
LECTURE 2: CRYSTAL BASES

STEVEN SAM AND PETER TINGLEY

Today I’ll define crystal bases, and discuss their basic properties. This will include the tensor
product rule and the relationship between the crystals B(λ) of highest weight modules and the
infinity crystal B(∞). I’ll then discuss an intrinsic characterization of crystal lattices and crystal
bases in terms of a natural bilinear form (sometimes called “polarization”). Unless otherwise stated,
the results here are due to Kashiwara, and proofs can be found in [K1].

For today, g is a symmetrizable Kac–Moody algebra, Uq(g) is its quantized universal enveloping
algebra, that V is a representation which is a (not necessarily finite) direct sum of integrable highest
weight modules V (λ) (i.e., an object in Oint).

1. Definition of crystal bases

The goal is to find a basis of a representation V of Uq(g) such that the Kashiwara operators Ẽi,

F̃i act by partial permutations. This will allow us to “draw” V (λ) as a colored directed graph.
However, simple calculations show that this is impossible, even for the adjoint representation of
sl3. But, in a sense that will be made precise today, this will work “at q = 0”.

Note: we have switched conventions from last week, so that our crystals are at q = 0 rather
then q = ∞. The first part of the theory works just as well at either 0 or ∞, but once we start
discussing tensor products our choice of coproduct will determine this choice. So, the reason we
have changed this convention is that we are changing our convention for coproduct. I did this to
match Kashiwara’s conventions in [K1, K2], which are the main references for the next few lectures.
Perhaps this is a good time to note that there are four choices of coproduct that work equally well
in this theory:

(i) ∆(Ei) = Ei ⊗K−1i + 1⊗ Ei; ∆(Fi) = Fi ⊗ 1 +Ki ⊗ Fi
(ii) ∆(Ei) = Ei ⊗Ki + 1⊗ Ei; ∆(Fi) = Fi ⊗ 1 +K−1i ⊗ Fi
(iii) ∆(Ei) = Ei ⊗ 1 +Ki ⊗ Ei; ∆(Fi) = Fi ⊗K−1i + 1⊗ Fi
(iv) ∆(Ei) = Ei ⊗ 1 +K−1i ⊗ Ei; ∆(Fi) = Fi ⊗Ki + 1⊗ Fi.

One must make a choice, and all four choices have been used in the literature. We will be using
the first one from now on, whereas last week we used the second one.

Let us also recall the definition of Kashiwara operators on a representation V of Uq(g). For each

i, 〈Ei, Fi,K±1i 〉 is a copy of Uq(sl2) inside Uq(g). The irreducible representations of Uq(sl2) are root
strings

◦
1
(( ◦

[2]
((

[3]

hh ◦
[2]

hh

[3]
)) ◦,

1

hh

where the arrows to the right are the matrix coefficients of Fi, and the ones to the left are the
matrix coefficients of Ei. Decompose V into a direct sum of irreducible representations of Uq(sl2).

The Kashiwara operator F̃i is defined as the operator that moves 1 step down in each root string,

without multiplying by any quantum integer. Similarly, Ẽi moves 1 up the root string. This is
independent of the chosen decomposition.

Let A0 = {f(q) ∈ C(q) | f regular at 0}. This is a local ring, and A/qA ∼= C.
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Definition 1.1. Let V be an integrable module over C(q). A crystal lattice in V is an A0-
submodule L =

⊕
λ∈P Lλ ⊂ V compatible with the weight decomposition of V , which is closed

under F̃i and Ẽi. A crystal basis is a basis for L/qL such that the induced actions of F̃i and Ẽi
on L/qL act by partial permutations on B. �

Theorem 1.2. (1) Any integrable V has a crystal basis (L, B).

(2) Given (L(1), B(1)), and (L(2), B(2)), there is an automorphism Ψ of V such that Ψ(L(1)) = L(2)
and Ψ(B(1)) = B(2).

Note that (2) implies in particular that, if V = V (λ) is irreducible, then the structure of B(λ) is
unique.

Remark 1.3. Given an integrable module V , let {v1, . . . , vk} be a weight basis for the space of

highest weight vectors of V . Set B = {F̃iN · · · F̃i1vj} and L to be the A0-span of B. Then L is a
crystal lattice and the non-zero elements in the image of B in L/qL form a crystal basis. �

Remark 1.4. If v is a highest weight vector, then F̃ni v = F
(n)
i v where F

(n)
i := Fni /[n]q! is the nth

divided power of Fi. This is one explanation for why divided powers show up so often. �

Remark 1.5. U~(g) is a trivial deformation of U(g) as an algebra. So the representation theory of
both algebras is the same (until we start taking tensor product). Uq(g) is not quite a deformation,
but its representation theory is still very similar (essentially there are some new “non type 1”
representations, but the remaining representations look the same). So it is a bit suspicious that
the crystal basis (which is new) appears out of something which is old. In fact, the crystal basis
can be constructed without considering the deformation, see [BK]. However, some of the impor-
tant properties of crystals are less visible in this picture. In particular, as one would expect, the
relationship with tensor products described below is more difficult to see. �

2. Tensor products of crystal bases

Theorem 2.1. If (L(1), B(1)) and (L(2), B(2)) are crystal bases for V and W , then (L(1)⊗L(2), B(1)⊗
B(2)) is a crystal basis for V ⊗W .

