THE LITTELMANN PATH MODEL

TAEDONG YUN (LIVE TEXED BY STEVEN SAM)

1. LITTLEWOOD—RICHARDSON RULE

Set g = slppq. Write A =) Nigg (A > A > ---) and pp = ), pse; with ug > pg > ---. Then
we have a decomposition
[1]®-linlen

where A[j1,...,j,] is obtained by adding a box at the j,th row to A[j1,...,jr—1]. This term is 0 if
the result is not a Young tableau.

2. PATH MODEL
Now let g be any Kac—-Moody algebra. Let P be the weight lattice, P = P ®z R.

Definition 2.1. A path is a piecewise linear continuous map 7: [0, 1] — Pr. We say that m = mo
if there exists a surjective nondecreasing continuous function p: [0,1] — [0, 1] such that 73 = mao0p.
Define
IT = {paths 7 | 7(0) = 0, «(1) € P}.
The weight of a path 7 is wt(7) = 7(1).
Given a simple root «;, let s; be the corresponding simple reflection. Let
h=min(Z 0 {(x(t),a)) | ¢ € 0,1]}).
If h > 0, define ;w = 0. If h < 0, let
ty =min{t | (n(t),q;) = h}
to = max{t <t | (w(t),a)) = h+ 1}.

Define
(t) t <t
em =< w(to) + si(m(t) —w(ty)) to<t<ty.
F(t) + oy 1 <t
Define the path 7V by 7V (t) = m(1 — t) — (1) and set f;r = (&(7¥))V. O

Theorem 2.2. (IL, ¢, f,wt) is a (combinatorial) crystal.
Recall the definition of the dominant weights
Pt ={\eP|(\a) >0 for all i},
and the dominant chamber
Pi={\eP|(\a)>0forall i}.
Define IT™ to be the set of paths that lie entirely in Py . For m € II'T, define
Br={fi-fim|i1,...,ir €I}
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FIGURE 1. sl3 adjoint representation

Theorem 2.3. (1) For m,n’ € I, B = B, if and only if (1) = 7'(1).
(2) For A € P, define my: [0,1] — P& by t + tA. Then B(\) & By, .

Example 2.4 (Adjoint representation of sl3). Let g = sl3 and let ay, ag be the simple roots. The
lowest weight is —ay — ag, so let m be the path ¢ — t(—a; — a2).
eim = my is the path ¢t — —tag. €amy = w3 is the path ¢ — —tay for 0 < t < 1/2 and

t— —(1 —t)ag for 1/2 <t < 1. Similarly,

gzﬂ'3 =Tyt — tao,

ggﬂ'l =75: t — —tag,

e1ms =mg: t— —tag for 0 <t <1/2, (t—1)ay for 1/2 <t <1,

€1mg = m7: t > ta,

eomy = ey = g t > tlag + ag).

Thus we get the crystal for the adjoint representation of sl3 as in Figure U

3. GENERALIZED LITTLEWOOD—RICHARDSON RULE

Given w1, w9 € II, define concatenation 71 * w9 by

1 (2t) 0<t<1/2

(1 % m2)(t) = {m(l) +m(2t—1) 1/2 S_t <1

Theorem 3.1. The map Il ® Il — 11 given by m1 ® wo — w1 * wo is a morphism of crystals.

Corollary 3.2. Given m,mo € II", By, ® B, = @, Br where the sum is over all paths © € IIT
such that m = m xn for some n € By,.

Example 3.3. We compute B(A) ® B(\) for A = o + g for g = sl3 (i.e. V() is the adjoint repre-
sentation.) Let w(t) = (a1 +ag)t. We see that wxn € IIT for  of weights {1 +ag, a1, as,0,0, —a; —
as}, so the decomposition is

B()\) ®B()\) = B(2a1 + 20&2) D B(2a1 +oz2) EBB(OQ + 20&2) D B(Oq —1—042) D B(Oél —1—0(2) EBB(O).
]
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4. CONNECTION TO YOUNG TABLEAUX MODEL

Given a semistandard Young tableau T, let wp = i1 - - - i5s be the word obtained by reading from
bottom to top (in French notation) starting from rightmost column and then moving to the left.
This gives a path mp = ey %ok Te, where ¢1 = Wy, €2 = W9 — W1,y +vvy En_1 = Wn_1 — Wn_2,
En = —Wnp—-1-

Then the crystal operator on paths coincides with the crystal operator on Young tableaux.
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