THE LITTELMANN PATH MODEL

TAEDONG YUN (LIVE TEXED BY STEVEN SAM)

1. LITTLEWOOD-RICHARDSON RULE

Set $\mathfrak{g} = \mathfrak{sl}_{n+1}$. Write $\lambda = \sum_i \lambda_i \varepsilon_i$ ($\lambda_1 \geq \lambda_2 \geq \cdots$) and $\mu = \sum_i \mu_i \varepsilon_i$ with $\mu_1 \geq \mu_2 \geq \cdots$. Then we have a decomposition

$$B(\lambda)\otimes B(\mu) = \bigoplus_{[j_1]\otimes \cdots [j_N]\in \mu} B(\lambda[j_1,\ldots,j_N]),$$

where $\lambda[j_1,\ldots,j_r]$ is obtained by adding a box at the j_r th row to $\lambda[j_1,\ldots,j_{r-1}]$. This term is 0 if the result is not a Young tableau.

2. Path model

Now let \mathfrak{g} be any Kac-Moody algebra. Let P be the weight lattice, $P_{\mathbb{R}} = P \otimes_{\mathbb{Z}} \mathbb{R}$.

Definition 2.1. A **path** is a piecewise linear continuous map $\pi: [0,1] \to P_{\mathbb{R}}$. We say that $\pi_1 = \pi_2$ if there exists a surjective nondecreasing continuous function $p: [0,1] \to [0,1]$ such that $\pi_1 = \pi_2 \circ p$. Define

$$\Pi = \{ \text{paths } \pi \mid \pi(0) = 0, \ \pi(1) \in P \}.$$

The **weight** of a path π is $wt(\pi) = \pi(1)$.

Given a simple root α_i , let s_i be the corresponding simple reflection. Let

$$h = \min(\mathbb{Z} \cap \{\langle \pi(t), \alpha_i^{\vee} \rangle \mid t \in [0, 1]\}).$$

If $h \geq 0$, define $\tilde{e}_i \pi = 0$. If h < 0, let

$$t_1 = \min\{t \mid \langle \pi(t), \alpha_i^{\vee} \rangle = h\}$$

$$t_0 = \max\{t < t_1 \mid \langle \pi(t), \alpha_i^{\vee} \rangle = h + 1\}.$$

Define

$$\widetilde{e}_i \pi = \begin{cases}
\pi(t) & t \le t_0 \\
\pi(t_0) + s_i(\pi(t) - \pi(t_0)) & t_0 \le t \le t_1 \\
\pi(t) + \alpha_i & t_1 \le t
\end{cases}$$

Define the path π^{\vee} by $\pi^{\vee}(t) = \pi(1-t) - \pi(1)$ and set $\widetilde{f}_i \pi = (\widetilde{e}_i(\pi^{\vee}))^{\vee}$.

Theorem 2.2. $(\Pi, \widetilde{e}, \widetilde{f}, \text{wt})$ is a (combinatorial) crystal.

Recall the definition of the dominant weights

$$P^+ = \{ \lambda \in P \mid \langle \lambda, \alpha_i^{\vee} \rangle \ge 0 \text{ for all } i \},$$

and the dominant chamber

$$P_{\mathbb{R}}^+ = \{ \lambda \in P_{\mathbb{R}} \mid \langle \lambda, \alpha_i^{\vee} \rangle \ge 0 \text{ for all } i \}.$$

Define Π^+ to be the set of paths that lie entirely in $P_{\mathbb{R}}^+$. For $\pi \in \Pi^+$, define

$$B_{\pi} = \{\widetilde{f}_{i_1} \cdots \widetilde{f}_{i_r} \pi \mid i_1, \dots, i_r \in I\}.$$

Date: April 22, 2011.

FIGURE 1. \mathfrak{sl}_3 adjoint representation

Theorem 2.3. (1) For $\pi, \pi' \in \Pi^+$, $B_{\pi} \cong B_{\pi'}$ if and only if $\pi(1) = \pi'(1)$. (2) For $\lambda \in P^+$, define $\pi_{\lambda} \colon [0,1] \to P_{\mathbb{R}}^+$ by $t \mapsto t\lambda$. Then $B(\lambda) \cong B_{\pi_{\lambda}}$.

