
LECTURE 12: MV POLYTOPES FROM LUSZTIG DATA AND FROM

QUIVER VARIETIES

STEVEN SAM AND PETER TINGLEY

In this last lecture, I will discuss MV polytopes, which are natural polytopes parameterizing
B(∞) in finite type. Last week Dinakar Muthiah discussed how these polytopes arise from Mirkovic
and Vilonen’s work [MV] on the affine grassmannian. Today I’ll discuss two other natural con-
structions of the same polytopes. The first comes directly from Lusztig’s algebraic construction of
B(∞), and the second (which is only valid in type ADE) comes from quiver varieties. That that
the construction using Lusztig’s parameterization agrees with the construction from Mirkovic and
Vilonen’s work is essentially due to Kamnitzer [Kam], and that this agrees with the construction
from quiver varieties is due to Baumann and Kamnitzer [BK]. It is somewhat remarkable that al
three constructions lead to the same polytopes, and I think this is a good argument that these
polytopes are the “natural” combinatorial objects parameterizing finite type crystals.

At the end I’ll briefly mention how some of this story can be generalized, at least to symmetric
affine types. This generalization is the subject of some ongoing research with Pierre Baumann and
Joel Kamnitzer.

1. Construction from Lusztig’s parametrization of B(∞)

Fix a reduced expression w0 = si1 · · · siN . This gives an enumeration of the positive roots:
β1 = αi1 and βj = si1 · · · sij−1αij for 2 ≤ j ≤ N . Lusztig”s braid group action of Uq(g) also gives a
set of root vectors

Xβ1 = Fi1 , Xβ2 = Ti1αi2 , . . . , Xβj = Ti1 · · ·Tij−1Fij .

Then {X(an)
βN
· · ·X(a1)

β1
} is a PBW type basis for U−q (g), and its residue mod q is a crystal basis.

Each b ∈ B(∞) then has many expressions of the form X
(an)
βN
· · ·X(a1)

β1
, one for each expression

for w0. It is natural to ask how these different expressions are related to each other.
Consider first g = sl3. There are exactly two reduced expressions for w0:

i1 := s1s2s1 and i2 := s2s1s2.

I will use a superscript of i1, i2 to denote the Lusztig root vectors constructed with respect to the
expressions i1 and i2 respectively. By direct calculation, one finds that

(Xi1
α2

)(1)(Xi1
α1+α2

)(2)(Xi1
α1

)(3) = (Xi2
α1

)(4)(Xi2
α1+α2

)(1)(Xi3
α2

)(2) mod q,

and thus these are expression for the same element b ∈ B(∞). These two basis vectors give paths
in weight space h∗:
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−α1 −α2

Here the lengths of the edges of the path from the top to the bottom along the left side of the
polytope record the exponents in the expression for b with respect to i1, and the path on the right
records the exponents of the expression in terms of i2. More generally, every expression for w0 will
give a path in weight space, and one can see that the union of these paths is the 1-skeleton of a
polytope. This is the MV polytope Pb for b.

We would like to characterize which polytopes arise as Pb for some b ∈ B(∞). For the sl3 case,
the answer is given by the following, which follows from work of Lusztig [L, Chapter 42.2]:

Theorem 1.1. A polytope P is an MV-polytope of type sl3 if and only if the widths of the polytope
in the three lattice directions satisfy

= max { , }.

For reasons explained in [Kam], the relation in the above theorem is called a “Tropical Plucker
relation.” In the other rank two types (i.e. B2 and G2), there are similar but somewhat more
complicated relations that characterize MV polytopes (see [Kam]). For the second half of this talk
we will restrict to simply laced cases, so we will only need to understand type sl3 and sl2 × sl2
MV polytopes. In the sl2 × sl2 there are actually no conditions (i.e. all rectangles appear as MV
polytopes). The following shows that understanding the rank two case is essentially enough. It is
also proven in [L, Chapter 42].

Theorem 1.2. In general, a polytope P is an MV-polytope if and only if every 2-dimensional face
is an MV-polytope of the correct type. �

Remark 1.3. This last theorem corresponds to the fact that any two reduced expressions are
related by braid moves. Note that the roles of the three widths are not symmetric, so one needs to
identify which vertex is the “top” of a general 2-face. The correct choice of top vertex is just the
vertex corresponding to the shortest element of the Weyl group. �

In fact, it follows from Lusztig’s results on parameterizing B(∞) that the path in the 1-skeleton
corresponding to a single expression for w0 uniquely determines the polytope, and furthermore any
candidate for such a path does correspond to a polytope. This leads to a description of the crystal
operators on MV polytopes: To apply fi to Pb:

(1) Find an expression i for w0 such that the final root βN in Lusztig’s enumeration is αi.
(2) Change the path in the 1-skeleton corresponding to i by increasing the length of the final

edge by 1.
(3) Figure out how the rest of the polytope must change using the tropical plucker relations on

the 2-faces.
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2. Construction from quiver varieties

Earlier in this seminar we described a realization of B(∞) (for all simply laced types) in terms
of the quiver varieties Λ(v). Specifically, the vertices of B(∞) were identified with tv Irr Λ(v),
the set of irreducible components of these varieties as the dimension vector v varies. Since MV
polytopes also parameterize B(∞), this gives a bijection between irreducible components and MV
polytopes. We now describe how to construct the corresponding polytope directly in terms of
the geometry of the quiver varieties (or perhaps more accurately in terms of the structure of the
category of representations of the preprojective algebra), thus giving another way to approach these
very natural polytopes.

