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0. Introduction. The notion of the q-analogue of universal enveloping algebras
is introduced independently by V. G. Drinfeld and M. Jimbo in 1985 in their study
of exactly solvable models in the statistical mechanics. This algebra Uq(g) contains
a parameter q, and, when q 1, this coincides with the universal enveloping algebra.
In the context of exactly solvable models, the parameter q is that of temperature,
and q 0 corresponds to the absolute temperature zero. For that reason, we can
expect that the q-analogue has a simple structure at q 0. In [K1] we named
crystallization the study at q 0, and we introduced the notion of crystal bases.
Roughly speaking, crystal bases are bases of Uq(9)-modules at q 0 that satisfy
certain axioms. There, we proved the existence and the uniqueness of crystal bases
of finite-dimensional representations of U(g) when g is one of the classical Lie
algebras A,, B,, C, and D,. K. Misra and T. Miwa ([M]) proved the existence of a
crystal base of the basic representation of U,(A1)) and gave its combinatorial
description.
The aim of this article is to give the proof of the existence and uniqueness theorem

of crystal bases for an arbitrary symmetrizable Kac-Moody Lie algebra I. More-
over, we globalize this notion. Namely, with the aid of a crystal base we construct
a base named the global crystal base of any highest weight irreducible integrable

Received 27 December 1990.

465



466 M. KASHIWARA

Uq(g)-module. In the case of A,, Dn, and E,, this coincides with the canonical base
of Lusztig introduced in [L 1]. (Cf. [L2].)

Let us explain more precisely our results. Let Uq(g) be the q-analogue of universal
enveloping algebra. (Cf. 1.1.) For an integrable Uq()-module M (cf. 1.2), we
introduce the endomorphisms ’i and j of M. (Cf. 2.2.) Then we define the notion
of crystal base of M. (Cf. Definition 2.3.1.)
For an integral dominant weight 2, let V(2) denote the irreducible Uq()-module

with highest weight 2. Let ux be the highest weight vector of V(2). We denote by A
the ring of rational functions in the variable q regular at q 0. Let L(2) be the
smallest sub-A-module of V(2) that contains u and that is stable by the actions of. Let B(2) be the subset of L(2)/qL(2) consisting of the nonzero vectors of the form
f/l" .f,u mod qL(2). Our first main result is an existence theorem.

THEOREM 2 (existence). (L(2), B(2)) is a crystal base of V(2).

Similarly to the case ofan integrable Uq()-m.odule, we define the endomorphisms
’i and j on Uq-(). (Cf. (3.5.1).) They satisfy ,if 1. Here U-(g) is the subalgebra
of Uq(9) generated by the f. We denote by L() the smallest sub-A-module of
Uq- (I) that contains 1 and that is stable by the actions ofj. We denote by B() the
subset ofL()/qL(oz) consisting ofvectors J,...j,. 1 mod qL(). Then (L(), B())
has a similar property to crystal bases.

THEOREM 4. We have that

(i) ,L() L(), L() L(), and B() B() u {0}, B() c B();
(ii) B() is a base of L()/qL(); and

(iii) if b B() satisfies b 4: O, then b fb.
The relations of(L(), B()) and (L(2), B(2)) are given by the following theorem.

THEOREM 5. Let n" U-() V(2) be the U-()-linear homomorphism sendin9 1
to u. Then

(i) (L())= L(2).
Hence induces the surjective homomorphism " L()/qL() L(2)/qL(2).

(ii) By , {b B(); (b) # 0} is isomorphic to B(2).
(iii) j o oy.
(iv) If b B() satisfies z(b) 4: O, then i,(b) z(ib).

These three theorems are proven simultaneously by the induction on weights.
The good behavior of crystal bases under tensor products plays a crucial role in the
course of the proof.

Thus, we can construct bases of U- (g) and V(2) at q 0. Similarly, we can define
bases at q . Then we can define bases of U- () and V(2) which give the crystal
bases at q 0 or o. Let U (9) be the sub-Z[q, q-1]-algebra of U() generated by
the f("), introduced by Lusztig. Let be the ring homomorphism of Uq-() given
by q-l, f =f. Let us denote by V(2) the U(l)-module U-(l)u and let
denote the automorphism of V(2) defined by Puz Puz for any P U-(9).
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THEOREM 6. (Q (R) U- (9)) c L(c) n L()- __% L()/qL() and (Q (R)z Vz(2))
n L(2) L(2)- L(2)/qL(2) for any integrable dominant weight 2.

Let b G(b) be the inverse ofthese isomorphisms. Then we have another theorem.

THEOREM 7. Let n be a nonnegative integer and I.

(i) We have

f/’U (g) c U; (g) Z[q, q-’]G(b).
b. fB(oo)

(ii) For any dominant integral weight 2, we have

fV(2) c V(2) Z[q, q-]G(b).

These results were announced in Comptes Rendus ([K2]).
The author would like to acknowledge E. Date, M. Jimbo, T. Miwa, T. Nakash-

ima, and T. Tanisaki with their discussions related to this subject.

PART I. CRYSTALLIZATION

1. The q-analogue of universal enveloping algebra

1.1. Definition of Uq(). We shall review the definition of Uq(). Suppose that the
following data are given.

(1.1.1) a finite-dimensional Q-vector space t,

(1.1.2) a finite index set I (the set of simple roots),

(1.1.3) a linearly independent subset {ai t*; I} of t* and

a subset {hi t; 6 I} of t,

(1.1.4) a (Q-valued) symmetric form on t*, and

(1.1.5) a lattice P of t*.

We assume that they satisfy the following properties.

(1.1.6) (hi, oj) is a generalized Cartan matrix (i.e. (hi, Oi) 2, (hi, Oj) e 7/<0

for j and (hi, oj) 0, (hi, or,) 0).

(1.1.7)
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2(=,, a)
(1.1.) (h, } for any and e t*.

(1.1.9) a e P and hi e P* {h e t; (h, P) c Z} for any i.

Hence {(h, aj)} is a symmetrizable generalized Cartan matrix. Let be the asso-
ciated Kac-Moody Lie algebra; i.e., fl is the Lie algebra generated by t, e, and fi
(i e I) with the following fundamental commutation relations.

(1.1.10) t is an abelian subalgebra of fl,

(1.1.11) [h, ei]= <h, 0q>e,, [h,f/] -<h, 0q>fi,

(1.1.12) [e,f] 6ohm, and

(1.1.13) (adei)*-<h",>e (adf)-<h"=’>f 0 for # j.

Then the q-analogue Uq() of the universal enveloping algebra U() is by definition
the algebra over the rational function field Q(q) generated by the symbols ei, fi (i e I)
and qh (h P*) with the following fundamental commutation relations.

(1.1.14) qh 1 for h 0.

(1.1.15) qhqh’__ qh+h’ for h,h’ P*.

(1.1.16) qheiq-h q(h’=’>e and qhfiq-h

for h e P* and e I.

(1.1.17) Setting qi qt=,,o and t q(,,=,)h,

(1.1.18) For :/: j, setting b 1 (h, ),

b b

(-- 1)"en)eeb-") (-- 1)(")ff/(b-") O.
n=O n=O

Here we set

(1.1.19) In]i! 11 [k],,
qi- q?l k=l

In I [n]!
m [m]i![n-

for n > m > 0 and
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e}") e/[n]i!,fi(") =f/"/[n]i!.

We understand e}") f(") 0 for n < 0.
Note that we have

(1.1.20) qh,,) qh,,> q2,,9.

Let U+ (g) (resp. U- (g)) be the sub-Q(q)-algebra of Uq(g) generated by the ei (resp.
f). Then we have (cf. ILl], [L2], [L3])

(1.1.21) Uq(g)- U-(g) ()Q(q)[P*] ( Uq+ (g).
(q)

Here Q(q) [P*] is the group ring hp*(l(q)qh. We set

(1.1.22) Q Z,, Q+ Z 7/>oi and

We use frequently the formula

(1.1.23) t,ejtT, q{h,’9)ej, tifjtT,

e}n)fi(m) E fi(m-k)p!n-k) q-mt’i
>o ( k J"

and

Here we use the notations

(1.1.24) {x}, (x x-)/(q, qT, ) and
II

n [n]!

Hence we have

(1.1.25)

Note also that

(qr 0

I, n )i (-1)"
1

for m > n > O,
forn >m>0,
forn >0 > m,
forn =0.

(1.1.26) In]i! . qy n(n-1)/2(1 + qA) and

m] + qA)q[-n(m-n)(1
n

for m > n > O.

Here A is the subring ofQ(q) consisting ofrational functions without poles at q O.
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We have

(1.1.27) 2(P, Q) z,

(1.1.28) (2, 2) e ;Y for any 2 e Q,

(1.1.29)
(2, 2) (kt, #) 7/ for any 2,/ P such that 2 # Q, and

(1.1.30) 2(21, 22) 2(#1, #2) 7/

for any 2, # P such that 2 #j Q j 1,2).

In fact, (1.1.27) follows from (1.1.7) and 2(2, ei) (i, ei) (hi, 2), (1.1.28) follows from
(1.1.7) and 2(Q, Q) c 7/, (1.1.29) follows from (2, 2) (/, #) (2 -/, 2 #) + 2
(#, 2 #), and finally (1.1.30) follows from 2(21, 22) 2(//1, ]22) 2(21 -/1, 22) +
2(/21, 22 t2) and (1.1.27).

Remark 1.1.1. We may replace the inner product on t* with c( for a
positive integer c. This gives the same effect as replacing q with qC.

1.2. Integrable representations. Let M be a Uq(9)-module. For any 2 e P, we set

(1.2.1) Mz {u M; qhu q<h">U for any h P*}.

We say that M is integrable if M satisfies the conditions that

(1.2.2) M Mz,

(1.2.3) dim Mz < for any 2, and

(1.2.4) for any i, M is a union of finite-dimensional Uq(i)-modules.

Here Uq(i) is the subalgebra generated by ei and f. In this paper we consider only
integrable representations. Note that the condition (1.2.3) is less important and that
most of our results hold without this condition.
Remark that for any a P/Q, letting p be the projection P P/Q,

(1.2.5) M[a]
(a)

is a U()-module and M a M[a].
We set

(1.2.6) P+ {2 P; (hi, 2) > 0 for any I}.
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Let 2 P+ and let V(2) be the irreducible Uq(g)-module with highest weight 2. Let
ux be its highest weight vector. Then we have (cf. ILl], [L2], [L3])

(1.2.7)

Let (.0in denote the category of integrable Uq(9)-modules M such that there exists
a finite subset F of P with M v+Q_M. Then it is known (cf. ILl], [L2], [L3],
JR]) that Ci,t is a semisimple category and that its irreducible objects are isomorphic
to some V(2).

1.3. Automorphisms of U().
Q(q)-algebra given by

We denote by the antiautomorphism of U(9) as

(1.3.1) e ei,f/* =f/ and (qh), q-h.

We denote by the automorphism of Uq(9) given by

(1.3.2) e-/= e,, f f/, qh q-h

(1.3.3) a(q)u a(q-1) for any a(q) Q(q) and u

We can check easily that they are well defined. They preserve U+ (9) and U-(9).
Moreover, we have

(1.3.4) ** id and

1.4. Comultiplications. We shall define two comultiplications A_+" U(fl)--,
Uq() (R) Uq(9) that satisfy the coassociative law:

(1.4.1)

(R) (R)

is a commutative diagram.

(1.4.2) A+ (qh) qh () qh,

A+ (ei) e (R) 1 + ti (R) el,

A+ (f) f (R) t;-1 + 1 (R)f;
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(1.4.3) A_ (qh) qh ) qh,

A_ (ei) ei (R) t7, + 1 ( el,

A_ (f) f @ 1 + t, )f.

The well-definedness ofA_+ and (1.4.1)can be easily verified. These two comultiplica-
tions are related as follows. Via A_+, the tensor product M (R) N of Uq()-modules
M and N has two structures of Uq(fl)-module. We denote by M (R)_ N the Uq()-
module M (R) N via A+_. Now assume that M and N have weight decomposition

(1.4.4) M M, N N.
2P AP

Assume that 2(P, P) c Z for the sake of simplicity. Then we define

(1.4.5) qgM, N: M (R)_ N M (R)/ N

by qu(u (R) v) q2(;’U)(u ( v) for u M and v Nu.
Then we can check easily that (Pt,N is a Uq(o)-linear isomorphism. Moreover, if
(2, 2) e 7’ for any 2 e P, we define t e Aut(M) by

(1.4.6) fft(u) q-tX’X)u for u M;

then the following diagram commutes:

(1.4.7)

M(R)_N .,,,N, M(R)+N

M(R)_ N ,,,N M(R)+ N.

