
LECTURE 1: MOTIVATION

STEVEN SAM AND PETER TINGLEY

1. Towards quantum groups

Let us begin by discussing what quantum groups are, and why we might want to study them.
We will start with the related classical objects. So, let G be a complex simple Lie group and let g
be its Lie algebra (tangent space at the identity e ∈ G), with Lie bracket [, ].

A very fruitful branch of mathematics has been concerned with studying the representation
theory of G. This is often accomplished by studying the representation theory of g. Recall that
a representation of g is a map φ : g → End(V ) such that φ([x, y]) = φ(x)φ(y) − φ(y)φ(x), which
is actually the same thing as a representation of an associative algebra U(g), called the universal
enveloping algebra. Formally, U(g) is simply the associative algebra generated by g subject to the
relations [x, y] = xy − yx.

People sometimes say “The quantum group U~(g) is a deformation of U(g).” What might this
mean? One should have U~(g) ∼= U(g)[[~]] as a vector space, and the multiplication in U~(g) should
be the same as the multiplication in U(g) modulo ~. This is a bit naive though, since:

Theorem 1.1. Every deformation of U(g) is trivial, i.e., always isomorphic to U(g)[[~]] as an
algebra.

Proof. This follows from the fact that the Hochschild cohomology group H2(U(g), U(g)) is 0. �

A better idea is to deform U(g) as a Hopf algebra.

1.1. Hopf algebras. What is the Hopf algebra structure on U(g)? It is the structure we need to
define tensor product ⊗ and duality ∗ of representations.

Let’s first look at tensor product. We know that the action of G on V ⊗W is given by g(v⊗w) =
gv⊗ gw. This induces an action of g on V ⊗W , given by X(v⊗w) = Xv⊗w+ v⊗Xw for x ∈ g.
We think of this as a map

∆: U(g)→ U(g)⊗ U(g)

X 7→ X ⊗ 1 + 1⊗X (X ∈ g)

and extend multiplicatively. Call this comultiplication.
We must also consider the trivial representation V0 where X ∈ g acts by 0 and scalars act as

usual. This gives a map
ε : U(g)→ V0

that picks out the constant term. This is the counit.
Finally, we consider the fact that g has dual representations: X ∈ g acts on V ∗ by (Xf)(v) =

f(−Xv), so this gives a map
S : U(g)→ U(g)

X 7→ −X,
extended to all of U(g) as an algebra antiautomorphism. This gives the antipode.

Recall that (V ⊗ W )∗ = W ∗ ⊗ V ∗. One can show that this forces S to be a coalgebra-anti-
automorphism.

Date: February 11, 2011.

1



2 STEVEN SAM AND PETER TINGLEY

Definition 1.2. A Hopf algebra over a field F consists of the data (H,m, ι,∆, ε, S), where H is
a vector space,

m : H ⊗H → H

ι : F → H

∆: H → H ⊗H
ε : H → F

S : H → H

such that
(1) (H,m, i) is an algebra,
(2) (H,∆, ε) is a coalgebra,
(3) ∆ and ε are maps of algebras (using the tensor product algebra structure on H ⊗H),
(4) m, ι are maps of coalgebras,
(5) S is an algebra-antiautomorphism and a coalgebra-antiautomorphism, and
(6) the diagram

H ⊗H S⊗1

or 1⊗S
// H ⊗H

m
��

H

∆

OO

ι◦ε // U(g)
commutes.

Remark 1.3. The commutative diagram in the definition of a Hopf algebra can be explained
in various intrinsic ways. For instance, David Jordan pointed out the following: Consider the
convolution product ? on End(H), where the product ? is defined by φ?ψ(X) := m◦(φ⊗ψ)◦∆(X).
Then ι ◦ ε is the identity element in this convolution algebra. The above diagrams imply that the
antipode S is a two sided inverse for the identity map 1 ∈ End(H) (note: this is the identity map
of vector spaces, not the identity in the convolution algebra). In particular, this implies that any
bialgebra can have at most one antipode. Hence the antipode should not really be considered extra
data in a Hopf algebra, but rather existence of an antipode is a condition on a bialgebra.

1.2. Uniqueness of deformations. The following uniqueness statement is a strong motivation
for studying quantum groups: if something you are interested in can be deformed in a unique way,
you will almost certainly learn something interesting by studying that deformation. Here rigid
means there is a good notion of (both left and right) duals, and monoidal means there is a tensor
product.

Theorem 1.4 (see [2, Example 2.24]). There is a unique non-trivial deformation of the category
of finite-dimensional modules of U(g) as a rigid monoidal category.