Example 2.4 (Adjoint representation of \mathfrak{sl}_3). Let $\mathfrak{g} = \mathfrak{sl}_3$ and let α_1 , α_2 be the simple roots. The lowest weight is $-\alpha_1 - \alpha_2$, so let π_1 be the path $t \mapsto t(-\alpha_1 - \alpha_2)$.

 $\widetilde{e}_1\pi_1 = \pi_2$ is the path $t \mapsto -t\alpha_2$. $\widetilde{e}_2\pi_2 = \pi_3$ is the path $t \mapsto -t\alpha_2$ for $0 \le t \le 1/2$ and $t \mapsto -(1-t)\alpha_2$ for $1/2 \le t \le 1$. Similarly,

$$\begin{split} \widetilde{e}_2\pi_3 &= \pi_4 \colon t \mapsto t\alpha_2, \\ \widetilde{e}_2\pi_1 &= \pi_5 \colon t \mapsto -t\alpha_1, \\ \widetilde{e}_1\pi_5 &= \pi_6 \colon t \mapsto -t\alpha_1 \text{ for } 0 \le t \le 1/2, \ (t-1)\alpha_1 \text{ for } 1/2 \le t \le 1, \\ \widetilde{e}_1\pi_6 &= \pi_7 \colon t \mapsto t\alpha_1, \\ \widetilde{e}_2\pi_7 &= \widetilde{e}_1\pi_4 = \pi_8 \colon t \mapsto t(\alpha_1 + \alpha_2). \end{split}$$

Thus we get the crystal for the adjoint representation of \mathfrak{sl}_3 as in Figure 1.

3. Generalized Littlewood-Richardson rule

Given $\pi_1, \pi_2 \in \Pi$, define concatenation $\pi_1 * \pi_2$ by

$$(\pi_1 * \pi_2)(t) = \begin{cases} \pi_1(2t) & 0 \le t \le 1/2 \\ \pi_1(1) + \pi_2(2t - 1) & 1/2 \le t \le 1 \end{cases}.$$

Theorem 3.1. The map $\Pi \otimes \Pi \to \Pi$ given by $\pi_1 \otimes \pi_2 \mapsto \pi_1 * \pi_2$ is a morphism of crystals.

Corollary 3.2. Given $\pi_1, \pi_2 \in \Pi^+$, $B_{\pi_1} \otimes B_{\pi_2} = \bigoplus_{\pi} B_{\pi}$ where the sum is over all paths $\pi \in \Pi^+$ such that $\pi = \pi_1 * \eta$ for some $\eta \in B_{\pi_2}$.

Example 3.3. We compute $B(\lambda) \otimes B(\lambda)$ for $\lambda = \alpha_1 + \alpha_2$ for $\mathfrak{g} = \mathfrak{sl}_3$ (i.e. $V(\lambda)$ is the adjoint representation.) Let $\pi(t) = (\alpha_1 + \alpha_2)t$. We see that $\pi * \eta \in \Pi^+$ for η of weights $\{\alpha_1 + \alpha_2, \alpha_1, \alpha_2, 0, 0, -\alpha_1 - \alpha_2\}$, so the decomposition is

$$B(\lambda) \otimes B(\lambda) = B(2\alpha_1 + 2\alpha_2) \oplus B(2\alpha_1 + \alpha_2) \oplus B(\alpha_1 + 2\alpha_2) \oplus B(\alpha_1 + \alpha_2) \oplus B(\alpha_1 + \alpha_2) \oplus B(0).$$

4. Connection to Young Tableaux Model

Given a semistandard Young tableau T, let $w_T = i_1 \cdots i_s$ be the word obtained by reading from bottom to top (in French notation) starting from rightmost column and then moving to the left. This gives a path $\pi_T = \pi_{\varepsilon_{i_1}} * \cdots * \pi_{\varepsilon_{i_s}}$ where $\varepsilon_1 = \omega_1$, $\varepsilon_2 = \omega_2 - \omega_1$, ..., $\varepsilon_{n-1} = \omega_{n-1} - \omega_{n-2}$, $\varepsilon_n = -\omega_{n-1}$.

Then the crystal operator on paths coincides with the crystal operator on Young tableaux.