We leave the verification to the reader. Note that we can endow the structures of
Hopf algebra on Uq(g) with A+_ as comultiplication.

Remark 1.4.1. If 2(P, P)c 7" is not satisfied, then, assuming M Mta and
N Ntb (a, b P/Q and 2o p-(a), #o p-(b), see (1.2.5)), replace 2(2,/) in the
definition of qt,s by 2(2, #) 2(20,/to) and replace -(2, 2) in the definition oft
by -(,, 2) + (20, ,o). Then 2(2, #) 2(20, #o) and -(2, 2) + (20, 20) are integers by
(1.1.29) and (1.1.30), and hence qgt,s and t are well defined.

[}2. Crystal base

2.1. Upper and lower crystal bases. In [K1] we introduced the notion of crystal
base. We shall call it upper crystal base, and we shall introduce here lower crystal
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base. We shall see later that they are related as follows: (L, B) is a lower crystal base
of M if and only if u(L, B) is an upper crystal base.

2.2. Operators i and f. Let M be an integral Uq(g)-module. Then by the theory
of integrable representations of Uq(sl2) we have

(2.2.1) M @ fff)(Ker ei c M).
O<n<

We define the endomorphisms h, J of M by

(2.2.2) f(fitn)u) =f/tn+X)U and i(fitn)u) fitn-1)U

for u Ker ei Mx with 0 < n < (hi, 2).

Similarly, we have

(2.2.3) M @ e}") (Kerf/ Mu).
O <n< (h,#

These two decompositions are connected as follows:

(2.2.4) if 0 < n < (hi, 2) and u Ker ei M,

then v =ft<h"X>)U belongs to Kerf/c M,tx) and fff)u el(h";)-n)V.

Here si(2) 2 (hi, 2)ei. Hence we obtain

(2.2.5) J(e}")v) e}"-)v and

for v e Kerf c M. with 0

Note that J(f/t")u)=f/tn+X)u and i(e}n)v)= e}n+’)v hold whenever eiu 0 and
fv 0.

2.3. Crystal base. Let M be an integrable Uq(g)-module. Let A be the subring of
Q(q) consisting of rational functions regular at q 0.

Definition 2.3.1. A pair (L, B) is called a lower crystal base ofM if it satisfies the
following conditions:

(2.3.1) L is a free sub-A-module of M such that M Q(q) (R)A L,

(2.3.2) B is a base of the Q-vector space L/qL,

(2.3.3) and JL c L for any i.
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By this j and i act on L/qL.

(2.3.4) iB c B {0} and JB c B (0}.

(2.3.5) L @ Lz and B II B

where L L M and Bz B c (LffqLx).

(2.3.6) For b, b’ B, b’ jb if and only if b

Let us study elementary properties of crystal bases.

PROPOSITION 2.3.2. (i) For (2, n) P x Z with 0 < n < (hi, 2, let az,,(q), bz,.(q)
be an element of 1 + qA. We define endomorphisms and fi’ of an integrable
Uq(g)-module M by

(2.3.7) ’(fyu) "+ax,,(q)fi )u

;(fi(")u) bi,,,(q)fi("-X)u

for u e Ker ei c M with 0 < n < (hi, 2).

Then the definition of lower crystal base obtained by replacing i and fi with and
f{ is equivalent to the original one.

(ii) Let (L, B) be a crystal base. Let 2 P and let u fi") u, be an element of Lz
with u Ker ei M+,,, 0 < n < (hi, 2 + nai). Then

(a) all u, belon9 to L,
(b) /f u mod qL belongs to B, then there is no such that u, qL for n v no,

U,o mod qL belongs to B and u =_ fit")U,o mod qL, and
(c) ; i and fi’ fi on L/qL.

Proof. Let L be a sub-A-module of M such that L c L, j’L L and
L (xeLk. We shall show first that, if u N f(,),=o u, belongs to Lx, eiu, 0
and u, 0 except when 0 < n < (hi, 2 + nei), then u, belongs to L. We argue by
the induction on N. If N 0, this is trivial. If N > 0, then

N

;U a -1+,,,,fi(n L.
n=l

Hence, by the hypothesis of the induction, a+,,,,,u,i belongs to L for n > 1. Since
a[+,,,,, is an invertible element of A, u, belongs to L for n > 1. Then fi~’"u.isa
multiple of fit")u, by an invertible element of A. Therefore, fit")u, belongs to L for
n > 1. Hence Uo belongs to L. Thus we have proven that all u, belong to L. The rest
of the statements are its direct consequence except (ii)(b). We shall prove (ii)(b) by
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the induction on N. If N 0, then it is trivial. If ,u EnN=IT/(n-l) U e qL, then
u, qL for n > 1 and u -= Uo mod qL. If u qL, then g,u mod qL belongs to B.
Hence there is no > 1 such that Un qL for n # no by the hypothesis of induction.
Hence iu =-ft"-l)u,o. By (2.3.6), u fiiu =-fitn)U,o Q.E.D.

2.4. Upper crystal base.
as in [K 1-1:

For any integrable Uq(l)-module M, we define , and

At qT, ti + qit, + (qi q)2eifi 2, ; (qitiAi)-/2ei and J’= (qitT, Ai)-/2f/.

We say that (L, B) is an upper crystal base if (L, B) satisfies the conditions in
Definition 2.3.1 with and j’ instead of , and j. Then for 2 e P and n with
0 < n < (hi, 2) we have

;f/t")u q/2"-<h"Z>-(1 q/X+<h"Z>)-l(1 q/2t<h"Z>-"+X))(1 q2i)-Xfit"-)U

j’f/t")U q-’+<h">-2"(1 q/X+<h"Z>)-’(1 q"+2)(1 q/2)-Xf/t"+X)U

for u Ker e c Mx. Hence we have, assuming (#,/) 7/for any # e P,

and

-XM’qtf(")u --(1 q/X+<h"X>)-x(1 q/2"+2)(1 q/2)-xf/("+X)U.

Hence, by Proposition 2.3.2 we obtain the following lemma.

LEMMA 2.4.1. (L, B) is a lower crystal base if and only if t(L, B) is an upper
crystal base.

Moreover, Proposition 6 in [K1] and (1.4.7) imply the following theorem.

THEOREM 1. Let Mx and M2 be integrable Uq(g)-modules and let (Lj, Bj) be a lower
crystal base ofM (j 1, 2). Set L Lx (R)a L2 c Mx (R) ME and B {bl (R) bE; b B
(j 1, 2)} c L/qL. Then we have the following.

(i) (L, B) is a lower crystal base of Mx (R)_ M2.

(ii) For bx Bx, bE B2 and I, we have

fib ( b2f(b (R) b2)=
(bx ()jb2

if thereexistsn > 1 suchthatfi"bx # Oandb2 0;
otherwise.

.i(bx ()b2
fbx (R) ’b2

{.ibl ( b2
if thereexistsn > 1 suchthatb2 Oandfi"bx 0;
otherwise.
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We can rewrite the formulas in Theorem 1 (ii) as follows. For a lower crystal base
(L, B) and b e B, we set

(2.4.1) max(n; ,’b : 0} max{n; b

q,(b) max{ ,f b # 0} max{n; b ’B}.

Then we have

(2.4.2) (hi, 2) qgi(b ei(b) for b e Bz.

In fact, by Proposition 2.3.2 there exists n > 0 and u Lx+,,, such that b =f(")u
mod qL and eiu 0. Hence, if we set b’ u mod qL, then ib’ 0, b f"b’, b’ 4:0
and b’=b. Hence n=ei(b). Set l= (hi, 2 + nai) >0. Then u
ftz+l)u 0. Hence, j+l b’ 0, b’ ~ ~eif/b, and filb 4: O. This shows qgi(b n.
Therefore, we have qgi(b) (hi, 2) + n (hi, 2) + ei(b), which shows (2.4.2).
Now (ii) can be rewritten as

jbl (R) b2 iftpi(bl)> i(b2);
(2.4.3) f(bl (R) b2)

(bl (R)jb2 ifqi(bl) < i(b2).

(R) b2i(bi (R) b2)
(bx (R) ib2

In particular, for e I, integrable Uq(g)-modules M1, M2 and uj e (Mj)j such that

eiu 0 (j 1, 2), let L be the A-module generated by ft")ul @fitm)Uz(n, m > 0).
Then we have, modulo clL

(2.4.4) f/(f/n)u ()f/(m)u2) f/(n+l)u ()f/(m)u2
f/(n)u ()f/(m+ 1)U2

for (hi, 21) n > m;
for (hi, ,’q,a) n < m.

n-1)Ul ()f/(m)u2i(fi(n)Ul ()f/(m)u2) f/(n)Ul ()f/(m-1)U2
for (hi, 21) n > m;
for (hi, 21) n < m.

Here we assumed 0 < n < (hi, 21) and 0 < m < (hi, ’2)" This is obtained by
applying Theorem 1 to the S/z-case. (Cf. [K1].)

2.5. lnner product. Let M be a Uq(9)-module. Let (,) be a bilinear symmetric
form on M satisfying the property that

(2.5.1) (qhu,

(fiu, v) (u, q-I tieiv) and

(eiu, v) (u, qitf-l fiv).
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LEMMA 2.5.1. Let M (j 1, 2) be two U()-modules and let (,) be a bilinear
symmetric form satisfyin9 (2.5.1). Define the bilinear symmetric form (,)on M1 (R)- ME
by

(u (R) uz, v (R) vz) (u, uz)(v,

Then (,) on MI (R)_ M2 satisfies (2.5.1).

The proof is straightforward.
For 2 P/ there exists a unique bilinear symmetric form (,) on V(2) satisfying

(2.5.1) and

(2.5.3) (ux, ux) 1.

This is an easy consequence of (1.2.6) and the fact that qh__.qh, f__qi-:tie, ei--
qti-f defines the antiautomorphism of Uq().

Let 2,/ P+ and let (2, #): V(2 +/)-o V(2) (R)_ V(#) and q(2,/): V(2) (R)_ V(/t)--,
V(2 + #) be the unique U(g)-linear homorphisms such that

(2.5.4) (,. #)(u+,) u (R) u,

’e(,, )(u (R) u,) u+,.

Then we have

(2.5.5) (1)(2, #) idv(+u).

Let (,) be the bilinear symmetric forms on V(2 + #) and V(2)(R) V(/) defined as
above. Then we have

(2.5.6) (’(,. )(w). u) (w..(,. )(u))

for weV(2)(R)V(#) and uV(2+#).

This follows easily from the uniqueness of a bilinear form (,) on (V(2)(R) V(/)) x
V(2 + kt) satisfying (2.5.1) and (u (R) uu, u+u) 1.

2.6. Existence and uniqueness theorems. Hereafter, crystal base means lower cry-
stal base. Let 2 P+ and let V(2) be the irreducible U(9)-module with a highest
weight vector ux with weight 2 as in 1.2. Let L(2) be the A-module generated by
j ,u. Let B.(2) be the subset of L(2)/qL(2) consisting of the nonzero vectors of
the form f f,u.
THEOREM 2. (L(2), B(2)) is a crystal base of V(2).
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The proof will be given in 4.
The following theorem is proven in [K1] under the assumption that Theorem 2

holds.

THEOREM 3 (uniqueness). Let M (9i,, and let (L, B) be a crystal base of M. Then
there exists an isomorphism M - O)j V(2j) by which (L, B) is isomorphic to

Wc shall give hcrc a simpler proof of this theorem admitting Theorem

LEMMA .6.1. Let P+. Then

(i) {u L()/qL(); iu 0 :for any i} V(), and
(ii) {u V(); u L() for any i L() + ().

Proof. (i) It is enough to show that for # - and u (L()/qL()), if u 0
for any i, then u 0. Let us write u Bab with a . Then, for any i,
{b B(2)u; ’b : 0} B(2)u+, by b ,b. Hence abib 0 implies a 0 when
b : 0. Since all b B(2)u have some with ,ib 4: 0, all ab vanish.