Remark 2.2. Until now, the choice of coproduct was not important, and in fact we could have
worked with crystal bases at ∞ instead of at 0 just as easily. Theorem 2.1 holds at q = 0 for
coproducts (i) and (iv), and at q = 0 for the other two. The tensor product rule as we give it below
only holds for coproduct (i), but a simple modification works for coproduct (iv).

Theorem 2.1 induces a combinatorial tensor product ⊗, which we now describe. When g = sl2,
crystals are just directed intervals B(n) with n + 1 nodes, for each n ∈ Z≥0. The tensor product
rule for B(3)⊗B(2) is expressed graphically as follows:

◦ // ◦ // ◦ // ◦

◦

��

◦ // ◦ // ◦ // ◦

��
◦

��

◦ // ◦ // ◦

��

◦

��
◦ ◦ // ◦ ◦ ◦

The first tensor factor is placed at the top, and the second on the left side. The vertices of the
tensor product are all pairs of vertices one in each factor, which can be arranged in a grid as shown.
The top row and right column of the grid make one irreducible component. Then the nodes second
from the top and second from the right. Continue until all the nodes are used up.
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For other g, simply treat the arrows coming from each copy of Uq(sl2) separately. Decompose

the crystal into connected components for the arrows corresponding to that F̃i, and take the tensor

product of each pair. Once this has been done for all the different F̃i (i.e., all different colors of
arrows in the crystal graph), the result is the tensor product of the g crystals.

Example 2.3. Consider g = sl3. Then the two fundamental crystals are B(ω1) = ◦ 1 // ◦ 2 // ◦
and B(ω2) = ◦ 2 // ◦ 1 // ◦ . Their tensor product is

◦
2
��

1 // ◦ 2 // ◦
2
��

◦ 1 // ◦
1
��

◦
1
��

◦ ◦ 2 // ◦
which illustrates that V (ω1)⊗ V (ω2) ∼= V (ω1 + ω2)⊕ V (0). �

Theorem 2.4. B(λ) is connected.

This implies that for any representation V , its irreducible components correspond to the con-
nected components of its crystal graph. Note that this gives a combinatorial way to study the
Clebsch–Gordon rule (i.e., to find multiplicities of various V (γ) in V (λ)⊗ V (µ)).

The tensor product rule can also be expressed algebraically: set

εi(b) := max{m | emi (b) 6= 0},
ϕi(b) := max{m | fmi (b) 6= 0}.

Then for b⊗ c ∈ B ⊗ C,

(2.5)

ei(a⊗ b) =

{
ei(a)⊗ b if εi(a) > ϕi(b),

a⊗ ei(b) otherwise,

fi(a⊗ b) =

{
fi(a)⊗ b if εi(a) ≥ ϕi(b),
a⊗ fi(b) otherwise.

3. B(∞)

For the moment I will forget the relationship with representations, and think of crystals combi-

natorially. When I do this, I will denote the crystal operators by ei, fi instead of Ẽi and F̃i.
By looking at the top “row” of B(λ) ⊗ B(µ), we see a copy of B(λ). This is not quite a

subcrystal, but it will be closed under the operators ei. So the embedding B(λ) ⊂ B(λ)⊗B(µ) is
“ei-equivariant”. It is also clear that the top-left element in the tensor product generates a copy of
B(λ+ µ). Thus we have a commutative diagram

B(λ) //

&&

B(λ)⊗B(µ)

B(λ+ µ).

OO

The inclusions B(λ)→ B(λ+ µ) turn {B(λ) | λ ∈ P+} into a directed system.

Definition 3.1. B(∞) = lim−→B(λ). �

For each λ ∈ P+, we will have a surjection of crystals B(∞)→ B(λ)∪{0} such that the elements
not mapping to 0 map ei-equivariantly onto B(λ).
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Figure 1. The infinity crystal B(∞) for sl3. The red arrow represent f1, and
always go to the leftmost available node (in the right weight space). The green
arrows represent f2, and always go to the rightmost available node. Any of the
nodes directly below the top vertex can be the lowest weight element of a B(λ).
The thicker arrows show the copy of B(ω1 + 2ω2).

3.1. Finding B(∞) algebraically. Recall that, as a Uq(g)− module, V (λ) ' Uq(g)−/Iλ, for some
ideal Iλ. Let πλ denote the projection from Uq(g)− to V (λ). If λ− µ is dominant, then Iλ ⊂ Iµ, so
these projections fit together nicely.

Say that (L, B) is a local basis of U−q (g) if L is an A0-lattice and B(∞) is a basis for L/qL.

Note that here we require no compatibility with the algebra structure of Uq(g)−.

Theorem 3.2. There exists a unique local basis (L(∞), B(∞)) of U−q (g) such that the highest

weight space of L is spanned by 1 ∈ U−q (g) , and, for all λ, πλ(L(∞), B(∞)) is a crystal basis for
V (λ).

