CO-POISSON HOPF ALGEBRAS, DEFORMATION THEORY OF CO-POISSON HOPF ALGEBRAS AND QUANTUM GROUPS

GIORGIA FORTUNA (LIVE TEXED BY STEVEN SAM)

Let A be a Hopf algebra, and consider the monoidal category $\operatorname{Rep}(A)$. Is it possible to define an action of the braid group B_n on $\operatorname{Rep}(A)$ or, even better, an action of the symmetric group Σ_n on $\operatorname{Rep}(A)$? This of course depends on A, and in particular, depends on the existence of what is called an R-matrix. This is an element $R \in A \otimes A$ with some properties to be defined later.

We will be interested in the case $A = U_{\hbar}(\mathfrak{g})$, where A is a quantization of $U(\mathfrak{g})$. Suppose we start with the Hopf algebra $U_{\hbar}(\mathfrak{g}) = (U_{\hbar}, \mu_{\hbar}, \Delta_{\hbar})$ and we define

$$\delta(x) = \frac{\Delta_{\hbar}^{\text{op}}(a) - \Delta_{\hbar}(a)}{\hbar} \pmod{\hbar}$$

for $x \in U(\mathfrak{g})$ and $a = x \pmod{\hbar}$. This gives a map $\delta \colon U(\mathfrak{g}) \to U(\mathfrak{g}) \otimes U(\mathfrak{g})$, which is a (co)-Poisson structure on $U(\mathfrak{g})$. By restricting to \mathfrak{g} , and getting a map $\delta \colon \mathfrak{g} \to \mathfrak{g} \otimes \mathfrak{g}$, we get a Lie bialgebra structure on \mathfrak{g} .

What about going in the other direction? Starting with a map δ such that $\delta(a_1a_2) = \delta(a_1)\Delta(a_2) + \Delta(a_1)\delta(a_2)$, we can try to quantize $U(\mathfrak{g})$. It turns out that the answer is yes, provided δ is a Lie bialgebra structure. We will also see conditions on δ which will ensure that the resulting quantized Hopf algebra will have the nice properties discussed above.

All the results discussed today can be found in [CP], along with references to original sources and proofs.

1. Deformations of Poisson-Lie structures

To make everything clear let's start by defining what a quantization is. Let's recall what a quantization in the case of a Poisson algebra is.

Definition 1.1. Let $(A, \mu, \{,\})$ be a commutative Poisson algebra. A quantization of A is a deformation $A_{\hbar} = (A_{\hbar}, \mu_{\hbar})$ such that

$$\{a,b\} = \frac{\mu_{\hbar}(a,b) - \mu_{\hbar}(b,a)}{\hbar} \pmod{\hbar}.$$

Before defining quantizations in the case of Hopf algebras, let's define the kind of structure that we want to quantize.

Definition 1.2. A (co)-Poisson Hopf algebra $A = (A, \mu, \Delta, \delta)$ is a Hopf algebra with a skeysymmetric map $\delta: A \to A \otimes A$ such that

(1) the composite

 $A \xrightarrow{\delta} A \otimes A \xrightarrow{\delta \otimes id} A \otimes A \otimes A \xrightarrow{c.p.} A \otimes A \otimes A$

is zero, where c.p. means the sum over cyclic permutations.

(2) The co-Leibniz rule identity

$$(\Delta \otimes id)\delta = (id \otimes \delta)\Delta + \sigma_{23}(\delta \otimes id)\Delta$$

holds.

(3) $\delta(a_1a_2) = \delta(a_1)\Delta(a_2) + \Delta(a_1)\delta(a_2).$

Date: February 25, 2011.

As in the case of algebras, also here a quantization will be a deformation with an additional property. **Definition 1.3.** A **deformation** of a Hopf algebra $A = (A, \mu, \Delta)$ over a field k is a topological Hopf algebra $A_{\hbar} = (A_{\hbar}, \mu_{\hbar}, \Delta_{\hbar})$ over the ring $k[[\hbar]]$ such that

- (1) A_{\hbar} is isomorphic to $A[[\hbar]]$ as a $k[[\hbar]]$ module.
- (2) $\mu_{\hbar} = \mu \pmod{\hbar}$ and $\Delta_{\hbar} = \Delta \pmod{\hbar}$.