Proof. One shows that possible deformations of a tensor category C are parameterized by H3(C),
and obstructions by H4(C), where H• is Davydov–Yetter cohomology. Here a tensor category is a
rigid monoidal category, with the extra assumptions that 1 is simple and every object has finite
length, which both hold of U(g)-rep. In the case of U(g)-rep, Davydov–Yetter cohomology agrees
with Lie algebra cohomology, so H3(U(g)-rep) = C and H4(U(g)-rep) = 0. See [2, 4]. �

In this seminar, we will more often discuss deformations of algebras than deformations of cat-
egories. Here the situation is somewhat less clear, although we do have the following result (the
original deformation is due to Drinfel’d and Jimbo, and the precise statement here can be found in
[4].

Theorem 1.5. There exists a non-trivial deformation of U(g) (as a Hopf algebra) whose category
of representations realizes the unique deformation of RepU(g).
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Unfortunately, this deformation of U(g) is not unique, in the sense that there are non-isomorphic
Hopf algebras U~(g) over C[[~]] which are deformations of U(g). However, there are some uniqueness
statements one can make:

Theorem 1.6 (see [4, Theorem 5]). The deformation of U(g) is unique up equivalences including
isomorphism, twistings (as quasi-Hopf algebras that preserves the fact that algebras in question are
Hopf algebras – this one is quite nontrivial), and change of parameter.

The interesting type of equivalence is twisting. The idea of this operation is simple: For any
invertible element J ∈ U(g) ⊗ U(g), one can try to make a new coproduct ∆J := J∆J−1. The
result is no longer a Hopf algebra, but if one is willing to work with quasi-Hopf algebras (i.e., Hopf
algebras which are not strictly associative, but rather have a non-trivial associator map), one can
modify the associator such that the result is a new quasi-Hopf algebra. In some cases the result
is in fact still a strict Hopf algebra. We will not discuss the notion of twisting in detail; for our
purposes, it is enough to know that there is a uniqueness statement, but that it involves a quite
non-trivial notion of equivalence.

There is also another way to get a uniqueness claim, which was in fact the first uniqueness result
of Drinfel’d. One introduces some extra structure, namely the Cartan involution Ei ↔ Fi of U(g).
The deformation is unique if it also deforms this new structure:

Theorem 1.7 ([3], see also [4, Theorem 3]). U~(g) is the unique (up to change of deformation
parameter ~) Hopf-algebra deformation of U(g) subject to the additional conditions

(1) Uh(g) contains a commutative sub-Hopf algebra C such that C/~C ' U(h), where U(h) =
〈Hi〉i∈I is the universal enveloping algebra of the Cartan subalgebra of g.

(2) C is invariant under an algebra involution θ which is also a coalgebra anti-automorphism,
and such that θ induces the Cartan involution Ei ↔ Fi on U(g) = U~(g)/~U~(g).

1.3. How deformations can look different. Having made some uniqueness statements, let us
consider how deformations of U(g) can look different. The idea is that of deformation quantization:
going back to the original group G, a deformation of G should be a deformation of the algebra of
functions on G. The deformed product ∗ will define a Poisson bracket by {f, g} := (f ∗ g− g ∗ f)/~
(mod ~). If two deformations lead to non-equivalent Poisson brackets, one would think they are
non-equivalent.

Transferring the notion of a Poisson bracket to U(g), one ends up with the notion of a co-Poisson
Hopf algebra. This is a Hopf algebra along with an additional map δ : U(g) → U(g) ⊗ U(g),
satisfying some compatibility (see [1]). Any deformation Uh(g) of U(g) gives rise to a co-Poisson
Hopf structure by

δ(X) :=
∆(X)−∆op(X)

~
.

It turns out that one can find deformations that give rise to non-isomorphic co-Poisson Hopf
structures on U(g). So, from this deformation quantization point of view, one would conclude that
the deformation is non-unique. However, all such deformations will have equivalent categories of
representations.

1.4. How is the deformed category of U(g)-rep different? As a category, it is not different
since algebra deformations of U(g) are trivial. But as a ⊗-category (really, as a rigid monoidal
category), it has changed.

To see this, look at V ⊗W and W⊗V . These are always isomorphic. Over U(g), the isomorphism
is just the flip map. So, we get an action of the symmetric group Sn on tensor product V1⊗· · ·⊗Vn of
representations of (g) by switching orders. Over U~(g), there is an isomorphism V ⊗W → σbr(W ⊗
V ), but it is not flip on the underlying vector spaces. However, one can choose a natural family of
such isomorphism such that the action of the braid group Brn on tensor products V1 ⊗ · · · ⊗ Vn of
representations of U)q(g). In fact, one just needs to check the braid relation. See Figure 1.
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U ⊗ V ⊗ W

W ⊗ V ⊗ U

U ⊗ V ⊗ W

W ⊗ V ⊗ U=

Figure 1. The braid relation. The crossing should be interpreted as an isomor-
phism from a tensor product of two representations to the tensor product in the
other order.

The appearance of the braid group suggests connections to knot theory. In fact, this leads to
the celebrated quantum group knot invariants, although there is still some work to do.

2. Towards crystals

2.1. Drinfeld–Jimbo quantum groups. Let A = (ai,j) be the Cartan matrix for g. For U(g),
have Chevalley generators Ei, Fi, and Hi with relations

[Hi, Ej ] = ai,jEj

[Hi, Fj ] = −ai,jFj
[Ei, Fj ] = δi,jHi

ad(Ei)1−ai,jEj = 0

ad(Fi)1−ai,jFj = 0.

The comultiplication ∆ is given by

Hi 7→ Hi ⊗ 1 + 1⊗Hi

Ei 7→ Ei ⊗ 1 + 1⊗ Ei
Fi 7→ Fi ⊗ 1 + 1⊗ Fi.

Let us not consider the antipode for now, as it is in fact determined by the other data.
Let D be the diagonal matrix such that DA is symmetric, and di = Di,i. Now U~(g) has the

same generators with deformed relations:

[Hi, Ej ] = ai,jEj

[Hi, Fj ] = −ai,jFj

[Ei, Fj ] = δi,j
exp(di~Hi)− exp(−di~Hi)

exp(di~)− exp(−di~)
1−ai,j∑
k=0

[
1− ai,j
k

]
exp(di~)

Eki EjE
1−ai,j−k
i = 0

1−ai,j∑
k=0

[
1− ai,j
k

]
exp(di~)

F ki FjF
1−ai,j−k
i = 0.

Here
[
n
k

]
q

is the q-binomial coefficient, which is just a polynomial in q.
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The comultiplication ∆ is given by

Hi 7→ Hi ⊗ 1 + 1⊗Hi

Ei 7→ Ei ⊗ exp(di~Hi) + 1⊗ Ei
Fi 7→ Fi ⊗ 1 + exp(−di~Hi)⊗ Fi.

Remark 2.1. This looks non-trivial as a deformation of an algebra structure, but as discussed
above it must be isomorphic to the trivial deformation. But, in most cases, no explicit isomorphism
is known! Stated another way, no one knows how to write down the coproduct structure if we don’t
change the multiplication rules (although this can be done for sl2). �

We want to be able to specialize ~ to numbers, but we can’t because we have to worry about
convergence. So we renormalize. Let q = exp(~). For now, assume di = 1 for simplicity (simply-
laced case). Also let Ki = exp(~Hi), which we can think of as “qHi”. We get a new algebra with
generators Ei, Fi,K±1

i , and relations

KiK
−1
i = 1

KiKj = KjKi

[Hi, Ej ] = ai,jEj

[Hi, Fj ] = −ai,jFj

[Ei, Fj ] = δi,j
Ki −K−1

i

q − q−1

1−ai,j∑
k=0

[
1− ai,j
k

]
q

Eki EjE
1−ai,j−k
i = 0

1−ai,j∑
k=0

[
1− ai,j
k

]
q

F ki FjF
1−ai,j−k
i = 0.

and the comultiplication becomes

Hi 7→ Hi ⊗ 1 + 1⊗Hi

Ei 7→ Ei ⊗Ki + 1⊗ Ei
Fi 7→ Fi ⊗ 1 +K−1

i ⊗ Fi.

Now everything is defined over Z[q, q−1, (q − q−1)−1]. However, essentially because we were forced
to introduce the generators Ki, this is no longer a deformation of U(g). However, it has many of
the properties of a deformation.

The goal of the theory of crystals is to “draw” a highest weight representation of Uq(g) (in the
limit at q →∞) as a colored directed graph.
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Example 2.2. g = sl3, λ = ω1 + ω2, so V (λ) is the adjoint representation. Weight space decom-
position:
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The vertices of the graph should correspond to a basis of V (λ), so for instance the • should somehow
be separated into two vertices (since this weight space is two dimensional) There are a few problems

Problem 1: In • the images of F1 and F2 and the kernels of F1 and F2 are distinct. So there
are four distinguished 1-dimensional subspaces in •, and it seems impossible to separate it into two
vertices. Passing to the q →∞ limit will fix this, but

Problem 2: We currently cannot plug in q =∞, as we are working over C[q, q−1, (q − q−1)−1].

Problem 3: We would really like the reverse arrows to correspond to the operators Ei. However,
one can have EiFi = [n] := (qn − q−1)/(q − q−1), which is not 1.

All of these problems will be fixed by introducing the Kashiwara operators Ẽi and F̃i, and the
notion of a crystal lattice. This will be done next week.
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