
LECTURE 3: GLOBAL BASES

STEVEN SAM AND PETER TINGLEY

The plan for today is to give the algebraic construction of global bases (also called canonical bases). We
will first give Kashiwara’s construction, which starts with the crystal bases we have been discussing. For
finite type cases, we will then give a similar construction due to Lusztig, which has the advantage that the
global basis is obtained from a PBW type basis. Lusztig also has a geometric construction of canonical bases
for all symmetric Kac-Moody algebras. This is important because it is needed to prove certain positivity
results in those cases, but we will not cover it today.

1. Kashiwara’s construction

In this section g is a symmetrizable Kac-Moody algebra. The construction we present is due to Kashiwara
[K1, K2], although we more closely follow [CP, Chapter 14.1] Recall that last time we constructed an
A0 := {f ∈ C(q) : f is regular at 0}-sublattice L(∞) ⊂ U−q , and a basis B of L(∞)/qL(∞). These have
very nice properties, including

• L(∞) is closed under the Kashiwara operators F̃i.

• F̃i acts by partial permutations.
• (L(∞), B(∞))/Iλ is a crystal basis of each V (λ).
• Nice behavior with respect to tensor products.

The idea is to look for a basis that agrees with B(∞) at q = 0 and specializes everywhere (i.e., for all
q ∈ P1). The intuition is that holomorphic functions on P1 are constant, so such a basis should be determined
by its specialization at q = 0 (or any other single point).

Definition 1.1. U res
q (g) is the A = C[q, q−1]-subalgebra of Uq(g) generated by E

(n)
i = Eni /[n]!, F

(n)
i , and

K±1i . �

U res
q (g) is usually called the restricted integral form. It can also be defined just as well over Z[q, q−1].

One can show that U res
q (g)⊗A C(q) ∼= Uq(g).

Definition 1.2. The bar involution ¯: Uq(g)→ Uq(g) is the C-algebra involution defined by

Ei ↔ Ei Fi ↔ Fi Ki ