associated
to γ, which is defined case by case as follows:
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• If X = A,C, Λ has mi columns of each height i for each 1 ≤ i ≤ n;

• If X = B, Λ has mi columns of height i for each 1 ≤ i ≤ n− 1, and mn/2 columns of height n;

• If X = D, Λ has mi columns of each height i for each 1 ≤ i ≤ n− 2, min(mn−1,mn) columns of
height n− 1, and |mn −mn−1|/2 columns of height n.

In cases where the above formulas involve a fractional number of columns at some height, we denote this
by putting a single column of half width. Notice that this can only happen for columns of height n in Λ(γ),
and at worst we get a single column of width 1/2.

In [23], the highest weight crystals of typesAn, Bn, Cn, Dn were constructed in terms of tableaux, now
known as Kashiwara–Nakashima (KN) tableaux. An element in the highest weight crystal B(γ), where
γ is a non-spin dominant weight (mn even for Bn and mn−1 = mn = 0 for Dn), is realized inside the
tensor product B(ω1)⊗|Λ(γ)|.

3 Kirillov–Reshetikhin modules and their crystals
Let g be an affine Kac-Mody algebra with index set I . The Kirillov–Reshetikhin modules were first
introduced for the Yangian of g′ in [24], and developed for U ′q(g) in [3]. One can characterize the KR
module W r,s for U ′q(g), where r ∈ I \ {0} and s ≥ 1, as the irreducible representations of U ′q(g) whose
Drinfeld polynomials are given by Pi(u) = (1 − q1−s

i u)(1 − q3−s
i u) · · · (1 − qs−1

i u) if i = r and 1
otherwise. Here qi = q(αi|αi)/2.

Theorem 3.1 [33, 7] In all non-exceptional types, W r,s has a crystal base Br,s. Furthermore, if s is a
multiple of cr then the resulting crystals are perfect, where cr = 2 for type B(1)

n and r = n, and for type
C

(1)
n and r < n, and cr = 1 in all other non-exceptonal cases. 2

Work of Chari [1] shows that every Br,s decomposes as a classical crystal as

Br,s ∼=
⊕
λ

B(λ), (3.1)

where the sum is over various classical highest weights λ. Explicitly, the λ which occur in the decomposi-
tion (3.1) are obtained from sωr by removing �’s from Λ(λ) (and furthermore, all occur with multiplicity
1 in the decomposition). Here (see for example [34, Eq. (6.27)], [13])

� =



∅ for type A(1)
n and 1 ≤ r ≤ n

for types C(1)
n , D

(2)
n+1 and r = n

for type D(1)
n and r = n− 1, n

vertical domino for type D(1)
n and 1 ≤ r ≤ n− 2

for types B(1)
n , A(2)

2n−1 and 1 ≤ r ≤ n
horizontal domino for types C(1)

n , D(2)
n+1 and 1 ≤ r < n

box for type A(2)
2n and 1 ≤ r ≤ n.

(3.2)

By [28, Proposition 3.8], a tensor product B = Br1,s1 ⊗ · · · ⊗ BrN ,sN of KR-crystals is connected.
We refer to such a B as a composite KR-crystal. As in [17], if the factors are all perfect KR crystals of
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the same level `, then B = Br1,`cr1 ⊗ · · · ⊗BrN ,`crN is also perfect of level `. We refer to such a perfect
crystal as a composite KR-crystal of level `.

Explicit combinatorial models for KR crystals Br,s for the non-exceptional types were constructed
in [6]. Here we just state a lemma which is important in the proof of the correct definition of the energy
functions. The proof requires careful analysis in each case, and makes heavy use of [37, Lemma 5.1],
which leads to a hands on description of the action of e0 onXn−2 highest weight vectors in these crystals,
where Xn is the underlying classical type.

Lemma 3.2 Let Br,s be a KR crystal of non-exceptional type. Fix b ∈ Br,s, and assume that b (resp.
e0(b)) lies in the classical component B(γ) (resp. B(γ′)) of (3.1). Then ε0(b) ≤ ds/cre for � = ∅ and
otherwise:

(i) Λ(γ′) is either equal to Λ(γ), or else is obtained from Λ(γ) by adding or removing � as in (3.2).

(ii) If ε0(b) > ds/cre, then Λ(γ′) is obtained from Λ(γ) by removing a �.

4 Energy functions
Here we define two a priori different energy functions on tensor products of KR crystals. The functionEint

is defined by a fairly natural “global” condition, and D is defined by summing up combinatorially defined
“local” contributions. It was suggested (but not proven) in [35, Section 2.5] that these two functions in
fact agree. This will be proven in Theorem 6.2 below.

4.1 The function E int

The following is essentially the definition of a ground state path from [17].

Definition 4.1 Let B = BrN ,`crN ⊗ · · · ⊗ Br1,`cr1 be a composite level ` KR crystal. Define uB =
uNB ⊗ · · · ⊗ u1

B to be the unique element of B such that (1) ε(u1
B) = `Λ0 and (2) for each 1 ≤ j < N ,

ε(uj+1
B ) = ϕ(ujB). This is well-defined by the definition of a perfect crystal. The element uB is called the

ground state path of B.

Definition 4.2 Let B be a composite KR crystal of level ` and consider uB as in Definition 4.1. Define
the intrinsic energy Eint(b) for b ∈ B to be the minimal number of f0 in a string fiN · · · fi1 such that
fiN · · · fi1(uB) = b.

4.2 The D function

Definition 4.3 The D-function on Br,s is the function defined as follows:

(i) DBr,s : Br,s → Z is constant on all classical components.

(ii) On the component B(λ), DBr,s records the maximum number of � that can be removed from Λ(λ)
such that the result is still a (generalized) partition, where � is as in (3.2).

In those cases when � = ∅, this is interpreted as saying that DBr,s is the constant function 0.
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Let B1, B2 be two affine crystals with generators u1 and u2, respectively, such that B1 ⊗ B2 is con-
nected. By [28, Proposition 3.8], this holds for any two KR crystals. The combinatorial R-matrix [17,
Section 4] is the unique crystal isomorphism σ : B2 ⊗B1 → B1 ⊗B2 such that σ(u2 ⊗ u1) = u1 ⊗ u2.

As in [17], [34, Theorem 2.4], there is a function H = HB2,B1 : B2 ⊗ B1 → Z, unique up to global
additive constant, such that, for all b2 ∈ B2 and b1 ∈ B1,

H(ei(b2 ⊗ b1)) = H(b2 ⊗ b1) +


−1 if i = 0 and LL,
1 if i = 0 and RR,
0 otherwise.

(4.1)

Here LL (resp. RR) indicates that e0 acts on the left (resp. right) tensor factor in both b2⊗b1 and σ(b2⊗b1).
When B1 and B2 are KR crystals, we normalize HB2,B1 by requiring HB2,B1(uB2 ⊗ uB1) = 0, where
uB1 and uB2 are as in Definition 4.1.

Definition 4.4 ForB = BrN ,sN⊗· · ·⊗Br1,s1 , setDj := DBrj,sj σ1σ2 · · ·σj−1 andHj,i := Hiσi+1σi+2 · · ·σj−1,
where σj and Hj act on the j-th and (j+ 1)-st tensor factors and DBrj,sj is the D-function for Brj ,sj as
given in Definition 4.3 acting on the rightmost factor. The D-function DB : B → Z is defined as

DB :=
∑

N≥j>i≥1

Hj,i +
N∑
j=1

Dj . (4.2)

5 Perfect KR crystals and Demazure crystals
In [8] a precise relationship between KR crystals and Demazure crystals was established, under a few
additional assumptions on the KR crystals. In most cases, those assumptions have now been shown to
hold, mainly through the results of [7] showing that the relevant KR crystals are perfect. In a couple of
special cases (type A(2)

2n and exceptional nodes in type D(1)
n ) the assumptions from [8] need to be proven

separately or slightly modified, which we do in the long version of this paper. Thus we establish the
following:

Theorem 5.1 Let B = BrN ,`crN ⊗ · · · ⊗ Br1,`cr1 be a level ` composite KR crystal. For each k, write
t−crkωrk ∈ T (M̃) ⊂ W̃ as t−crkωrk = vrkτrk where vrk ∈ W and τrk ∈ Σ. Let τ = τrN · · · τr1 and
λ = cr1ωθ(r1) + · · · + crNωθ(rN ), where θ is the finite type diagram automorphism such that ωθ(i) =
−w0(ωi). Then there is a unique isomorphism of affine crystals

j : B(`Λτ(0))→ B ⊗B(`Λ0). (5.1)

This satisfies j(u`Λτ(0)) = uB ⊗ u`Λ0 , where uB is the distinguished element from Definition 4.1, and

j
(
Bt−λ(`Λ0)

)
= B ⊗ u`Λ0 , (5.2)

where Bt−λ(`Λ0) is the Demazure crystal.
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6 The affine grading via the energy function
We show that the two energy functions D and Eint from Section 4 agree up to addition of a simple overall
constant, and that furthermore the map j from Theorem 5.1 intertwines the affine degree map with Eint.
We now state these results precisely.

Definition 6.1 Let deg : Bcr1wr1+···+crNwrN (`Λ0)→ Z≥0 be the affine degree map, defined by deg(u`Λ0) =
0, and giving each fi degree δi,0.

Theorem 6.2 Fix a composite level ` KR-crystal B = BrN ,`crN ⊗ · · · ⊗Br1,`cr1 . Let

j̃ : Bcr1wr1+···+crNwrN (`Λ0)→ B

be the restriction of the map from Theorem 5.1 to Bcr1wr1+···+crNwrN (`Λ0), where B⊗u`Λ0 is identified
with B. Then for any b ∈ B, deg(b) = D(j̃(b))−D(j̃(uB)) = Eint(b).

These results are proven using the following lemma, which in turn follows from Lemma 3.2.

Lemma 6.3 Let B = BrN ,`crN ⊗ · · · ⊗ Br1,`cr1 be a composite level ` KR crystal, and fix b = bN ⊗
· · · ⊗ b1 ∈ B. If e0(b) 6= 0 then D(e0(b)) ≥ D(b)− 1, and if ε0(b) > ` then this is an equality.

7 Applications
In this section we show how the relation between the affine grading in the Demazure crystal and the
energy function can be used to derive a formula for the Demazure character using the energy function,
and discuss how they are related to nonsymmetric Macdonald polynomials and Whittaker functions.

7.1 Demazure characters
By definition the Demazure character is chVw(λ) =

∑
µ dim(Vw(λ))µeµ, where (Vw(λ))µ is the µ

weight space of the Demazure module Vw(λ).
Kashiwara [19] proved a conjecture of Littelmann [30] that the Demazure character has a simple ex-

pression in terms of the Demazure crystal Bw(λ) given by

chVw(λ) =
∑

b∈Bw(λ)

ewt (b). (7.1)

It follows immediately that:

Corollary 7.1 Let B = BrN ,`crN ⊗ · · · ⊗ Br1,`cr1 be a U ′q(g)-composite level-` KR crystal and λ =
cr1ωθ(r1) + · · ·+ crNωθ(rN ) with θ as in Theorem 5.1. Then

chVt−λ(`Λ0) = e`Λ0
∑
b∈B

ewt(b)−δE
int(b) = e`Λ0

∑
b∈B

ewt aff (b), (7.2)

where t−λ = vτ , wt aff(b) = wt (b)− δEint(b) and wt (b) is the U ′q(g)-weight of b.
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7.2 Nonsymmetric Macdonald polynomials
Recall that P is the weight lattice for g. LetX be the ambient space for the weight lattice. For example for
GLn, X = Zn and αi = ei − ei+1 where ei is the ith unit vector in Zn. Then we can identify Q(q, t)X
with the Laurent polynomial ring Q(q, t)[x±1

1 , . . . , x±n ].
Cherednik’s inner product [2] on Q(q, t)X is defined by 〈f, g〉q,t = [x0](fg∆1), where · is the involu-

tion q = q−1, t = t−1, xi = x−1
i , ∆1 = ∆/([x0]∆), and [x0] denotes the constant term in the expression.

Furthermore,

∆ =
∏

α∈Raff
+

1− xα

1− txα
,

where Raff
+ is the set of positive affine real roots.

The nonsymmetric Macdonald polynomials Eλ(x; q, t) ∈ Q(q, t)X for λ ∈ P were first introduced
by Opdam [31] in the differential setting and Cherednik [2] in general. Here we use the conventions of
Haglund, Haiman, Loehr [10, 11]. The nonsymmetric Macdonald polynomials are uniquely characterized
by (i) (Triangularity): Eλ ∈ xλ + Q(q, t){xµ | µ < λ} and (ii) (Orthogonality): 〈Eλ, Eµ〉q,t = 0 for
λ 6= µ. Here< is Bruhat ordering onX where we identifyX with the set of minimal coset representatives
in W̃/W , where W̃ is the extended affine Weyl group and W is the classical Weyl group.

Extending Sanderson’s work [36], Ion [15] showed that for all untwisted affine root systems except
B

(1)
n , C(1)

n , F (1)
4 , G(1)

2 the specialization of the nonsymmetric Macdonald polynomials Eλ(x; q, t) at
t = 0 coincide with Demazure characters of level one affine integrable modules (see [36] for type A):

Eλ̃(x; q, 0) = qc ch(V−λ(Λ0)). (7.3)

Here c is a specific exponent, and the affine Demazure character is specialized by setting xΛ0 = 1 and
q := x−δ . Also, λ̃ = w0λ.

Example 7.2 The nonsymmetric Macdonald polynomial of type A(1)
2 indexed by (0, 0, 2) is given by

E(0,0,2)(x; q, 0) = x2
1 + (q + 1)x1x2 + x2

2 + (q + 1)x1x3 + (q + 1)x2x3 + x2
3.

The weight λ̃ = (0, 0, 2) corresponds to λ = 2ω1. The translation t−2ωθ(1) = t−2ω2 is given by t−2ω2 =
τs2s1s0s2. Hence the Demazure crystal is given by

2⊗ 1 2−→ 3⊗ 1 0−→ 1⊗ 1 1−→ 1⊗ 2 1−→ 2⊗ 2 2−→ 2⊗ 3 2−→ 3⊗ 3
1

↘ 3⊗ 2
2

↘ 1⊗ 3
1

↗

From this it is easy to verify that E(0,0,2)(x, q, 0) = q2ch(V−2ω2)(Λ0).

7.3 Whittaker functions
Gerasimov, Lebedev, Oblezin [9, Theorem 3.2] showed that q-deformed gln-Whittaker functions are Mac-
donald polynomials specialized at t = 0, which by our previous discussion also gives a link to Demazure
characters. The q-deformed gln-Whittaker functions are simultaneous eigenfunctions of a q-deformed
Toda chain. It would be interesting to generalize this to other types.
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