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Mirkovic and Vilonen give a proof of the geometric Satake correspondence which provides a
natural basis in each representation of a complex reductive group. After briefly reviewing the
geometric Satake correspondence, I will discuss the geometry underlying the Mirkovic-Vilonen basis.
In the course of this discussion, I will introduce the Anderson-Kamnitzer theory of MV polytopes
and explain a surprising connection between MV polytopes and Lusztig’s canonical basis.

1. Geometric Satake correspondence

Let G be a Chevalley group, and G∨ its Langlands dual (corresponding to the dual root datum).
Let K be a non-Archimedian local field, and O be its ring of integers (for example, consider K = Qp

or K = Fq((t))). Then classical Satake correspondence is an isomorphism

Cc[G(O) \G(K)/G(O)]
∼=−→ K0 RepG∨ ⊗ C

where the subscript c refers to compactly supported functions.
Now focus on the case K = C((t)) and O = C[[t]]. We want to categorify this isomorphism.

There is a tensor equivalence of categories

Perv(G(O) \G(K)/G(O))

H∗

��

∼= // RepG∨

F
��

Vect
∼= // Vect

where Perv denotes the category of perverse sheaves, H∗ is hypercohomology, and F is the forgetful
functor. This is due to Lusztig, Drinfeld, Ginzburg, Mirkovic–Vilonen. The Tannakian formalism
states the left hand side is equivalent to a representation category, so the work goes into identifying
the group.

2. MV bases and MV cycles

Perverse sheaves on G(O) \ G(K)/G(O) are the same as G(O)-equivariant perverse sheaves on
the “affine grassmannian” Gr(C) := G(K)/G(O), so we need to study this object.

2.1. Geometry of the affine Grassmannian. Fix a maximal torus T ⊂ G. Let W be the
corresponding Weyl group. The coweight lattice is X∗(T ) = Hom(Gm, T ). Given a map Gm → T ,
get a map SpecK → G by composing the maps

SpecK → Gm → T → G,

so this gives a map X∗(T )→ G(K), which we can compose with G(K)/G(O) = Gr. Call this map
λ 7→ tλ.

It is an embedding, and the T -fixed points on Gr are precisely the tλ. Furthermore, each G(O)-
orbit of Gr contains the W -orbit of a unique dominant coweight tλ. Hence we can index G(O)-orbits
by dominant coweights, call them Grλ. Under the geometric Satake isomorphism, the intersection
homology sheaf ICGrλ is sent to V (λ).
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Now choose a pair of opposite Borel subgroups B and B− such that B ∩ B− = T , and let N
and N− be the unipotent radicals of these Borel subgroups. Each N(K) orbit contains a unique
torus-fixed point. (This follows from the Iwasawa decomposition.) Call the N(K)-orbits Sν where
ν is the corresponding torus-fixed point. Similarly, we can index the N−(K)-orbits by the coweight
lattice and we call them T ν .

For example, S0 ∼= GrN = N(K)/N(O).

Theorem 2.1 (Mirkovic–Vilonen [MV]). There is an isomorphism of functors

H∗
∼=−→

⊕
ν∈X∗(T )

H2ρ(ν)
c (Sν ,−) : (G(O)−equivariant perverse sheaves)→ Vect.

Furthermore,

V (λ) = H∗(ICGrλ) ∼=
⊕

ν∈X∗(T )

H2ρ(ν)
c (Sν ∩ Grλ, ICGrλ)

=
⊕

ν∈X∗(T )

H2ρ(ν+λ)(Sν ∩ Grλ,C).

One consequence is that the irreducible components of Grλ ∩ Sν index a basis in V (λ)−ν . We

may as well use the irreducible components of Grλ ∩ Sν , and these components are called the
Mirkovec–Vilonen (MV) cycles.

3. Stable MV cycles and their moment polytopes

Recall that V (λ)−ν ∼= U(n−)−λ−ν when λ is large compared to ν. Thus we expect the behavior

of Grλ ∩ Sν to stabilize when λ is large compared to ν. In fact, it stabilizes to T−λ ∩ Sν . It turns

out that T−λ ∩ Sν ∼= T−λ−ν ∩ S0, so one consequence of this is that

# Irr(T−γ ∩ S0) = dimU(n−)γ .

Elements of Irr(T−γ ∩ S0) are called stable MV cycles. We want to describe this set explicitly,
i.e., give a combinatorial parametrization of each irreducible component. The solution to this
problem is due to Anderson and Kamnitzer, and it is to study the irreducible components via their
moment polytopes.

There is an embedding

Gr ↪→ P(V (ω0))

where V (ω0) is the basic representation of Ĝ(K) (the unique non-trivial central extension of G(K)),

and P(V (ω0)) is its projectivization. This comes from the fact that Gr = Ĝ(K)/Ĝ(O). There is a
natural moment map

µ : P(V (ω0))→ Lie(TR)∗ ∼= Lie(TR)

where the last isomorphism is via the Killing form. By a general result about moment map images
of torus-invariant complete varieties we have the following: for Z ∈ Irr(S0 ∩ T γ), we have µ(Z) =
conv{λ | tλ ∈ Z} ⊂ Lie(TR) (the convex hull). The following result is due to Kamnitzer:

Theorem 3.1. [Kam]

(1) The vertices of µ(Z) are indexed by W ,
(2) The 1-skeleton of µ(Z) is the Cayley graph of W (with respect to the simple reflections),
(3) The edge between w and wsi is parallel to w(α∨i ),
(4) The edges have “integral length”, i.e., each edge has length equal to an integral multiple of the

length of the coroot w(α∨i ) to which it is parallel.
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The paths from e to w0 in the 1-skeleton of the MV polytope correspond to reduced expressions
of w0. Keeping track of edge lengths we get the following datum out of an MV polytope: for every
reduced expression of w0, we get a tuple of non-negative integers.

There is another object we encountered in this seminar that gives us the same type of combina-
torial data, namely Lusztig’s canonical basis. Let us fix an element b of the canonical basis. For
every reduced expression of w0, we can form a PBW basis, and for each PBW basis there is a
unique element p that agrees with b when we specialize at q = 0. As elements of the PBW basis
are naturally in bijection with tuples of non-negative integers, we get the following datum out of an
element of the canonical basis: for every reduced expression of w0, we get a tuple of non-negative
integers.

Kamnitzer’s theorem says that these two data are the same. Specifically, one can read off the
Lusztig data as the lengths of the edges in a certain path in the MV polytope (the path depends
on the expression for w0). These paths determine the polytope, so one can also go the other way
and construct the MV polytope directly from Lusztig data (although you need to consider Lusztig
data with respect to all words for w0).
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