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Let A be a Hopf algebra, and consider the monoidal category Rep(A). Is it possible to define
an action of the braid group Bn on Rep(A) or, even better, an action of the symmetric group Σn

on Rep(A)? This of course depends on A, and in particular, depends on the existence of what is
called an R-matrix. This is an element R ∈ A⊗A with some properties to be defined later.

We will be interested in the case A = U~(g), where A is a quantization of U(g). Suppose we
start with the Hopf algebra U~(g) = (U~, µ~,∆~) and we define

δ(x) =
∆op

~ (a)−∆~(a)

~
(mod ~)

for x ∈ U(g) and a = x (mod ~). This gives a map δ : U(g)→ U(g)⊗U(g), which is a (co)-Poisson
structure on U(g). By restricting to g, and getting a map δ : g → g ⊗ g, we get a Lie bialgebra
structure on g.

What about going in the other direction? Starting with a map δ such that δ(a1a2) = δ(a1)∆(a2)+
∆(a1)δ(a2), we can try to quantize U(g). It turns out that the answer is yes, provided δ is a Lie
bialgebra structure. We will also see conditions on δ which will ensure that the resulting quantized
Hopf algebra will have the nice properties discussed above.

All the results discussed today can be found in [CP], along with references to original sources
and proofs.

1. Deformations of Poisson–Lie structures

To make everything clear let’s start by defining what a quantization is. Lets recall what a
quantization in the case of a Poisson algebra is.

Definition 1.1. Let (A,µ, {, }) be a commutative Poisson algebra. A quantization of A is a
deformation A~ = (A~, µ~) such that

{a, b} =
µ~(a, b)− µ~(b, a)

~
(mod ~). �

Before defining quantizations in the case of Hopf algebras, let’s define the kind of structure that
we want to quantize.

Definition 1.2. A (co)-Poisson Hopf algebra A = (A,µ,∆, δ) is a Hopf algebra with a skey-
symmetric map δ : A→ A⊗A such that

(1) the composite

A
δ→ A⊗A δ⊗id→ A⊗A⊗A c.p.→ A⊗A⊗A

is zero, where c.p. means the sum over cyclic permutations.
(2) The co-Leibniz rule identity

(∆⊗ id)δ = (id⊗ δ)∆ + σ23(δ ⊗ id)∆

holds.
(3) δ(a1a2) = δ(a1)∆(a2) + ∆(a1)δ(a2). �
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As in the case of algebras, also here a quantization will be a deformation with an additional property.

Definition 1.3. A deformation of a Hopf algebra A = (A,µ,∆) over a field k is a topological
Hopf algebra A~ = (A~, µ~,∆~) over the ring k[[~]] such that

(1) A~ is isomorphic to A[[~]] as a k[[~]] module.
(2) µ~ = µ (mod ~) and ∆~ = ∆ (mod ~).

�

Definition 1.4. A quantization of a (co)-Poisson co-commutative Hopf algebra A = (A,µ,∆, δ)
is a deformation A~ = (A~, µ~,∆~) such that

δ(x) =
∆op

~ (a)−∆~(a)

~
(mod ~). �

where x ∈ A and a is any element in A~ such that x = a (mod ~)

As we said before, we will now try to explain how to go from Lie bialgebras to (co)-Poisson Hopf
algebras. For the sake of completeness, we will start from the notion of Poisson Lie group, and see
how its Lie algebra inherits a bialgebra structure.

Definition 1.5. A Poisson–Lie group is a Lie group G with a Poisson structure on its ring of
functions C∞(G) such that

(1.6) µ∗({f1f2}G) = {µ∗f1, µ∗f2}G×G
�

A Poisson structure on G comes from a section ω : G→
∧2 TG with the property that

{f, g} = 〈df ⊗ dg, ω〉
for all f, g ∈ C∞(G). We can now define ωR : G→ g⊗ g by g 7→ ((dRg)g ⊗ (dRg)g)(ω(g)) and

δ = (dωR)e : g→ g⊗ g.

Condition 1.6 implies that δ([X,Y ]) = X.δ(Y )− Y.δ(X), so δ is a cocycle of g with values in g⊗ g,
where the action is given by g → (ad(g)⊗ 1 + 1⊗ ad(g)).

Definition 1.7. A structure of bialgebra on g is a map δ : g→ g⊗ g such that

(1) δ is skew-symmetric,
(2) δ∗ is a Lie bracket on g∗, and
(3) δ is a 1-cocycle with values in g⊗ g. �

So G being a Poisson–Lie group gives the structure of Lie bialgebra on g via δ. This can be
extended to a map δ : U(g) → U(g) ⊗ U(g) via δ(a1a2) = δ(a1)∆(a2) + ∆(a1)δ(a2), which gives
U(g) the structure of a co-Poisson Hopf algebra.

2. Nice deformations and the classical Yang-Baxter equation

Now let’s start with a Lie algebra g. In the sea of cocycles we could look for coboundaries, i.e.
cocycles δ defined by δ(x) = [x, r], for some r ∈ g⊗ g (where the bracket is taken in the enveloping
algebra U(g)). Clearly this δ will be a cocycle, but it might not define a structure of Lie bialgebra
on g. What does r have to satisfy to make (g, δ) a Lie bialgebra? It is easy to see that:

Defintiion 1.7 part (1) means that r21 + r is g-invariant (where r21 = b⊗ a if r = a⊗ b).
Defintiion 1.7 part (2) means that [[r, r]] := [r12, r13]+[r12, r23]+[r13, r23] is g-invariant. Here for

r =
∑
ai ⊗ bi, then [r12, r13] =

∑
i,j [ai, aj ]⊗ bi ⊗ bj , or equivalently is the bracket of the elements∑

ai ⊗ bi ⊗ 1 and
∑

j aj ⊗ 1⊗ bj in the associative algebra U(g)⊗ U(g)⊗ U(g).
In particular we could look for r ∈ g⊗ g such that both of the above equations vanish:
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(1) r12 + r = 0, and
(2) [[r, r]] = 0. This is called the classical Yang–Baxter equation (CYBE).