First let me sketch how the polytope is constructed from the irreducible component:

• Fix a representation T of the preprojective algebra P.
• For each reduced expression i: w0 = si1 · · · siN , we will get a canonical filtration T = T i

N ⊃
· · · ⊃ T i

1 = 0.
• It is always the case that {−

∑
i,k dimT i

k}, as i and k vary, are the vertices of a polytope.

• If T is generic in an irreducible component Zb ∈ Irr Λ(v), then this is the MV-polytope Pb.

To make this precise we need to describe the subrepresentations T i
k that appear in these filtra-

tions. We will give two definitions.

2.1. First characterization of T i
k.

Definition 2.1. Given T , define T i
k to be the maximum (by containment) submodule of T such

that the dimension of all quotients Q of T i
k are in the N-span of β1, . . . , βk. �

It turns out that T i
k/T

i
k−1
∼= (Ri

k)
⊕dk where Ri

βk
is a certain indecomposable representation

labeled by βk, although with the current definition that is not immediately obvious.

Example 2.2. g = sl4, write w0 = s1s2s3s2s1s2. The corresponding ordering of the positive roots
is {α1, α1 + α2, α1 + α2 + α3, α3, α2 + α3, α2}, and the indecomposable representations Ri

β are

Ri
α1

=

Ri
α1+α2

=

Ri
α1+α2+α3

=

Ri
α3

=

Ri
α2+α3

=

Ri
α2

=

1

1 2

1 2 3

3

2 3

2

.

One can easily see that each Ri
β is characterized by the property that it has dimension βk, and has

no submodules isomorphic to an earlier Ri
β′k

(i.e. no submodules isomorphic to the modules drawn

lower in the chart). For any choice of a multiplicity for each Ri
βk

, the subset of Λ(v) consisting of
modules with that prescribed filtration is dense in some irreducible component. �

2.2. Definition of T i
k using reflection functors. The previous section does not make it clear

that the modules Ri
βk

exist, or that they are unique. Here we discuss how the submodules T i
k, along

with the Ri
βk

, can be explicitly constructed. This is done using the following reflection functors on

the category of representations of the completed preprojective algebra P.
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Definition 2.3. Fix a representation T of P. Then the define two “reflection functors” by:

(1) ΣiT is obtained by taking a generic extension

0→ T → T ′ → S⊕Ki → 0

for large K, then taking the quotient of T ′ by the largest submodule isomorphic to a direct
sum of Si. This stabilizes for large K, as if more Si are added they contribute to the socle
of T ′, and hence are removed at the next step.

(2) Σ∗iT is obtained by taking a generic extension

0→ S⊕Ki → T ′ → T → 0

for large K, then setting Σ∗iT to be the largest submodule of T ′ such that the quotient
T ′/Σ∗iT is a direct sum of copies of Si.

�

Remark 2.4. Definition 2.3 may not seem completely functorial, but it can be described in a
completely functorial way, as is done in [BK]. The current description certainly gives the right
isomorphism class of representation, which is all we really need. Note also that Σi and Σ∗i are
adjoint functors. �

Example 2.5. The action of these “reflection functors” can be more complicated then one might
at first guess. The following depicts how these functors act on various modules in the sl4 case. This
diagram was taken from [BK]:

2
↙ ↘

1 3

Σ∗2

&&

Σ2

��

2
↙ ↘

1 3
↘ ↙

2

Σ∗2 //Σ2oo 1 3
↘ ↙

2

Σ2

ff

Σ∗2

��
2

↙
1

⊕
2
↘

3

Σ2

__

Σ∗2 //
1 ⊕ 3

Σ2

oo

Σ∗2 // 1
↘

2
⊕

3
↙

2

Σ∗2

__Σ2

oo

�

Example 2.5 may cause the reader to wonder why these operations are called “reflection” functors.
In fact, on certain modules they do act more like reflections. Specifically:

Theorem 2.6. (see [BK]) The reflection functors Σi and Σ∗i define inverse equivalence of categories{
Pmodules

with trivial i-head

}
Σi //

Σ∗i

oo

{
P-modules

with trivial i-socle

}
.

Furthermore, in these cases both Σi and Σ∗i act on γ :=
∑

i(dimVi)αi by the reflection si.

One can then explicitly write expressions for the V i
k : If i = (i1, . . . , iN ), so that w0 = si1 · · · siN .

Let iop = (iN , . . . i1). Then

V iop

N−k = Σ∗i1 · · ·Σ
∗
ik

Σik · · ·Σi1V.
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There is also an explicit expression for the root modules Ri
βk

:

Ri
k = Σi1 · · ·Σik−1

Sik .

2.3. Affine MV polytopes. In this case there is no longest element of the Weyl group, so it
does not make sense to speak of expressions for w0. However, all we really needed from such an
expression was the ordering if gave on the positive roots. The essential property of this ordering
is that it is biconvex: the N-span of any initial segment and the N-span of any final segment are
disjoint.

If we use this notion, then, to have a hope of finding a biconvex order in affine type, we must
treat all imaginary roots as equivalent, since they are proportional. All imaginary roots point is
the direction δ, and it is in fact possible to find convex total orderings on the set of positive real
roots together with δ.

Much of the analysis from this lecture goes through in the affine case, and in particular one
finds modules Ri

β for each real root β. But at the level of the filtration where the sub-quotient has
dimension a multiple of δ things are considerably more complicated: for each k, there are r families
of indecomposable representations of dimension kδ which have no submodules isomorphic to earlier
Ri
β, where r is the rank of the underlying finite type Lie algebra. These families correspond to the

imaginary roots with their multiplicities, and can be used to define an analogue of MV polytopes
in the symmetric affine case. See the upcoming work [BKT]. The affine MV polytopes will not just
be polytopes though, as we will need to include “decorations” recording the imaginary root data.
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