Definition 1.4. A quantization of a (co)-Poisson co-commutative Hopf algebra $A = (A, \mu, \Delta, \delta)$ is a deformation $A_{\hbar} = (A_{\hbar}, \mu_{\hbar}, \Delta_{\hbar})$ such that

$$\delta(x) = \frac{\Delta_{\hbar}^{\text{op}}(a) - \Delta_{\hbar}(a)}{\hbar} \pmod{\hbar}.$$

where $x \in A$ and a is any element in A_{\hbar} such that $x = a \pmod{\hbar}$

As we said before, we will now try to explain how to go from Lie bialgebras to (co)-Poisson Hopf algebras. For the sake of completeness, we will start from the notion of Poisson Lie group, and see how its Lie algebra inherits a bialgebra structure.

Definition 1.5. A **Poisson–Lie group** is a Lie group G with a Poisson structure on its ring of functions $C^{\infty}(G)$ such that

(1.6)
$$\mu^*(\{f_1f_2\}_G) = \{\mu^*f_1, \mu^*f_2\}_{G \times G}$$

A Poisson structure on G comes from a section $\omega: G \to \bigwedge^2 T_G$ with the property that

$$\{f,g\} = \langle df \otimes dg, \omega
angle$$

for all $f,g \in C^{\infty}(G)$. We can now define $\omega^R \colon G \to \mathfrak{g} \otimes \mathfrak{g}$ by $g \mapsto ((dR_g)_g \otimes (dR_g)_g)(\omega(g))$ and

$$\delta = (d\omega^R)_e \colon \mathfrak{g} \to \mathfrak{g} \otimes \mathfrak{g}.$$

Condition 1.6 implies that $\delta([X, Y]) = X.\delta(Y) - Y.\delta(X)$, so δ is a cocycle of \mathfrak{g} with values in $\mathfrak{g} \otimes \mathfrak{g}$, where the action is given by $g \to (\mathrm{ad}(g) \otimes 1 + 1 \otimes \mathrm{ad}(g))$.

Definition 1.7. A structure of **bialgebra** on \mathfrak{g} is a map $\delta \colon \mathfrak{g} \to \mathfrak{g} \otimes \mathfrak{g}$ such that

- (1) δ is skew-symmetric,
- (2) δ^* is a Lie bracket on \mathfrak{g}^* , and
- (3) δ is a 1-cocycle with values in $\mathfrak{g} \otimes \mathfrak{g}$.

So G being a Poisson-Lie group gives the structure of Lie bialgebra on \mathfrak{g} via δ . This can be extended to a map $\delta: U(\mathfrak{g}) \to U(\mathfrak{g}) \otimes U(\mathfrak{g})$ via $\delta(a_1a_2) = \delta(a_1)\Delta(a_2) + \Delta(a_1)\delta(a_2)$, which gives $U(\mathfrak{g})$ the structure of a co-Poisson Hopf algebra.

2. NICE DEFORMATIONS AND THE CLASSICAL YANG-BAXTER EQUATION

Now let's start with a Lie algebra \mathfrak{g} . In the sea of cocycles we could look for coboundaries, i.e. cocycles δ defined by $\delta(x) = [x, r]$, for some $r \in \mathfrak{g} \otimes \mathfrak{g}$ (where the bracket is taken in the enveloping algebra $U(\mathfrak{g})$). Clearly this δ will be a cocycle, but it might not define a structure of Lie bialgebra on \mathfrak{g} . What does r have to satisfy to make (\mathfrak{g}, δ) a Lie bialgebra? It is easy to see that:

Definition 1.7 part (1) means that $r_{21} + r$ is g-invariant (where $r_{21} = b \otimes a$ if $r = a \otimes b$).