Question 3.3. Can you characterize (L(∞), B(∞)) using Ẽi and F̃i? Also, how should we define

Ẽi and F̃i on U−q (g)?

We will give a positive answer to this question in Remark 4.11 below, but it is convenient to first
consider an alternative characterization of both B(λ) and B(∞).

4. Intrinsic characterizations

This section is based on [K1, Section 5]. Let D be the diagonal matrix with entries di such that
DA is symmetric, where A is the Cartan matrix. Set qi = qdi .

Definition 4.1 (Adjoint map). Define θ by

θ(Ei) = qiFiK
−1
i

θ(Fi) = q−1i KiEi

θ(Ki) = Ki.

One can check that this extends to an algebra anti-involution which is also a coalgebra isomorphism.
�

Remark 4.2. There appears to be a typo in [K1, Section 5], in that the map used there does not
actually define an antiautomorphism. We have modified θ(Ei) to give θ this property. In most



LECTURE 2: CRYSTAL BASES 5

calculations we will only apply θ to elements of U−, so these calculations are unaffected by the
change.

Let vλ ∈ V (λ) be a fixed highest weight vector. Define a bilinear form (, ) on V (λ) via (vλ, vλ) = 1
and (au, v) = (u, θ(a)v) for all u, v ∈ V (λ), a ∈ Uq(g).

Since θ is a coalgebra isomorphism, If we define (, )V (λ)⊗V (µ) = (, )V (λ)(, )V (µ), then θ still acts
as an adjoint.

Theorem 4.3. Notation as above.
(1) L(λ) = {u ∈ V (λ) | (u,L(λ)) ∈ A0} = {u ∈ V (λ) | (u, u) ∈ A0}.
(2) B(λ) is an orthonormal basis of L(λ)/qL(λ) with the induced form.

Remark 4.4. We are working over C(q), but we really could work with an appropriate integral
form. Then we could characterize B(λ) ∪ −B(λ) as the set of vectors with norm 1. �

4.1. Bilinear forms on U−q (g). If we want to define as inner product as we did for highest weight

representations, we need to have an action of Uq(g) on U−q (g). In fact, there is a whole family of
such actions, one corresponding to each highest weight (i.e. the Verma modules). These can be
described as follow. Recall the triangular decomposition of Uq(g): As a vector space,

Uq(g) ' U−q (g)⊗ U0
q (g)⊗ U+

q (g).

For each λ, let define

(4.5)

ψλ : U0
q (g)⊗ U+

q (g)→ C(q)

Ei → 0

Ki → q〈Hi,λ〉.

We get an action ·λ of Uq(g) on U−q (g) by left multipliction composed with applying ψλ to the two
rightmost factors in the triangular decomposition (4.5).

For each λ, we then get a bilinear form on U−q (g) defined by

(4.6)
(1, 1) = 1

(a ·λ u, v) = (u, θ(a) ·λ v) for all u, v ∈ U−q (g), a ∈ Uq(g).

If λ is dominant, the quotient of U−q (g) by the kernel of this form is isomorphic to V (λ). Thus it is
natural that, to study B(∞), we are really interested in the limit of the inner product as λ→∞,
and as q → 0.

Recall that EiFju = FjEiu+ δi,j
Ki −K−1i
q − q−1

u. As the highest weight λ→∞, Ki will act on u by

some large power of q and K−1i acts by some large negative power of q. Since we are also taking

the limit as q → 0, the K−1i will dominate. For this reason, we modify Ei to get an operator E∞i
by:

Definition 4.7. E∞i acts on U−q (g) by E∞i · 1 = 0 and E∞i Fj = FjE
∞
i + δi,jqK

−1
i . �

Theorem 4.8. There is a unique bilinear form (, ) on U−q (g) such that
(1) (1, 1) = 1,
(2) (Fiu, v) = (u, q−1i KiE

∞
i v).

Remark 4.9. It is important that, one you commute the E∞i to the front, all terms with no E∞i
also have no Ki. One can check that this does in fact happen. Kashiwara handles this issue by
defining E′i = q−1i KiE

∞
i . Then E′iFj = q−〈Hi,αj〉FjE

′
i + δi,j , and it is clear that no Ki appear in

this commutation relation.

Theorem 4.10. Notation as above.
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(1) L(∞) = {u ∈ V (∞) | (u,L(∞)) ∈ A0} = {u ∈ V (∞) | (u, u) ∈ A0}.
(2) B(∞) is an orthonormal basis of L(∞)/qL(∞) with the induced form.

Again, by working over an appropriate integral form, we could characterize B(λ) ∪ −B(λ) as the
set of vectors with norm 1.

Remark 4.11. We can also now see the correct definition of Ẽi, F̃i on U−q (g): Define a ∈ U−q (g)

to be i-singular if E′i(a) = 0. For all i-singular v ∈ U−q (g), define F̃ni (v) = F
(n)
i (v). These F̃i play

the role of the Kashiwara operators on U−q (g), leading to a crystal basis. See [K1, Theorem 4].
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