(ii) For/ :- 2 and u e V(2)u with ,u L(2) for any i, we shall show u e L(2). Let
us take the smallest n > 0 such that u e q-"L(2). Assuming n > 0, let us derive the
contradiction. Set b q"u mod qL(2). Then b 0 for any i. Hence b 0 by (i).
Therefore u qX-"L(2), which contradicts the choice of n. Q.E.D.

LEMMA 2.6.2. Let 2 P+ and Lbe a sub-A-module of V(2) such that L O)u e Lu
and L Au.
(i) IfL L for any i, then L(2) = L.
(ii) If iL L for any i, then L L(2).

Proof. Part (i) is obvious. In order to prove (ii) let us show Lu L(2)u. By the
induction on #, we may assume that t - 2 and Lu+,, = L(2),+,, for any i. Hence
,Lu L(2) for any i. Then the preceding lemma implies the desired result
Lu L(2)u. Q.E.D.

Theorem 3 is easily reduced to the following lemma.

LEMMA 2.6.3. Let M Ob((gi,t) and 2 P+ such that M+,, 0 for any i. Let
(L, B) be a crystal base of M. Let M N1 Nz with NI Uq(g)M. Set Lj N L,
Bj B (Lj/qLj). Then we have

(2.6.1) L L1 0) L2, B B1 B2,

(2.6.2) (Lx, Bx) - (L(2), B(,)) dimM

Proof. Since N1 - V(2)*n and (Nx)z Mz, N has a crystal base (if,, ) such
that L, B and (,,/) (L(2), B(2)) B;t. Then the preceding lemma holds
by replacing (L(2), B(2)) and V(2) with (L, B) and N. Hence L L. Moreover, p
is the projection M -- NI,p(L) L. Then they imply L L ( L. Now, we shall
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show Bu Bu w(B2)u for any # P. If # is not a weight of V(2), then this is
trivial. Hence we may assume # 2 + Q_. If # 2, this is also trivial. Hence by the
induction of #, we may assume # # 2 and Bu+, B B2 for any i. For b Bu write
b ux + u2 with uj LJqL. If ul 0, then there is nothing to prove. If ul 0, then
there exists such that iul 4:0 by Lemma 2.6.1. Since ib u + u2 B,+a,
/z+a, t_A(B2)z+a, we obtain b u+," Hence b j’ib . Thus we obtain B
B u B2. Since B c B and B B2 b, we have Bx B. Now the rest of the steps
are straightforward.

Thus Theorem 3 is proven under the assumption that Theorem 2 holds.

3. Crystal base of U-(g). In this section we shall define the crystal base of
U-(g). We regard U-(I) as the projective limit of I/’(2). Then the endomorphism
tei on V(2) converges to an operator on U- (fl) with respect to the q-adic topology.
With this operator we can define the notion of crystal base on U- (I).

3.1. Q-analogue of boson. Let ’ be the algebra over Q(q) generated by two
elements e and f with fundamental relations

(3.1.1) ef q-2fe + 1.

If we put q 1, then this is a commutation relation of boson. The commutation
relation (3.1.1) implies

(3.1.2)

Here we set

f"/[m]! for m > 0;
ft,)

0 form < 0.

3.2. Decomposition of 3-module. Let M be a ’-module such that

(3.2.1) for any u e M there is n > 1 such that e"u O.

We define the endomorphism P on M by

(3.2.2) P (- 1)"q-t"t"-l)/z)ft")e".

PROPOSITION 3.2.1. Let M be a -module satisfyin9 (3.2.1).

(a) For any u M there exist unique u. M (n > O) such that

(3.2.3) eu, 0 for any n,
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(3.2.4) u, 0 for n >> 0,

(3.2.5) u Z f(n)Un"

(b) We have u, q(n(n-x)/2)pe"u.
(c) M Im f 0) Ker e.
(d) P is the projector onto Ker e accordin9 to the direct sum decomposition in (c).

Proof. We shall prove first

(3.2.6) Pf eP O.

We have

pf (-1)"q-t""-a)/2)ft,)e,f

(-1)"q-(""-x)/2)f(")(q-2,fe, +

(-1)"q-t"t"-)/2)-2"[n+l]f("+)e"+ (-1)"+lq-("t"+)/2)-"[n+l]ft"+a)e"
> O > O

=0,

and

eP (-1)"q-("("-)/2)(q-Z’f(’e + qX-’f(’-a))e"

(-- 1)"q-("("-1)/z)-z,f(,)e,+1 + (-- 1)"+aq-((n+)n/2)-,f(,)e.+1

Hence we have (3.2.6). Now we shall show

(3.2.7) 1 q("("-)/2)f(")Pe".

We have

f(")Pe"=(-1)"q-("("-x)/2)In+mlf("+")e"+",,n
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Hence (3.2.7) follows from ,"=o (- 1)n[mn]q(m-1)n 0, which is a consequence of

(3.2.8) Yo (- 1)" x"= I-] (1- q-l-m+2vx).

Thus it remains to prove the uniqueness of u, and (b). Assume eu, 0 and
,,f")u, u. Then we have for any n

e"u Z e"fm)Um

Since Pftm-)e"-Um 0 except n m v, we obtain Pe"u q-(n(n-)/2)U
Q.E.D.

3.3. The reduced q-analogue. Let 3q(g) be the algebra generated by e, f/(i e I)
with the commutation relations

(3.3.1) elf) q- (h,,)fei +

(3.3.2) For 4: j, setting b 1 (hi, oj),

e"ejeb-" (- 1)" ,ff/b-, 0.
n=O n n=O

We call q(g) the reduced q-analogue. Then q(fl) has the antiautomorphism a
defined by

(3.3.3) a(f/) e; and a(e;) fi.

3.4. q(g)-module structure on U(g). Let U(g) be the subalgebra over Q(q) of
Uq(g) generated by ft. Then by [-L 1], [L2], [L3] the fundamental relations offi are

(3.4.1) (--1)"II (hi’ J)] fi"ffi-<h"’>-" for

LEMMA 3.4.1. For any P e U;(g) there exist unique Q, R e U;(g) such that

(3.4.2) [ei, P]
tiQ tF R
qi- qT

Proof. The uniqueness follows from (1.1.21). Since Uq-(g) is generated by the f
and the lemma is true for P 1, it is enough to show that, if the lemma is true for
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P, then the lemma is true for fP. Assume (3.4.2). Then

Ee,, fP] [e,,f]P + fEe,, P] 6(t,- t:/)
q- q- P + fY(t’Q tT,R)

qi-

Hence we obtain

(3.4.3) Ee,,fiP]
t’(q<h">fQ + boP) t[-(qT<h">fiR + 6iP) Q.E.D.

qi- qT,

By this lemma, if we set Q e’[(P) and R e;(P), then e; and e’i’ are endomorphisms
of Uq-(8). Moreover, (3.4.3) gives

(3.4.4) e;’f qi<h"’J>fe; + 6o and e;f qi-<h"’J>fe; + 60

Here f acts on Uq-(8) by the left multiplication.

LEMMA 3.4.2. U-(8) is a left q(8)-module.

Proof. Itremainstoprovethatfori 4:j, S (_ l),|blF -I
e"eeib-" vanishes as

L_]n
an endomorphism of U-(I). Here b 1 -(hi, us). In order to see this we shall
calculate the commutation relation between S and f. We have by (3.1.2)

rn-1
ei fk q-n(h"u)fken -F tikq [nile

Hence we have (see (1.1.20) and note q<h’’> q/b-l)

Sfk E (-- 1)n[bl enej(q[(b-n)(h"k)feb-n "k- 6ikq]-b+n[b n]ie;b-n-)-- (-1)"IbInien(q[-tb-n)(h"’)(qj-(h’’)fkej+tjk)eb-n
+ 6,kq-b+"[b- n],eje,b-.-x)

^tn _tb-n-1+ 61kqT,(-")<h"’k>eb + 6ikq-b+"[b- n]iei eek }
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q[b(hk’a’)-(hu’aJ)fkS + CikE (--1)nlbrtl q-b[n]ien-l^’-’b-n" eJei

+ 6ik -’ (__ l)n|b|[- -]
q-b+.[b n] b-.-

ii ji
L_J

+ Jk E (--1)nlbl

cancel out. The last term vanishes by (3.2.8). Thus we obtain

(3.4.5) Sfk

Then S 0 follows from (3.4.5) and S. 1 0.

The following lemma makes explicit a q()-module structure on U-(I).
LEMMA 3.4.3. Uq-(l) q(l)/ q(l)e.

Proof. Since 1 is annihilated by e, we have a surjective morphism

Q.E.D.

If C is the subalgebra of M() generated by f, then we have

C q(g)/ Nq(g)e; U-(g).

It is clear that and q9 are surjective. By the fact that (3.4.1) is the fundamental
relations of U-(9), q o q9 is an isomorphism. Hence q and q are isomorphisms.

Q.E.D.

PROPOSITION 3.4.4. There is a unique symmetric form on U(9) such that

(3.4.6) (flu, v)= (u, ev),

(1, 1)-- 1.

Proof. The uniqueness is clear. We shall prove the existence. Let us endow
M Hom(U-(I), Q(q)) with the structure of a left (l)-module via a; i.e., we have

(3.4.7) (fq)(u) q(eu)
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(e;qg)(u) tp(u)

for u U-(I) and (p M.

Let q9o be an element of M such that

(3.4.8) qgo(1 1 and

Since eq9o 0 for any i, we have a homomorphism

(3.4.9)

which sends 1 to qo.
Now, we define a bilinear form on

(3.4.10) (u, v) (ff(u))(v) for u, v U-(O).

Then we have

(3.4.11) (1, 1)= 1

(flu, v) (u, ev) and (eu, v) (u, fiv).

One can see easily that such a bilinear form is unique. Since (u, v)’ (v, u) satisfies
the same condition, is symmetric. Q.E.D.

For c Q_, we set

(3.4.12) u-() {P c Uf(l); qhpq-h q<h,>p for any h c P* }.

If P is an element of U-(), then we say that is the weight of P.

PROPOSmON 3.4.5. For i,j I, we have

eiei qi(h’’aj eie in End(U-(g)).

Proof. For k c I we have

eej’fk e(qhJ’a">fkej’ +

q<khk’>(qZ,<h"k>fke + 6ki)ej’ + 6jke

qk (hk’ Oti) + (hk’ Otj (jkJkeie + 6kiqi(h"aaej + ei.
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Similarly, we have

e)eijk q(khk, aj)-(hk,ai)Jke) e -1- tkjq- (hJ’’>e[ -Jr- (ike]

Hence, if we set S eie -,i j .., then

Sfk q(kh,a>-(h,a,)fkS.

Then S. 1 0 gives S 0. Q.E.D.

COROLLARY 3.4.6. Let I and let P be an element of U(g) of weight Q_
which satisfies eP O. Then for any element u with weight 2 P of a Uq(g)-module
such that eu O, we have

q(2 (hi,A+)+3n+l)

t’e’Pu (qi- qT, ) (e;’"e)u.

Proof. We shall prove it by the induction on n. We have

t,]+ e,+1pu titpeiepPu

qtieitpepPu

Since

q(2(hi X+?>+3n+l)(q q: 2n ,,n
qi tiei(ei P)u.

vvntiei(ei P)u ti[ei, e;’"P]u

2 .n+l .nt e P ee P
U.

qi qT

By the preceding lemma we have ttnn
eie r O. Hence we obtain

t,+le,+lpu q,t2(h,,,+>+3n+3)(q, q71 )-,- q2 <h,. x+ +t,+1), >.tei,,,+lp)u.

Then the assertion follows from

n(2(h, 2 + ) + 3n + 3) + 2((h, 2 + ) + 2(n + 1))

(n + 1)(2(h,, 2 + ) + 3n + 4). Q.E.D.

We shall prove that the inner product on U-(g) is nondegenerate.

LEMMA 3.4.7. Let P U(g). Then, if e;P 0 for any i, then P is a constant
multiple of 1.
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Proof. We may assume P e U-(g). We shall prove it by the induction of l I.
Here Il nil for ni0i. We may assume - 0.
(a) Case I1 1. In this case, P has the form cfi for some and c Q(q). Therefore,

c eP =0.
(b) Case I1 > 1. For any j I, we have eiej r qh,, >ei eiP 0. Hence ei P 0

by the hypothesis of the induction. Hence ejP Pej for any j. Now let 2 P+
satisfy (h, 2) >> 0 so that U(g) V(2)x+ by the homomorphism U(g)
Q Qux. Then e(Pux) 0 for any j. Since V(2) is irreducible and U(g)Pux does
not contain ux, Pu 0 and hence P 0. Q.E.D.