Definition 1.7 part (2) means that $[[r, r]] := [r_{12}, r_{13}] + [r_{12}, r_{23}] + [r_{13}, r_{23}]$ is \mathfrak{g} -invariant. Here for $r = \sum a_i \otimes b_i$, then $[r_{12}, r_{13}] = \sum_{i,j} [a_i, a_j] \otimes b_i \otimes b_j$, or equivalently is the bracket of the elements $\sum a_i \otimes b_i \otimes 1$ and $\sum_j a_j \otimes 1 \otimes b_j$ in the associative algebra $U(\mathfrak{g}) \otimes U(\mathfrak{g}) \otimes U(\mathfrak{g})$.

In particular we could look for $r \in \mathfrak{g} \otimes \mathfrak{g}$ such that both of the above equations vanish:

CO-POISSON HOPF ALGEBRAS, DEFORMATION THEORY OF CO-POISSON HOPF ALGEBRAS AND QUANTUM GROUPS

(1) $r_{12} + r = 0$, and

(2) [[r, r]] = 0. This is called the **classical Yang–Baxter equation** (CYBE).

Lie bialgebras arising in this way are of particular importance for us since their enveloping algebra admits a quantization with good properties (i.e. they are triangular Hopf algebras).

Definition 2.1. A bialgebra (\mathfrak{g}, r) is called **quasi-triangular** if it satisfies (CYBE). It is called **triangular** if is satisfies (CYBE) and $r_{12} + r = 0$.

As we mentioned before, starting from triangular bialgebras, we can obtain (via quantization) Hopf algebras which are *triangular* as well. Since we haven't said what it means for a Hopf algebra to be *triangular* we will do it now.

Definition 2.2. An almost cocommutative Hopf algebra (A, μ, Δ) is a Hopf algebra such that $\Delta^{\text{op}}(a) = R\Delta(a)R^{-1}$ for some invertible $R \in A \otimes A$.

The fact that A^{op} is also a Hopf algebra forces conditions on R. These conditions (that we won't write here) are in particular satisfied if

- (1) $(\Delta \otimes id)R = R_{13}R_{23}$ (if $R = a \otimes b$, then $R_{13} = a \otimes 1 \otimes b$)
- (2) $(\mathrm{id} \otimes \Delta)R = R_{13}R_{12},$

Definition 2.3. An almost cocommutative Hopf algebra (A, R) is called **quasi-triangular** if

- (1) $(\Delta \otimes \operatorname{id})R = R_{13}R_{23}$ (if $R = a \otimes b$, then $R_{13} = a \otimes 1 \otimes b$)
- (2) $(\mathrm{id} \otimes \Delta)R = R_{13}R_{12},$

and (A, R) is called **triangular** if it is quasi-triangular and $R_{21} = R^{-1}$.

Remark 2.4. (1) If (A, R) is almost commutative, then

$$\begin{array}{rccc} V \otimes W & \to & W \otimes V \\ v \otimes w & \mapsto & (1,2)R(v \otimes w) \end{array}$$

is an isomorphism (for $R = a \otimes b$, $(1, 2)(av \otimes bw) = bw \otimes av$).

- (2) If (A, R) is quasi-triangular, then $R_{12}R_{13}R_{23} = R_{23}R_{13}R_{12}$. This is called **quantum Yang– Baxter equation**. Set $R_{12}^{\vee} = (1, 2)R$. In terms of R^{\vee} , this means $R_{23}^{\vee}R_{12}^{\vee}R_{23}^{\vee} = R_{12}^{\vee}R_{23}^{\vee}R_{12}^{\vee}$. This implies that the braid relations are satisfied and there is an action of the braid group on tensor products of representations of A.
- (3) If (A, R) is triangular, then $(R^{\vee})^2 = (1, 2)R_{12}(1, 2)R_{12} = (1, 2)^2R_{21}R_{12} = I$, so actually get an action of the symmetric group on tensor products of representations of A.