Lie bialgebras arising in this way are of particular importance for us since their enveloping algebra
admits a quantization with good properties (i.e. they are triangular Hopf algebras).

Definition 2.1. A bialgebra (g, r) is called quasi-triangular if it satisfies (CYBE). It is called
triangular if is satisfies (CYBE) and r12 + r = 0. �

As we mentioned before, starting from triangular bialgebras, we can obtain (via quantization) Hopf
algebras which are triangular as well. Since we haven’t said what it means for a Hopf algebra to
be triangular we will do it now.

Definition 2.2. An almost cocommutative Hopf algebra (A,µ,∆) is a Hopf algebra such
that ∆op(a) = R∆(a)R−1 for some invertible R ∈ A⊗A. �

The fact that Aop is also a Hopf algebra forces conditions on R. These conditions (that we won’t
write here) are in particular satisfied if

(1) (∆⊗ id)R = R13R23 (if R = a⊗ b, then R13 = a⊗ 1⊗ b)
(2) (id⊗∆)R = R13R12,

Definition 2.3. An almost cocommutative Hopf algebra (A,R) is called quasi-triangular if

(1) (∆⊗ id)R = R13R23 (if R = a⊗ b, then R13 = a⊗ 1⊗ b)
(2) (id⊗∆)R = R13R12,

and (A,R) is called triangular if it is quasi-triangular and R21 = R−1. �

Remark 2.4. (1) If (A,R) is almost commutative, then

V ⊗W → W ⊗ V
v ⊗ w 7→ (1, 2)R(v ⊗ w)

is an isomorphism (for R = a⊗ b, (1, 2)(av ⊗ bw) = bw ⊗ av).
(2) If (A,R) is quasi-triangular, then R12R13R23 = R23R13R12. This is called quantum Yang–

Baxter equation. Set R∨12 = (1, 2)R. In terms of R∨, this means R∨23R
∨
12R

∨
23 = R∨12R

∨
23R

∨
12.

This implies that the braid relations are satisfied and there is an action of the braid group
on tensor products of representations of A.

(3) If (A,R) is triangular, then (R∨)2 = (1, 2)R12(1, 2)R12 = (1, 2)2R21R12 = I, so actually get
an action of the symmetric group on tensor products of representations of A. �

Summarizing, we have seen that starting with a bialgebra g, we get a co-Poisson structure on
U(g). One might ask, Is it always possible to quantize this structure? And does the quantization
U~(g) have nice properties like actions of Bn or Σn on its representation category? The answer in
both cases is affirmative. that is:

Theorem 2.5. Every finite dimensional lie bialgebra g over a field k of characteristic zero admits
a quantization.

Theorem 2.6. If (g, r) is a triangular bialgebra, then there exists a quantization U~(g) of U(g)
which is triangular (hence there is an action of Σn on Rep(U~(g))).

3. The case of sl2(C

In the case of sl2(C), up to equivalence (meaning up to isomorphism of the resulting Lie bialge-
bra), there are 3 possible choices of r.

(1) r = 0. This gives δ(E) = δ(F ) = δ(H) = 0, and we get the trivial quantization: if x ∈ g
and a ∈ U~(g) is such that x = a (mod ~), then ∆~(x) = x⊗ 1 + 1⊗ x.
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(2) r = E ⊗ F − F ⊗ E. Then
δ(E) = [E,E ⊗ F ]− [E,F ⊗ E] = E ⊗H −H ⊗ E
δ(H) = 0

δ(F ) = F ⊗H −H ⊗ F
In this case, we can take

∆~(H) = H ⊗ 1 + 1⊗H
∆~(E) = E ⊗ exp(~ + 1) + 1⊗ E
∆~(F ) = F ⊗ 1 + exp(−~H)⊗ F.

This is the usual quantization that gives the quantum group. Note that

∆~([E,F ]) = [∆~(E),∆hbar(F )]

= [E,F ]⊗ exp(~H) + exp(−~H)⊗ [E,F ] 6= ∆~(H)

From this we see that we need to modify the bracket in the Lie algebra as well and replace

[E,F ] = H with [E,F ] = exp(~H)−exp(−~H)
exp(~)−exp−~ .

Although the given r is skew, it does not satisfy the classical Yang Baxter equation.
However, it is equivalent to an r which is not skew, but does satisfy the classical Yang Baxter
equation (see [CP, Chapters 2.1B and 2.1C]. Thus sl2(C) with this bialgebra structure is
quasi-triangular but nit triangular.

(3) r = H ⊗ E − E ⊗H. Here we have:
δ(H) = 2(H ⊗ E − E ⊗H)

δ(E) = 0

δ(F ) = 2(E ⊗ F − F ⊗ E).

You can verify that the followings define a quantization of this U(sl2(C)).
∆~(H) = H ⊗ 1 + exp(−2~E)⊗H
∆~(E) = E ⊗ 1 + 1⊗ E
∆~(F ) = F ⊗ 1 + exp(−2~E)⊗ E

provided that we modify the bracket in the following way:
[E,F ] = H

[H,E] = 4
~(1− exp(−2~E))

[H,F ] = −2F − ~H2.

In this case sl2(C) is triangular and this quantization is the triangular quantization that
realizes the theorem.
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