COROLLARY 3.4.8. is nondegenerate.

Proof. We shall prove that is nondegenerate on U-(9) by the induction on

I1. If 0, this is trivial. Assume I1 > 0. If e e U-(fl) satisfies (e, Uq-()) 0,
then (e;e, Uq-(9)/,)= (e, fiU-(9)+,)= 0, and hence e;e 0 for any by the
hypothesis of induction. It remains to apply the preceding lemma. Q.E.D.

COROLLARY 3.4.9. Uq-(g) is a simple q(g)-module.

Proof. Let M be a nonzero submodule of U-(). Taking a highest weight vector
of M, M contains a nonzero element P such that eP 0 for any i. Then P is a
constant multiple of 1, and hence M U-(). Q.E.D.

Remark 3.4.10. Let (9(q()) be the category of (o)-modules M such that
for any element u of M there exists an integer such that e.’ et 2"’" eiu 0 for any
i, i I. Then it is not difficult to prove that (9(q(g)) is semisimple and
U-(g) is a unique isomorphic class of simple objects of (_9(q(g)). Since we do not
use this result, we leave the proof to the reader.

Remark 3.4.11.
comultiplication

has a similar structure to Hopf algebra. Let us define the

by

a: ()--, u() (R) ()

(3.4.13) A(fi) f (R) 1 + t, (R) fi,

A(e;) (qF qi)tiei (R) 1 + ti.

Then A is a well-defined Q(q)-algebra homomorphism, and it satisfies the coassocia-
tive law:

(u) u(u) (R) ()

Vq() ( q() id(R)"A"}’ Vq() ( Vq() ( q()
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is commutative. Hence, for a left Uq(g)-module M and a left q(9)-module L, M (R) L
has the structure of a (9)-module, and there is a natural isomorphism

(M (R) N) (R)L - M (R) (N (R) L)

for a q()-module L and Uq(9)-modules M and N.

3.5. Crystal base of U-(). Let M be a N’(9)-module in 60(0J(9)). (Cf. Remark
3.4.1 1.) Let be an element of I. Then we have by Proposition 3.2.1

M @ f(")Ker e.
n>_0

We define the endomorphisms ’i and f by

(3.5.1) i(fit")u) fit"-l)u and

f,(fyu) An+u for u e Ker e.
Note that

(3.5.2) g’iJ 1.

Moreover, fg, is the projector to fM with respect to M Ker e @ fM.
A crystal base ofM is by definition a pair (L, B) satisfying the following properties.

(3.5.3) L is a free sub-A-module of M such that M Q(q) (R) L.

(3.5.4) B is a base of the Q-vector space L/qL.

(3.5.5) iL L and fL c L for any i.

By this j and gh act on L/qL.

(3.5.6) .,B B {0} and fB = B.

(3.5.7) For b e B such that ghb e B, b 3ghb.

Let L(oe) be the sub-A-module of U-(g) generated by Jl""1" 1. Let B(oe) be
the subset of L(oe)/qL(oe) consisting of the vectors of the form f,...," 1.

THEOREM 4. (L(oo), B(o)) is a crystal base of U-(g).

This theorem will be proven in the next section.
The relations of(L(oe), B(oe))and (L(2), B(2))are given by the following theorem.
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THEOREM 5. Let nz" U;(fl)-4 V(2) be the U(fl)-linear homomorphism sending 1
to uz. Then

(i) rcz(L())- L(2).
Hence xz induces the surjective homomorphism " L()/qL()-4 L(2)/qL(2).

(ii) By , {b B(); gz(b) :# 0} is isomorphic to B(2).
(iii) fi o gz gz o ft.
(iv) If b B() satisfies gz(b) :/: O, then .igz(b) gz(.ib).

The proof of Theorem 5 will be also given in the next section.

Remark 3.5.1. We can prove the following theorems (cf. Theorems 3, 1), but we
omit their proofs.

THEOREM. Let (L, B) be a crystal base of a :q(g)-module M in (9(:q(g)). Then
(L, B) is a direct sum of copies of (L(), B()).

THEOREM. Let (L1, BI) be a crystal base of an integrable Uq(g)-module Mi and
(L2, B2) a crystal base of a #(g)-module M2 in (9(q(g)). Then (L, Bi) (R) (L2, BE) is

a crystal base of Mt (R) ME in (9((fl)), and the actions of i and f on Bt (R) B2 tt {0}
are described by the same formula as in Theorem 1.

4. Grand loop

4.1. Preliminaries. We shall prove Theorems 2, 4, and 5 at once by the induction
on weights. For 2,/ P+ we denote as in 2.5 by tI)(2, p)" V(2 + #) -4 V(2) (R)_ V(#)
and t’(2, #): V(2)(R)_ V(#)-4 V(2 + #) the U()-linear homomorphisms such that
tI)(2, #)(ux+u) u (R) uu and W(2,/)(ux (R) uu) ux+u. Hence we have

(4.1.1) F(2, #)o *(2, #) idv(+u).

Therefore, we have

(4.1.2) V(2) (R)_ V(#) Im (2,/) ) Ker W(2, #).

Since W(2,/) and tI)(2,/) are U()-linear, they commute with ’i and ft. We also
define the homomorphism S(2,/): V(;) (R)_ V(/) -4 V(2) as

(4.1.3) S(2, #)(u (R) vu) u for u V(2) and

S(2,1a)(V(;t) (R) fV(l)) O.

By the definition of A_, we have fi(u (R) v) =fiu (R) v + tiu (R) fir, and the last terms
are sent to zero by S(2, #). Hence we have that

(4.1.4) S(2, #) is Uq-(g)-linear.
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Therefore, S(2, tt) o 0(2, tt)" V(2 + tt) V(2) is a unique Uq-(fl)-linear homomor-
phism that sends u+u to uz.

Hereafter, we denote (R)_ by (R).

4.2. Induction hypotheses. For e Q_ we write niai, and we set

(4.2.1) Il Inl.

We also set

(4.2.2) Q_(1) { e Q_; I1 l}.

If Il 0, then 0, and, if Il 1, then coincides with some -ai. Let
nx: U- () V(2) be the U-(l)-linear homomorphism sending 1 to uu. Let C be the
collection of following statements.

(C.l)
(Q.2)
(C/.3)
(C/.4)
(c,.5)
(C/.6)
(C,.7)

For Q_(1), iL() L(@).
For 6 Q_ (1) and 2 6 P+, iL(2)x+ = L(2).
For Q_(I) and 2 e P+, rcx(L(o)) L(2)a+.
For e Q_(1), B() is a base of L()/qL().
For Q_(l) and 2 P+, B(2)L+ is base of L(2)x+/qL(2)x+.
For e Q_(I 1) and 2 P/, f(Pu,) (fP)u, mod qL(2) for P L().
For e Q_(I) and 2 s P+, we have ,iB(ct)) B()w {0} and g.iB(2)z+
B(2) {0}.
For e Q_ (l) and 2, # e P+, we have 0(2, #)(L(2 + #)+u+) L(2) (R) L(#).
For e Q_ (1) and 2, tt e P+, we have
W(2, #)((L(2)(R) L(,u))z+u+) = L(2 + ,u).

(Cl.lO) For e Q_(l) and 2, kt e P+, W(2, #)((B(2) (R) B(g))+u+) = B(2 + #) {0}.
(C.ll) For e Q_(1) and/ e P+,

{b e B(),; ffz(b) - 0} ~. B(2)+.

Here : (L()/qL(c)) (L(2)/qL(2))z+ is the homomorphism induced
by . (Cf. (C.3).)

(C/.12) For Q_ (1), 2 P+ and b e B() such that -z(b) # 0, we have g-.iz(b)
z(a,b).

(C.13) For e Q_(1), P/ andb e B(2)z/ and b’ e B()z//,,b fb’ ifand only
if b’ b.

(C.14) For e Q_(l) and b e B(o), ifb 0, then b =jb.

We remark that these statements are not independent. For example (Cz.10) has
meaning only under the hypothesis (C1.9), etc.
We shall prove CI by the induction on I. We may assume that {hi;i I} is

linearly independent by taking an extension of t if necessary. For I let Ai be an
element of t* such that (hi, A) 6o for any j. We may assume that P contains A
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without loss of generality. In fact, P + 7/Ai satisfies the properties (1.1.9) and
(P + 7/Ai)* P*.

4.3. Consequences of Ct-1. Now assuming Ct-1, let us prove Ct. Since Co and Ci
are almost trivial, we may assume

(4.3.1) > 2.

Hereafter, Ct- is assumed.

LEMMA 4.3.1. Let Q_(l 1), 2
_
P+, and u

_
L(ct)) (resp. L(2)i+). If u

,f(")u, and if eu. 0 (resp. u. . V(2)++,, eiu. O, and u, 0 except when
(hi, 2 + + nai)> n > 0), then all u. belong to L(oo) (resp. L(,;t)). If moreover u
modqL(oo) (resp. qL(2)) belongs to B(oo) (resp. B(2)), then there exists n such that
u =- f(")u, modulo qL(oo) (resp. qL(2)).

Since the proof is similar to that of Proposition 2.3.2, we omit it. We remark that
we need only (C_1.1) and (C_1.2) in order to prove the first statement.
For Q_(I 1) and b B(2)+ (resp. B(oo)), we set

(4.3.2) ei(b) max{n; b # 0}.

By Lemma 4.3.1, for e Q_(l 1) and b B(2)x+ (resp. B(o)), there exists u e

L(2)x++,tb), (resp. L(oo)+,tb),,) such that eiu 0 (resp. e;u 0) and b ft’tb))u
mod qL(2) (resp. mod qL(oo)). Note that u mod qL(2) (resp. qL(ov)) belongs to B(2)
(resp. B(oo)).

LEMMA 4.3.2. Let , ’ Q_ (l 1), 2, li P/, and I.

(i) j(L(,;t)+ (R) L(#),+,) c L(,;t)(R) L(#) and i(L(2)+ (R) L(#)u+,) c L(,;t)(R) L(#).
(ii) If b B(2)z+ and b’ B(#),+,, then we have

(R) b’) (’,’b b’(b (R)fb’o
if (hi, 2 + ) + ei(b) > e,i(b’),
/f (hi, 2 + ) + e,(b) < e,(b’);

(b (R) b’)
(ib (R) b’

if (hi, 2 + > + ei(b < ei(b’),
if <hi, 2 + > + ei(b)> ei(b’),

Here the equalities are those in L(2)(R) L(#)/qL(2) (R) L(#).
(iii) For b (R) b’ B(2)z+, (R) B(/)u+,,, i(b (R) b’) 0 implies b b’ (b @ b’).
(iv) For b B(2)+ and b’ 6 B()u+,, i(b @ b’)= 0 for any i, then 0 and

(v) For b B(2), (b @ u.) b @ u. orb O.

Proof. (i) By Lemma 4.3.1 it is enough to show that, for u e L(2)z++.,
and veL(#)+,+,, such that eiu=eiv=O, (hi, i++nai>>n>O, and
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(hi, # + ’ + moq) > m > O,

(4.3.3) J(fn)u () (m)v) L(2)(R) L(#)

i(ft")u (R) fi)v) e L(2) (R) L(#).

Let M be the A-modules generated by f(V)u (R) f(V’)v. Then M is stable by
by Theorem 1. Then (4.3.3) follows from M L(2)(R) L(#).
(ii), (iii), and (iv) We may assume b -= f/(")u mod qL(2) and b’ f(m)v mod qL(it) as
above. Then ei(b) n and ei(b’) m. Set a (hi, 2 + + nai) and let M be the
A-module generated by f()u (R) f(’)v. Then by Theorem 4 (see also (2.4.1)-(2.4.4)),
we have mod

f(n+l)u (R) ftm)v for a n > m,
(4.3.4) J(fn)u (R)fm)v) =-- [fn)u (R) fm+l)V for a n < m;

.i(f(n)u (fi(m)v) fn)u (

(fi(n-1)u ( f(m)v
fora n < m,
for a- n > m.

Since M = L(2)(R) L(#), the second assertions hold, (iii) follows from this formula,
and (iv) follows from the fact that b u if ’ib 0 for any i.
Part (v) also follows from (4.3.4). Q.E.D.

Now we shall give several corollaries of this lemma.