Summarizing, we have seen that starting with a bialgebra \mathfrak{g} , we get a co-Poisson structure on $U(\mathfrak{g})$. One might ask, Is it always possible to quantize this structure? And does the quantization $U_{\hbar}(\mathfrak{g})$ have nice properties like actions of B_n or Σ_n on its representation category? The answer in both cases is affirmative. that is:

Theorem 2.5. Every finite dimensional lie bialgebra \mathfrak{g} over a field k of characteristic zero admits a quantization.

Theorem 2.6. If (\mathfrak{g}, r) is a triangular bialgebra, then there exists a quantization $U_{\hbar}(\mathfrak{g})$ of $U(\mathfrak{g})$ which is triangular (hence there is an action of Σ_n on $Rep(U_{\hbar}(\mathfrak{g}))$).

3. The case of $\mathfrak{sl}_2(\mathbb{C}$

In the case of $\mathfrak{sl}_2(\mathbb{C})$, up to equivalence (meaning up to isomorphism of the resulting Lie bialgebra), there are 3 possible choices of r.

(1) r = 0. This gives $\delta(E) = \delta(F) = \delta(H) = 0$, and we get the trivial quantization: if $x \in \mathfrak{g}$ and $a \in U_{\hbar}(\mathfrak{g})$ is such that $x = a \pmod{\hbar}$, then $\Delta_{\hbar}(x) = x \otimes 1 + 1 \otimes x$. (2) $r = E \otimes F - F \otimes E$. Then

$$\begin{cases} \delta(E) = [E, E \otimes F] - [E, F \otimes E] = E \otimes H - H \otimes E \\ \delta(H) = 0 \\ \delta(F) = F \otimes H - H \otimes F \end{cases}$$

In this case, we can take

$$\begin{cases} \Delta_{\hbar}(H) = H \otimes 1 + 1 \otimes H \\ \Delta_{\hbar}(E) = E \otimes \exp(\hbar + 1) + 1 \otimes E \\ \Delta_{\hbar}(F) = F \otimes 1 + \exp(-\hbar H) \otimes F \end{cases}$$

This is the usual quantization that gives the quantum group. Note that

$$\Delta_{\hbar}([E,F]) = [\Delta_{\hbar}(E), \Delta_{hbar}(F)]$$

= $[E,F] \otimes \exp(\hbar H) + \exp(-\hbar H) \otimes [E,F] \neq \Delta_{\hbar}(H)$

From this we see that we need to modify the bracket in the Lie algebra as well and replace [E, F] = H with $[E, F] = \frac{\exp(\hbar H) - \exp(-\hbar H)}{\exp(\hbar) - \exp-\hbar}$.

Although the given r is skew, it does not satisfy the classical Yang Baxter equation. However, it is equivalent to an r which is not skew, but does satisfy the classical Yang Baxter equation (see [CP, Chapters 2.1B and 2.1C]. Thus $\mathfrak{sl}_2(\mathbb{C})$ with this bialgebra structure is quasi-triangular but nit triangular.

(3) $r = H \otimes E - E \otimes H$. Here we have:

$$\begin{cases} \delta(H) = 2(H \otimes E - E \otimes H) \\ \delta(E) = 0 \\ \delta(F) = 2(E \otimes F - F \otimes E). \end{cases}$$

You can verify that the followings define a quantization of this $U(\mathfrak{sl}_2(\mathbb{C}))$.

$$\begin{cases} \Delta_{\hbar}(H) = H \otimes 1 + \exp(-2\hbar E) \otimes H \\ \Delta_{\hbar}(E) = E \otimes 1 + 1 \otimes E \\ \Delta_{\hbar}(F) = F \otimes 1 + \exp(-2\hbar E) \otimes E \end{cases}$$

provided that we modify the bracket in the following way:

$$\begin{cases} [E, F] = H\\ [H, E] = \frac{4}{\hbar} (1 - \exp(-2\hbar E))\\ [H, F] = -2F - \hbar H^2. \end{cases}$$

In this case $\mathfrak{sl}_2(\mathbb{C})$ is triangular and this quantization is the triangular quantization that realizes the theorem.

References

[CP] V. Chari and A. Pressley, A guide to quantum groups, Cambridge university press, Cambridge (1994).