COROLLARY 4.3.3. For , ’ Q_(I 1) and 2, It P+, 3(B(2)z+ (R) B(It)u+,) and
,i(B(2)z+ (R) B(It)u+,) are contained in B(2) (R) B(it)u {0}.
COROLLARY 4.3.4. For Q_ (1) and 2, It P+,

*(2, It)(L(2 + It)z+u+) L(2)(R) L(It).

In fact, this follows from (C_1.8), Lemma 4.3.2, and L(2 + It)z++ Y’,j]L(2 +
It)+++, for # 0.

COROLLARY 4.3.5. For il,..., it I and It P+, set 2 Ai,_. Then

fi "fi,(u (R) u) v (R) w in L(2) (R) L(It)/qL(2) (R)

Here, v B(2)x+, w B(It)u+, u {0} for some , ’ Q_(l 1)\ {0}.

Proof. Assume first i 4: i_1. Then f,uz 0 implies

j,(uz (R) uu) ,(ux @ uu) thuz ,uu u @ (,uu).
Since Oi,_,,u. ei,_,fi,u, 0 and ,_,uz ,_,uz O, we have

(4.3.5) ,_,,(uz @ uu) (,_,uz) @ (,uu) mod at(2)@ t().
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If it it-x, then

f.(u (R) u.) (f.u) (R) u..
and, since f,2u 0, j,2(u (R) uu) 3,u (R) j,uu, Hence in the both cases, (4.3.5)
holds. Then the assertion follows from Lemma 4.3.2. Q.E.D.

COROLLARY 4.3.6. Let 2, # P+ and Q_ (l). Then

(L(2) (R) L(#))z+u+ j(L(2)(R) L(#))z++,, + uz (R) L(/)u+.

Proof. Let L be the left-hand side and L the right-hand side. We already know
c L. For ’ Q_(l 1)\ {0} and b B(2)+. (R) B(#),+_., there exists such that

g’b 0 by Lemma 4.3.2(iv). Then Lemma 4.3.2(iii) implies b fg’b. Therefore, we
obtain L(2)+r (R) L(),+_, L + qL. Hence we have

L L + L(2)(R) uu + qL.

For j, j,ux 6 B(2)x+, we have

(,"" f,uz) (R) uu =- f,((""" f,uz)(R) uu) mod qL(2)(R) L(/)

by Lemma 4.3.2(v). Thus we obtain L L+ qL. Then Nakayama’s lemma implies
the desired result. Q.E.D.

COROLLARY 4.3.7. For 2, # P+ and il, i I, we have one of the followin9
two cases.

(i) j,’"j,uz qL(2).
(ii) f, ,(uz (R) uu) (f, f,uz) (R) u mod qL(2)(R) L(#).

This follows immediately from Lemma 4.3.2(v)

LEMMA 4.3.8. Let 2,/ P+.
(i) S(2, #)(L(2)(R) L(#)) L(2).
(ii) For Q_ (1- 1),

(L(2) (R) L(l)/qL(2) (R) L(l))z+u+

(L(2) (R) L(#)/qL(2) (R) L(#))+,+_,,
s(,u)

(L(2)/qL(2))z+

((Xt/qL(t/_,

commutes.
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Proof. Part (i) follows immediately~from L(#)u Auu.~Let us prove (ii). For
w (L(2) (R) L(/))+u+, we shall show fS(2, #)w S(2, #)fw mod qL(2). (L(2) (R)
L(p))+u+ is generated by vectors of the form f(")u (R) f(m)v with u L(2), v L(t)
and eiu O, eiv 0. Hence we may assume w f")u (R)fm)v. Let M be the
A-module generated by fitk)u(R)fff)V. Then M c L(2)(R)L(#). Then j]w
fi(m+l)u ( L(m)v or fi(n)u (R) fitm+X)V mod qM. Hence S(2, #)(jw) and J(S(2,/)w)
belong to qL(2) except when v L(#)u and m 0. Now assume v uu. Then
fi(fitn)u (R) u,) =- fitn+)U (R) Uu or fitn)u (R) fiu, mod qm according to whether
fitn+X)u 0 or fitn+)U 0. Hence S(2, p)(fi(n)u (R) u,) =- fitn+)U fitn)u. Q.E.D.

LEMMA 4.3.9.
Assume

Let Q_(l) and u V(2)+, and n, k 77 >_o with n + k > 1.

(4.3.6) te}V)u q(V+"+k)qL(2) for any v such that l < v < n + k.

Then we have

(4.3.7) j"f/(k)u =- f/(k+")u mod qL(2),

(4.3.8) ’’f/(k)u f/(k-")u mod qL(2).

Proof. We write

(4.3.9) u L fi(m)Um

with u Ker ei V(l)2++mai, (hi, 2 + + mai) > m > O. Then we have, setting
a-- (hi,

te}V)fi(m)Um= tfi(m-v)[v-mW(hi’2++v mgi)]i um
q(a+2’)Iv+a+mly L(m-V)Um"

Hence by Lemma 4.3.1 we obtain (see (1.1.26))

q(a+2V)q’(a+m)U q(+"+k)qL(2) for m_> v and < v < n + k.

Hence we obtain

q(V-n-m-k)u qL(2) for m > v and 1 _< v < n + k.

Hence setting v n + k when m > n + k and v m when 0 < m < n + k, we obtain

(4.3.10) q-m(n+k)U 6 qL(2) for m > O.
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Now we have

and

finfi(k)u-- E Im-l- kl
fi(n+k)u-- E Im-k n-k kl

Therefore, (4.3.10) implies that bothj"f(k)u and f("/k)u are equal to fY/*)Uo modulo
qL(2). This proves (4.3.7). We have

,f(k)u E fi(m+k-n) Im+kI fi(k-n) mod qL(2)U U0
>_n-k m

and, when k >_ n,

fi(k-n)u-- z Im + k-- nl
Hence both Uftk)u and ftk-n)u are equal to fitk-n)uo modulo qL(2). Q.E.D.

4.4. Proof of (C.3) and (Ct.6). We shall first prove (C.6) when (hi, 2) >> 0.

LEMMA 4.4.1. Let I, Q_ (1) and P U (g). Then for 2 P+ with (hi, 2) >> 0,

(fiP)u =- fi(Puz) and

(.iP)uz=-.i(Puz) modulo qL(2).

Proof. We may assume P =fitk)Q with eQ =0 and Q U-(g)+k,,. Then
(e)uz f(k+l)Qu and (ie)u ftk-)Qu. By Corollary 3.4.6 we have

te}V)Quxqv+k+)qL(2) for 1 < v < 1 + k.

Then the lemma follows from Lemma 4.3.9. Q.E.D.

Now we shall show (Ci.6) for arbitrary 2.

PROPOSrrION 4.4.2. For Q_ (l 1) and e L(), we have for any 2 P/

(4.4.1) (fP)uz =- f(Puz) mod qL(2.).

Proof. Let us take k such that (hi, #) >> O. Then by the preceding lemma

(4.4.2) (fiP)uz+. =- fi(Puz+.)mod qL(2 + #).
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Hence by applying 0(2, #) to (4.4.2), Corollary 4.3.4 implies

(fP)(uz (R) u,) =- f(P(uz (R) u,)) mod qL(2) (R) L(#).

Then applying S(2, #), Lemma 4.3.8 implies

(P)uz .(Puz) mod qL(2). Q.E.D.

COROLLARY 4.4.3. For any 2 P+ and Q_ (1), we have

x;(L()) L(2)z+.

Proof. By the preceding proposition we have

n;(L(),:) L(2)z+,:

and

L(2);+ c zcz(L() + qL(2)z+.

Then Nakayama’s lemma implies the desired result. Q.E.D.

By this proposition ztz induces a surjective homomorphism z: (L()/qL())
(L(2)/qL(2))z+.
COROLLARY 4.4.4. For Q_ (l) and P+, we have

(ffzB())\{O} B(2)+.

This follows immediately from Proposition 4.4.2.

COROLLARY 4.4.5. If 2 P+ satisfies (hi, 2) >> 0 for any i, then for any Q_ (l),
L(c) L(2)+ and B(o)\{0} __% B(2)+.
This follows from U-(g) __% V(2)+.

4.5. Small loop. We shall show iL(o) c L() and ,iL(2)+ c L(2). We fix
Q_ with I1 l. Take a finite set T ofP/ such that T e Aj for anyj. We shall show

(4.5.1), ,iL() q-"L(o) and ’iL(2) = q-"L(2) for 2 T

by the descending induction on n > 0. If n >> 0, then (4.5.1), is obvious. Now
assuming (4.5.1), for n > 0, we shall derive (4.5.1),_1. By Lemma 4.4.1, (4.5.1), and
Corollary 4.4.3 imply

(4.5.2) ’iL(2)x+ q-"L(2) for 2 P+ with (hi, 2) >> 0.
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LEMMA 4.5.1 For 2 T and # P+ with (hi, #) >> 0,

,((L(2) (R) L(#))z++) q-"L(2) (R) L(#).

Proof. Let u L(2)x+, and v L(#)u+,, with ’ + ". We shall show that.
i(u (R) v) belongs to q-nL(2) (R) L(#). When I’1 and I"1 are less than l, it is already
proven (Lemma 4.3.2). Hence we may assume either ’ 0, " or ’ , " 0.

(a) ’ 0 and " . We may assume u ux. Write v f/")v,, with eiVm O.
Here the summation runs over m such that (hi, 2 + + mai) > m > 0. Then ,v
fim-1)Vm q-nL(it) by (4.5.2), and hence Vm q-"L(it) for rn > 1. Since

O(u (R) v) , O(u (R) f<m)Vm),
m>l

this is contained in the A-module M generated by fit"’)u (R) fitm")V with rn > 1 by
Theorem 1. Then the result follows from M c q-"L(2) (R) L(it)

(b) ’ and " 0. The proof is similar to the case (a) by using (4.5.1), instead
of (4.5.2). Q.E.D.

Now, we shall show another lemma.

LEMMA 4.5.2. If 2 P+ satisfies (hi, 2) >> 0 for any j, then

iL(2)+ ql-nL(/],).

Proof. It is enough to show that

(4.5.3) i(fi,"" fi, u,) q-nL(2).

Set 20 Ah_ and It 2 20. Then by Corollary 4.3.5 we have

(4.5.4) w j,’" "J,(Uzo (R) u) v (R) v’ mod qL(2o) (R) L(it)

with ’, " Q_(l- 1)\ {0} and v L(2o)xo+,, v’ L(it),+,,. By Lemma 4.3.2 we
have i(v (R) v’) L(2o) (R) L(it). Hence, iw belongs to ,(qL(2o) (R) L(it)) + L(2o) (R)
L(it). Then the preceding lemma implies

(4.5.5) iw qX-n(L(2o) (R) L(it))+u++,,.
Applying W(2o, It) to (4.5.5), we obtain by (C/_1.9)

(4.5.6) ifio"" fi,U,o+u q-nL(2o + It). Q.E.D.

Take 2 e P/ such that (hi, 2)>> 0 for any j. Then Lemma 4.4.1 implies that
i(Pu) =- (,iP)u mod qL(2) for P L(), and hence (iP)u q-"L(2) by
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Corollary 4.4.3 and the preceding lemma. Thus we obtain by Corollary 4.4.5

(4.5.7) iL() = ql-nL(oz).

Now it remains to prove

(4.5.8) hL(2)z+ c qX-"L(2) for 2 e T.

For w j,’"j,uz, we shall show iw q-"L(2). If w qL(2), then we have
,w qa-"L(2). When w qL(2), take # e P+ with (hi, #) >> 0 for anyj. Then we have

(4.5.9) f, fi,(uz (R) uu) =- w (R) u, mod qL(2) (R) L(#)

by Corollary 4.3.7. On the other hand, Lemma 4.5.2 implies hf,-..fhu+,
q-"L(2 + #), and hence ,, j,(u (R) u,) q-"L(2) (R) L(#) by (Ct_1.8). This im-
plies, along with Lemma 4.5.1 and (4.5.9), that

(w (R) u,) e q-"L(2) (R) L(#) + q(L(2) (R) L(/.t)) c qX-"L(2) (R) L(#).

Now write w f/(m)w with eWm 0. Then hw f/m-)Wm e q-"L(2) implies
Wm q-"L(2) for m > 0. Letting M be the A-module generated f’)w (R) f")uu
(m > 0), we have

.i(w (R) u,) i(fi’)Wm (R) u,) =- fi"-X)w,,, (R) uu .iw (R) u, mod qM.
m>O m>O

Since qM ql-"L(2) (R) L(#), we obtain hw (R) uu e q-"L(2) (R) L(#). By applying
S(2, #), we obtain ,w e q-"L(2).

In both cases we have w e q-"L(2). Therefore, we obtain (4.5.8). Thus the
induction proceeds, and we can conclude ,L() = L() and hL(2)+ c L(2) for

Q_(l) and 2 P+. Thus (C.I) and (C.2) are established.
Then the following statements are similarly proven as in Lemmas 4.3.1 and 4.3.2.

(4.5.10) Foru f")un L(2)+ such that

2 ff P+, e Q_(l),u e V(2)++,,,,eiu, 0

and u, 0 except (h, 2 + + nat) > n,

we have u, e L(2).

(4.5.11) For ’, " e Q_ (l) and 2,/ e P+,

,,(L(2)z+, (R) L(,u),+,,) c L(2) (R) L(,u).
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4.6. Proof of (C.7) and (C.12). We have already shown (C.I), (C.2), (C/.3),
(C/.6), and (C.8). We shall now prove (C.7) and (Ct.12).
The following lemma can be proven as in Lemma 4.3.2.

LEMMA 4.6.1 Let 2, # P+, Q_ (l). Then for any u L(2)z+,,

.i(u (R) u,) .iu (R) u, modulo qL(2) (R) L(/O.

Proof. Write u ftnu, as in (4.5.10). Then all u, belong to L(2) by
(4.5.10). Hence, we may assume u ftw with eiw 0, and w L(2)z+,+.,. Let
M be the A-module generated by ftVw (R) ftV’u,. Then by Theorem 1 we have
,i(ftw (R) u,) f/t-lw (R) u, mod qM. Then the lemma follows from M c L(2) (R)
L(#). Q.E.D.

Let w =J,...j,. 1. Then, taking 2 A,,_,, # P/ with (hi, #5 >> 0 for any j,
Corollary 4.3.4 implies

(4.6.1) fi, fi,(ux (R) u,) =- v (R) w mod qL(2) (R) L(#)

with v L(2)x+,, and w L(#),+,,, and ’, " Q_(l 1). Moreover, v and w belong
to B(2) and B(t)w {0} at q 0. Hence, we obtain

(4.6.2) ’3"’f,(ux (R) uu) i(v (R) w) v (R) w or v (R) ,w mod qL(2) (R) L(#).

Therefore, applying W(2, #), we obtain by (C_1.7), (C/_.9) and (C_.10)

(4.6.3)

Hence, by Corollary 4.4.5 and Lemma 4.4.1 we obtain

(4.6.4)

This proves ,iB() c B() {0}, which is a half ,of (C.,7).
Now we shall show (C/.12). Let 2 e P/ and e =f/, ...f/,. and w =J, ""3,uz

Puz mod qL(2). Assume that w does not belong to qL(2). Then, for # e P/ with

<hi,#) >> 0 for any j, Corollary 4.3.7 implies ,..’f,(uz (R)u)= w(R)u, mod
qL(2) (R) L(#).
By Lemma 4.4.1 and (C.2) we have

,(f,...f,uz+u) =- g.,(Puz+u) (,P)uz+u mod qL(2 + #).

Hence, applying 0(2, ,u), we have

(f, ...f,(uz (R) u,)) (,P)(ux (R) u,) mod qL() (R) L(#).
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Thus, we obtain by Lemma 4.6.1

iw (R) u =- i(w (R) u) =- i(f, ...f,(uz (R) u)) =- (iP)(uz (R) u) mod qL(2) (R) L(#).

Hence, by applying S(2, #) we obtain iw (iP)ux mod qL(2). Thus we proved
(C1.12). Then ,,B(2)x+ c B(2)t {0} follows from ,,B() c B()u {0} because
we already know xB()\{0} B(2) by Corollary 4.4.4. This completes the proof
of (C.7).

4.7. Partial proof of(C.9). Let us denote by L()* and L(2)* the dual lattice of
L() and L() with respect to the inner product introduced in Proposition 3.4.4
and 2.5, respectively. This means

(4.7.1) L()* {P e U-(g); (P, L()) c A} and

L(2)* {u V(2); (u, L(2)) A}.

We shall see later (Propositions 5.1.1. and 5.1.2) that they coincide with L() and
L(2). The following lemma shows the relation of the inner products on U-(g) and
V().

LEMMA 4.7.1. For na Q_ and P, Q, U; (g), there exists a polynomial
f(x, x) in x (xi)i with coefficients in Q(q) such that

(4.7.2) (Pux, Qux) f(x) with xi q <h,,X>

(4.7.3) f(0) (1-Ii (1- q/2 )-,,) (p, Q).

Proof. We shall prove by the induction on I1. If ll 0, it is obvious. When

I1 > 0, we may assume Q =fiR with R Uq-(9)+,.

(Pux, Qux) qT, (tieiPuz, Ruz)

q7,X(tie;’(P)-e;(P) )u, Ruz
qi qT,

(1 q)-’(e(P)uz, Ruz) q<h"z++’>(1 q)-(e;’(P)uz, Ruz).

Hence (4.7.2) follows. The last equality follows from (P, Q) (e;P, Q). Q.E.D.

If2 e P+ satisfies (hi, 2) >> O for any i, then zt;t(L(oo)’) L(2)’ for

Proof. Since z(L())= L(2) and U-() __% V(2)+, this follows immediately
from the preceding lemma.
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PROPOSITION 4.7.3.
any i, then we have

Let 2 P+ and Q_ (l). If l . P+ satisfies (hi) >> 0 for

(4.7.4) W(2, #)((L(2)(R) L(#))z+u+) L(2 + #)z++.

Proof. We may assume rcz+u(L(c)’ L(2 + #)+u+andnu(L()’)= L(#)u*+.
By Corollary 4.3.6 we have

(4.7.5) (L(2) (R) L(,u)),+u+ J(L(2)(R) L(,u))z+u++,, + u; (R) L(#)u+.

On the other hand, for u L(2 + #)’+u+ we have, by (2.5.6) and (C_1.10),

(4.7.6) (*(2, #) (u), j(L(2) (R) L(#));+u+,:+,)

Let us write u Pux+u with P L()’. Then, writing - nii, we have

(4.7.7) A_(P)=_([I t’)(R)Pmod(fU(fl))(R)U(g).
Hence,

Therefore, we obtain

(0(2, #)(u), u (R) L(#)u+)c (II q’<h"’>)(Puu, L(#)u+)cA"
Thus, we obtain

(0(2, #)(u), (L(2)(R) L(,u)),+u+) A for any u

This implies

(L(2 + ,u)’+,+,:, (,,1,, #)(L(2)(R) L(,u)),+u+.)

(0(2, #)L(2 + ,u)’+u+, (L(2)(R) L(,u)),+u+,) c A,
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and hence W(2, #)((L(2) (R) L(#))x+u+) c L(2 + #)x+u+. The other inclusion follows
from L(2 + #)+u+ W(2, p)O(2, #)L(2 + #)x+u+ and Corollary 4.3.4. Q.E.D.

4.8. Proof of (C/.13) and (C.14). First, let us prove (C.14). Let b e B(o) with
b 4: 0. Set b j,...j,. 1. Then, for 2 i-1 and/ with (hi, #) >> 0 for any j,

(4.8.1) fi, ...,(ux (R) uu) =- v (R) w mod qL(2) (R) L(#)

with ’, " e Q_ (l 1), v e L(2),, w e L(#),,. Moreover, v mod qL(2) e B(2) and
w mod qL(#) e B(#)t_.JO. We have by (4.5.11)

,j, ...j,(uz (R) uz) =- ,(v (R) w) mod qL(2) (R) L(#),

and hence ’i,...,uz+ ,i(W(2,/)(v (R) w)) mod qL(2 + ) by (C_1.10). Since
z+u(ib) ifi,...fi, uz+u : 0 by Lemma 4.4.1 and Corollary 4.4.5, ,i(v (R) w) does
not belong to qL(2)(R) L(#). Thus, we obtain w mod qL(lO e B(#). Therefore, we
have by Lemma 4.3.2 (iii)

(4.8.2) j...j,(u (R) uu) _= Jgh(J,...j,(ux (R) u,)) mod qL(2)(R) L(#).

Then Proposition 4.7.3 implies

fi,...fi, u;t+u =- f.ifi,...fi, ux+u mod qL(2 + ).

Then Lemma 4.4.1 implies

z+u(b) z+u(f,b).

Thus b =j’b follows from Corollary 4.4.5. This proves (Ct.14).
Let us prove (Ct.13). Let b e B(2)z+ such that ,b 0. Then there exist/ e B()

such that b ,z(/)_. T,hen (C/.12) implies z(,/)= Fib 4: O. Hence ,/ -0. Now
(C1.14) implies b fhb. Finally, we have

fg,b =3z(g,/)= x(jg,)= x(/)= b by (C/.6).

Now assume that be B(2)++,, satisfies jb 0. Let /e B(oe)+,, such that
x(/) b. Then (/) =jb 0, and hence (C.12) implies

This completes the proof of (Ct.13).

4.9. Proof of (C.4) and (Ct.5). The proof of (C.4) being similar, we only give the
proof of (C.5). Assuming nz)+ab 0, let us show a 0. For any we have_. ab.ib O.

b
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Since ,b : 0 implies b =J]’ib by (C/.7) and (C.13), {,ib; b e B(2)+, ,b 4: 0} is
linearly independent by (C_1.5). Hence ab 0 if ’b - 0. Since there exists such
that b 4:0 for any b, all ab vanish.

4.10. End of proof. We have proven C except (C.9), (Ct.10), and (C/.11). We shall
show the remaining statements. First, we shall prove a lemma.

LEMUA 4.10.1. For Q_(/)\{0} and 2 P+, we have

(4.0.) {u (L()/qL()); iu 0 for any i} O,

(4.10.2) {u (L(2ffqL(2))x+; iu 0 for any i} O,

(4.10.3) {u U (9)e; iu L(9) for any i} L(c), and

(4.10.4) {u 6 V(2)x+; iu 6 L(2) for any i} L(2)x+e.

Proof. The proofbeing similar, we shall prove only (4.10.2) and (4.10.4). Assume
that u e(L(2)/qL(2)) satisfies ,u 0 for any i. Write u bBt)+:abb. Then
abb 0. Hence ab 0 ifb 0 for some i. Therefore, all ab vanish.
Let us prove (4.10.4). Let u V(2)+ and assumeu L(2)for any i. Ifu e q-"L(2)

for n > 0, then i(q"u) qL(2) for any i. Hence (4.10.1) implies u e ql-"L(2). This
shows u L(2) by the induction on n. Q.E.D.

Now we shall prove (Ct.9).

COROLLARY 4.10.2. For Q_(/), 2, # 6 P/,

W(2, ,u)((L(2)(R) L(,u))z+u+) c L(2 + ,u).

Proof. We may assume I1 > 2. By (4.5.11) we have ,i((L(2) (R) L(#))a+u+) c
L(2) (R) L(#). Hence

’,(2, ,u)((L(2)(R) L(,u))z+u+)

= W(2, #)((L(2)(R) L(,u))z+.++,,) L(2 + ,u).

Then the preceding lemma implies the desired result. Q.E.D.

Let us prove (C.I 1). Since we know already B(2) B()\{0}, it remains to
prove that, for b, b’ B(), t(b) x(b’) 0 implies b b’. There exists such
that ,(b) 0. Hence, by (C.12), t(,b)= (ib’)4: 0. Thus, b b’ 4:0 by
(C.7) and (C/_t.11). Then (C.14) implies b b’.

Finally, we shall prove (Ct.10). First, note that, C being all proven except (Ct.10),
Lemma 4.3.2 is still valid with , ’ Q_ (1). In particular we have that

(4.10.5) for 6 Q_(1), ,,((B(2)(R) B(IU))+u+ B(2)(R) B(p) {0}, and
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(4.10.6) if b e (B(2) (R) B(#))+u+ and ,b : 0, then b fb.

Now let b e (B(2)(R) B(/))x+u+. If there is such that~ Fib B(2)(R) B(#), then by
(4.10.5), (4.10.6), and (Cl_l.10), W(2, #)(b)= W(2, #)(f’,b)=fq(2,/)(,,b) belongs
to B(2 + #)u {0}. If ’ib 0 for any i, then ’iW(2,/)(b) 0 for any i. Hence (4.10.2)
implies W(2, #)(b) 0.
Thus we have proven (C.I)-(CI.14), and the induction proceeds. This completes

the proof of the Theorems 2, 4, and 5.

PART II. MELTING THE CRYSTAL BASE

5. Polarization

5.1 Inner product. In this section we shall investigate the properties of crystal
bases with respect to the inner products on V(2) and Uq- (g). (Cf. 2.5 and Proposition
3.4.4.)

PROPOSITION 5.1.1. Let 2 P+.
(i) (L(2), L(2)) = A.

Let )o be the Q-valued inner product on L(2)/qL(2) induced by )1 q=o on L(2).
(ii) (.,u, V)o (u, fv) for u, v L(2)/qL(2).

(iii) B(2) is an orthonormal base with respect to )o. In particular, )o is positive
definite.

(iv) L(2) {u V(2); (u, L(2)) c A}.

Proof. (i) We shall prove (L(2)+, L(2)+)c A by the induction on I1. If
I1 0, then this is trivial. Assume I1 > 0. Since L(2)x+ 3L(2)x++,,, it is
enough to show

(5.1.1) (fiu, v) =- (u, iv) mod qA

for u e L(2)x++,, and v e L(2)+.

We may assume u "-f/(n)uo and v =f/m)vo with eiuo eivo O, (hi, 2 + + (n +
1)ai) > n and (hi, 2 + + moi) >/m.
Then, we have

1
(f/(n+l)uo,f/(m)vo) [m]i

((q;-’ tiei)mfi(n+l)Uo, VO).

Since (q?ltiei)m rl-mrlym(m-X)t.mp.m qi te?, we have, setting

(f/(n+l)uo,f/(m)yo) -m2 (m) n+X)
qi (ti ei fi U0, V0)

On+l,mqym2(tI(hi’ #+ m(n + 1)zi)li uO’ VO)
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--(n+l’mqm2+m(h"#+mq)I(hi’/ +2ml(u’m v)

--tn+l’mq’mt((h"u)+m)I(hi’ #)+2mlm (u’ v)"

Since (Uo, Vo) A by the hypothesis of induction and q((h"l)+m)[(h"l)m+2m]i belongs
to 1 + qA (cf. (1.1.26)), we obtain

(f/(n+l)u0,f/(m)/)0) 6n+l,m(U0, V0) mod qA.

Similar arguments show that

(f/(n)u0,f/(m-1)/)0) 6n+l,m(U0, /)0) mod qA.

Hence, we obtain (5.1.1.). Thus, we obtain (i) and (ii).
Let us prove (iii). We shall show (b, b’)o 6b,b, for b, b’ B(A)z+ by the induction

on I1. Ifll 0, this is obvious, and ifll > 0, taking such that ib e B(2), we have

(b, b’)o (.b, b’)o (Fib, ib’)o 6,b,,b,

Part (iv) follows easily from (i) and (iii).

Similar arguments show the following proposition.

PROPOSITION 5.1.2.

Q.E.D.

(i) (L(oo), L(oo)) A.

Let )o denote the Q-valued inner product on L( )/qL(o induced by )1 =o on
L(oo).
(ii) (’u, V)o (u, fiv)o for u, v L(o)/qL().
(iii) B() is an orthonormal base of( )o. In particular, )o is positive definite.
(iv) B(oo) {e U-(); (P, L(oo)) c A}.
Now the following is the consequence of the positivity of )o.

PROPOSITION 5.1.3. For 2 P/, we have

(5.1.4) L(oo) {u 6 U-(); (u, u) A},

L(2) {u e V(2); (u, u)e A}.

Proof. The proof of (5.1.4) being similar, we shall only prove (5.1.5). For
u V(2), with (u, u)s A let us take the smallest n > 0 such that u q-nL(;t). If
n > O, (qnu, qnu) qA. Hence, v q"u mod qL(2) satisfies (v, V)o 0. Then the posi-
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tive definiteness of )o implies v 0, or equivalently u ql-"L(2). This is a
contradiction. Therefore u belongs to L(2). Q.E.D.

5.2. The ,-operator.
its consequences.

PROPOSITION 5.2.1.

(5.2.1)

In this section we shall prove the following proposition and

For P, Q U (g) we have

(P*, Q*) (P, Q).

Here * is the antiautomorphism defined in 1.3.
In order to prove this we shall prepare several lemmas.

LEMMA 5.2.2. (i) For any i,j we have

(5.2.2) (Ad(t,)e’) o ej ej o Ad(t,)e;’.

(ii) We have

(5.2.3) (Pfi, Q) (P, Ad(ti)e Q) for any P, Q e U().

Proof. Part (i) follows immediately from Proposition 3.4.5.
Let us prove (ii). When P 1, (f/,f/) (1, Ad(ti)e’fi) implies (5.2.3) for any Q.

Hence it is enough to show that, if P satisfies (5.2.3) for any Q, then we have

(5.2.4) (fPf, Q) (fP, Ad(t,)e’ Q).

By using (5.2.2) we have

(LPA, O) (PA, ejQ)

(P, Ad(t,)e’ej Q)

(P, ej(Ad(ti)e;’)Q)

(fjP, Ad(ti)e’ Q). Q.E.D.

LEMMA 5.2.3. We have

(5.2.5) (e(P*))* Ad(ti)e;’P for any P e U-().

Proof. We have

[e, P]
(tie’P t: eP)

qi qT,

((Adti)e’P)ti ((AdtT, )eP)t[
qi-
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Hence taking ,, we obtain

[P*, ei]
tr, l((Adt,)e’P) t,((Adt?1)eP)*

Thus we obtain the desired result. Q.E.D.

Now we are ready to prove Proposition 5.2.1. Since (5.2.1) is true for P 1, it is
enough to prove that (5.2.1)implies

(5.2.6) ((Pf/)*, Q*) (Pf/, Q).

We have, by (5.2.3) and (5.2.5),

((Pf/)*, Q*) (f/P*, Q*) (P*, e;Q*)

(P, (e; Q*)*) (P, Ad(t,)e;’ Q)

(Pf, Q).

This completes the proof of Proposition 5.2.1.

Then Proposition 5.2.1 and Proposition 5.1.3 immediately imply the following
result.

PROPOSITION 5.2.4. L()* L().

Here is the antiautomorphism of Uq-(fl).

[}6. Global crystal bases

6.1. Z-forms. Let us denote by U(g) the sub-7/[q, q-1]-algebra of Uq(g) gen-
erated by f"), e}"), and qh, {q,,} (h e P*). Let U- (g) denote the sub-7/[q, q-1]-algebra
of Uq(g) generated by f"). Then U(g) and U-(g) are stable by the automorphisms
* and By the commutation relation (3.1.2)

(6.1.1) U (g) is stable by e;.

Thus, Proposition 3.2.1 implies that

(6.1.2)
if f")u, belongs to U- () and if eu. O, then all u, belong to U- (g), and

(6.1.3) U-(g) is stable by , and j.

We set

(6.1.4)
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Then (6.1.2) implies that

(6.1.5) (f[’U (9)) fq’)U (9).
k>n

In fact, ft")u,(eu, 0) belongs to f/" U- (g) ifand only if Uk 0 for k < n. Let us set

(6.1.6) Lz() L() c U- (g).

Then, by (6.1.3), Lt() is stable by J and
We have therefore

(6.1.7) B(v) Lt()/qLz() L()/qL().

Let At be the sub-Z-algebra of Q(q) generated by q and (1 q2n)-X(n 1). Let Kt
be the subalgebra generated by A t and q-1. Then we have

(6.1.8) A t A c Kt.

We can easily see

(6.1.9) (U- (), U- (.q)) = Kt,

and hence

(6.1.10) (Lt(), Lt())

Since f(0) is an integer for any f A t, we obtain

(6.1.11) )o is Z-valued on Lt()/qLt(ov ).

PROPOSITION 6.1.1. (i) Lt()/qLt() is a free Z-module with B() as a base.
(ii) B() w (-B()) {u Lt()/qLt(); (u, U)o 1}.

Proof. (i) If abb belongs to Lt(o)/qLt(), then, for any b’, ( abb, b’)o ab,
belongs to 7/.

(ii) If u abb Lt()/qLt() satisfies (u, U)o 1, then ab
E 1.

Since a are integers, there exists bo such that abo 1 and ab 0 for b # bo.
Q.E.D.

COROLLARY 6.1.2. Lt()* Lt() and B()* B()w (-B()). Here, * is
the antiautomorphism of Uq(g) defined in 1.3.

This follows from Propositions 6.1.1 and 5.2.4.
We conjecture that B()* B(). This is shown by Lusztig ILl], [L2], [L3] in

the A,, D,, E, case.
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We set, for 2 P+,

(6.1.12) V(2) U- ()u.

Then Vz(2) is a U()-module by (1.1.23). Note that Vz(2) is not stable by ’i and j
in general. We set also

(6.1.13) (y? tV
k>n

(6.1.14) L :(2) V(2) L(2).

Let be the automorphism of V(2) defined by

(6.1.15) (Puz)- Pux for P U- ().

This is well defined by (1.2.6).
Then V(2) and (f" V(2)) are stable by

Since L(2) rtz(L(o)), we obtain

(6.1.16) n(Lz(o)) c Lz(2),

and hence

(6.1.17) B() Lz(2)/qLz(2) = L(2)/qL(2).

As seen later (or proven similarly as in Proposition 6.1.1), Le(2)/qLg(2) is a free
Z-module with B(2) as a base.

PROPOSITION 6.1.3. Let M be an integrable Uq(t)-module and let M be a

sub-U()-module ofM. Let 2 P+ and I. Assume that n -(hi, 2) > 0. Then

(6.1.18) (M)a fitk)(M)x+k,,.
k>n

This follows immediately from the following lemma.

LEMMA 6.1.4. When n > l’ we have u k>n(-1)k-n[kk- nl]i ftk)e’kIu fr any

uM.
Proof. We may assume u ft")v with v Ker ei M/m,, with m > n. Then we

have
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(k-m)
(_ 1)k-,, f/tk

k=n

+ (2m n)l fm_k)v
k J

--1 k+m-n rn
(_l)k-. f/(m)/).

k=n n k ki

509

Hence this lemma follows from the identity

(6.1.19)

kO (_ 1)k k+n-1 k+m+n +
=1

k rn +
for m > O, n > 1.

Proofof(6.1.19). The following formula is known (e.g., see [A], p. 37, (3.3.11)).

[al + a2 + bx + b2 + k]!
(6.1.20) k0 [k]![aa k]!Ea2 k]!Eb + k]!Eb2 + k]!

[al + a2 + bl + b2]![a + a2 + ba]![aa + a2 + b2]!
[al]![a2]![a + bl]![a2 + b]![al + b2] [a2 + b2]!

Here aj, bj > 0, and we understand 1/[n]! 0 for n < 0. If we set a2 m, bl b2 n,
and x q"’, it reduces to

(6.1.21)
k=0

+ qm+2nX qm+2nx{qmnX}
(See 1.1 for the notation.)

(..9t.

(6.) to1.2 1 reduces

Q.E.D.

7. Proof of Theorems 6 and 7

7.1. Triviality of vector bundles over px. We shall give some preparatory lemmas
for the proof ofTheorems 6 and 7. Remember that A is the ring of rational functions
regular at q 0. Hence, A is the ring of rational functions regular at q . Here

is the automorphism q q-.

LEMMA 7.1.1. Let V be a finite-dimensional vector space over Q(q), M a sub-
7/[q, q-X ]-module of V, Lo a free sub-A-module of V, and Loo a free sub-.-module
of V such that V - Q(q)(R)a Lo Q(q)(R)z Loo.
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(i) Assume that M c Lo cL (M Lo)/(M c qLo) is an isomorphism. Then

M Lo Y [q] (R)z (M c Lo L),

M Lo - 7/[q-x ] (R)zz (M Lo L),

M Z[q, q-X ] (R) (M c Lo L),

M c Lo L __% M L/M c q-1Lo and

( (R) M) Lo Lo - (R) (M c Lo/M c qLo)

(Q(q) (R)zzt,,q-, M) c Lo/(Q(q (R)t,-’ M) qLo.

(ii) Let E be a Z-module and qg E - M c Lo c Lo a homomorphism. Assume that

(a) M 7/Eq, q-1]qg(E) and
(b) E Lo/qLo and E Loo/q-IL are injective.

Then, E M Lo L M c Lo/M qLo are isomorphisms.

Proof. Note that Lo is finitely generated over A.
(i) Set E M c Lo Lo. Then E Lo/qLo implies that E is a torsion free 7/-

module. Moreover, A (R)z E Lo and Q(q) (R)z E V.
By the assumption we have M Lo c E + M qLo. Hence, we obtain easily by
the induction on n > 0

(7.1.1) M c Lo 7/qkE + M c q"+aLo.
k=O

Now we shall show

(7.1.2) M Lo q"L 7/qkE.
k=O

By (7.1.1), we have

McLcq"L =(k=O 7/qkE+Mcq"+iL) q"L
7/qkE + q"(M qLo c L).

k=O

Since M c qLo cL 0, we obtain (7.1.2). This implies the first isomorphism. Then
the third follows from M 7/[q, q-X ] (R)tq (M Lo). By (7.1.2) we have M Lo
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morphism and M Loo/M q-aLoo - E gives the fourth isomorphism. The last
isomorphism follows from (Q (R)z M) c Lo L Q (R) (M Lo c Log) g Q (R)z E
and (Q(q)(R)tq,q-’lM)Lo=S-aML=S-a(McL)=A(R)gE. Here S=
{f(q) 7/[q]; f(0) 0}.
(ii) Note that E is torsion free. Condition (b) implies Q(q)(R) E V and
Q(q) (R) E c Lo A (R) E. Hence (a) implies M - 7/[q, q-a ] (R) E. Therefore,
M c Lo c 7/[q, q-a] (R) E c A (R) E (7/[q, q-l] A) (R) E 7/[q] (R)z E, which
implies M Lo 7/[q] (R) E. Similarly, M c Log - A (R) E. Therefore, we have
M c Lo c Log (7/[q, q-a ] c A c A) (R) E E and M c Lo/M c qLo E.

Q.E.D.

LEMMA 7.1.2. Let V, M, Lo, and Log be as in the general assumption ofthe preceding
lemma. Let N be a sub-Y[q, q-a ]-module of M. Assume the following conditions.

(i) N c Lo c Log -% N c Lo/N c qLo.
(ii) There exist a Z-module F and a homomorphism q" F M c (Lo + N) (Log + N)

such that

(i) M 7/[q, q-a]q(F) + N and
(ii) two homomorphisms induced by qg, F (Lo + Q (R) N)/(qLo + Q (R) N) and

F --. (L + Q (R) N)/(q-aLoo + Q (R) N) are injective.
Then we have

(i) M c Lo c Lo - M c Lo/M c qLo is an isomorphism.
(ii) 0 --, N c LoiN c qNo M c Lo/M c qLo (Lo + Q (R) N)/(qLo / (R) N) is

exact and 9(M c Lo/M c qLo) qt(F).

Proof. Replacing F with a finitely generated sub-Z-module F’ and M with
Z[q, q-a ] q(F’) + N, we may assume from the beginning that F is finitely generated.
Since F is torsion free, F is a free A-module. Since N N c Lo + N c Lo by the
preceding lemma, we have

Mc(Lo + N)(Lo + N)= N + MLo(L + N)

N + McLo(Loo + NLo)

N + MLoLoo.

Hence, by changing q we may assume from the beginning that q(F) c M c Lo c Loo.
In the commutative diagram

0 NLoLo

0 Q(R)(NrLocLoo)

F O)(N LocLoo)------ F , 0

Lo/qLo (Lo + Q (R) N)/(qLo + Q (R) N)
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the rows are exact by the preceding lemma. Then the injectivity of fl and q
shows that is injective. Similarly F (N Lo c Loo) Loo/q-lLoo is injective.
Hence, applying Lemma 7.1.1 (ii) with E F @ (N Lo c Lo), we obtain (i) and
F O) (N Lo Lo) -% M Lo Lo -% M Lo/M qLo. Q.E.D.

We remark that Lemma 7.1.1 and Lemma 7.1.2 can be translated by the language
ofvector bundles on Pl as follows. Let X be the Y-scheme P and Uo Spec 77[q-!
X and Uoo Spec 7/[q- ] c X so that X Uo u U. Let io: Spec(77)--. X be the
section given by q 0. Let - be a torsion free coherent Cx-module given by
F(Uo; -) Lo M, F(Uoo; -) Loo M. Then M Lo c Loo F(X; ) and
MLo/MqLo - F(Spec(77), i’-). Therefore, for example Lemma 7.1.1 (i)is trans-
lated to the statement that F(X; -) __% F(Spec 77, i’-)implies

7.2. Induction hypothesis.
ments for > 0. (Cf. (4.2.2).)

Let us consider the following collection (G) of state-

(G/.1) For any Q_(1),

U;(9) L_() L_()- L.()/qL,()

is an isomorphism.
For any e Q_(l), and 2 e P/,

V(2)z/ c L(2) c L(2)- - L(2)z+/qL(2)z+

is an isomorphism.

Let us denote by b--, G(b) and b--- G(b) the inverse homomorphisms of these
isomorphisms.

(G.3) For Q_(I), n > O, and b fi"(n(oo)+,,),

G(b) fiU-(I).

7.3. Consequences of GI-. We shall prove G by the induction on I. Since G is
obvious for 0, let us assume > 0 and GI_1. Then we shall prove G.
LEMMA 7.3.1. For Q_(1- 1) we have

(7.3.1) U(fl) cLz(oo) ( 7/[q]G(b),
b B(oo)

(7.3.2) U)-() @) Z[q, q-]G(b),
b B(oo)

(7.3.3) V(2)z+ L(2) ( 77[q]Gz(b), and
b B(A)a+

(7.3.4) D(2)z+ @ YEq, q-’]Gz(b).
b B();t+
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Proof. They follow easily from Lemma 7.1.1, (G_I.1), and (G_1.2).

The following lemma also follows easily from (G_x).

LEMMA 7.3.2. For Q_(l 1), b Lz()/qLz(), and 2 P+, G(b)uz
G(zb).

LEMMA 7.3.4. For Q_(l 1) and b Lz()/qL(), we have

(7.3.5) G(b) G(b).

Proof. Set Q (G(b)- G(b))/(q- q-). Then Q belongs to U(9)cqL()c
L()-, and hence it vanishes. Q.E.D.

7.4. Triviality of f"V(2) for n > 1.
proposition.

The first step is to prove the following

PROPOSITION 7.4.1. For Q_(/), 2 P/, n > 1, and I,

(7.4.1) (f"V(2))L c L(2) c L(2)- _% (f"V(2))L c L(2)/q((f{’V(2))L L(2)).

Proof. We shall show this by the descending induction on n. Remark that
(f"V(2))+ 0 and B(2)+ JnB(2) b for n > I. Hence, we may assume

(7.4.2)
(fn+x V(2))+ c L(2) r L(2)- _% (fn+, V(2))f+ c L()/((fn+l V(2))+ c qL(2))

b B(,);+cfi B(,)

When n + (hi, 2 + ) < O,
Proposition 7.1.3 implies

and

v(2)L .

Therefore, we can reduce to the case n (hi, 2 + ). Hence we may assume from
the beginning

(7.4.3) n + (hi, 2 + > > O.

By the definition we have

(finV())L fi(n)(Vz(/),++ni) + (f/n+l V(,))L"
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Since n > 1, (G/_I) gives

If ,b - 0, then G(b) e (fi U;(g))7/by (G/_1.3), and hence

(f"V(2))+ ZEq, q- ]f(")G(b)uz + (f"+x

Here, S {b B(o)+,,; x(b) # 0, g,b 0}
_

{b B(2)++,,; .,b 0}. Now let
us prove (7.4.1) by using Lemma 7.1.2 with V V(2)+, M (f"V(2))+, N
(f"+ V(2))+, Lo L(2)+, Lo L(2)+ and F @bS 7/fyG(b)uz. We have (see
(6.1.2))

f()G(b) =- f()PG(b) mod (f+W())z

where Pi is the projector to Ker e; with respect to the decomposition U-(g)=
Ker e; f/U-(I). Moreover, f"b =_ f(")PiG(b) mod qL(oz). Hence we have

(7.4.4) M c L/M c qL = @ Zz(j"b),
bS

and fi(")G(b)uz M (Lo + N). Set H (Lo + Q (R) N)/(qLo + Q (R) N)
(Lo/qLo)/(Q (R) N Lo/Q (R) N qLo). By (7.4.2) and Lemma 7.1.1 (i), we have

( (R) N) n Lo/(Q (R) N) n qLo (..+ Qb.
b B(g)a+cfi 1B(L)

Hence H @bB(2)z+\f?+’B(2) b. Moreover, the image offi(n)G(b)u; to H is z(nb).
By (7.4.3), S is isomorphic to B(2)x+fi"B(2)\fi"+B(2) by b--x(fi"b). Hence,
F--, H is injective, and (7.4.1) follows from Lemma 7.4.2 and (7.4.4) because the
condition at q o can be verified by taking Q.E.D.

COROLLARY 7.4.2. For Q_(/), n > 1 and I, we have

(7.4.5) (f Uq-()) c L()c L()- _% (f"Uq-()) c L()/(f"U()) qL()

_% @) Zb.
fi’nB()B()

Proof. It is enough to remark that, for 2 with (hj, 2) >> 0 for any j, we have

(f,"v(2))L.

L(oo),: _% L(2)z+,:, L(oo)- _% L(2)]-+
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and

( Zb __% (_ 7/b.
b fi B(oo)B() b B(A)a+cfB(A)

Q.E.D.

7.5. End of proof.
isomorphism

For e Q_(l) and e I, let us denote by Gi the inverse of the

(7.5.1) (f U-(9))[ c L()c L()-
_

() Zb.
b fiB()cB(oo)

We have by Proposition 7.4.1

(7.5.2) (f"Uq- (g))f @ Z[q, q-X ] G,(b) for n > 1, where the direct sum

ranges over b e J"B() c B(o).

The next step is to prove the following lemma.

LEMMA 7.5.1. Let i, j e I, e Q_(l) and b e fiB(o) c fiB() c B(o). Then we
have Gi(b) Gj(b).

Proof. Let us write b j,’.’j" 1.
Let us take 2 e P+ with (hk, 2) 0 and (hv, 2) >> 0 for v e I\ {k}. Then

(7.5.3)

Now (hk, 2) 0 implies jux 0 and hence x(b) 0. Therefore, Gi(b)ux e qL(2).
Hence, Gi(b)ux belongs to (f V(2))+ c qL(2) c L(2)-, which is zero by Proposition
7.4.1. Thus, we obtain G(b)ux 0. Hence, (7.5.3) implies Gi(b) U-(g)fk. Similarly,
Gj(b)e U-(g)f. Therefore, Q G(b)- G(b) belongs to U-(g)fqLz()Lz(m)-.
Proposition 5.2.4 implies Q*e fkU-(g) qLz() L()-. Then it remains to
apply Corollary 7.4.2. Q.E.D.

Thus we can define G: L()/qL() U(g) L() L(c)- by G(b) G(b)
for b 3B() c B(). Then we have

(7.5.4) b =- G(b) mod qL(),

(7.5.5) (f"Uq-(g))[ @ 7/[q, q-X]G(b) for n > 1.
b fi B(o)B(oo)

Since U[ (fl) , (f/U())ff, we obtain

(7.5.6) U-()= 7/[q,q-]G(b).
b B(o)
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Then (G/.1) follows from Lemma 7.1.1 (ii), and (G/.3) follows from (7.5.5). Finally, let
us show (G.2).

LEMMA 7.5.2. Let Q_(1),b B()e, and2 P+.Ifgx(b) O, thenG(b)u O.

Proof. Take such that Fib :/: O. Then G(b)ux (fi V(2))+ c qL(2) L(2)- 0.
Q.E.D.

By this lemma we have

Vz(2)+= G(b)uz.
b B(o)
(b) - 0Then, (G.2) follows from Lemma 7.2.1 (ii), and {b B()e; gx(b) # 0} - B(2)x+.

Thus, the induction proceeds, and (Gt) is valid for any > 0. Now Theorems 6 and
7 follow from (G/), Lemma 7.2.1, Proposition 7.4.1, and Corollary 7.4.2.
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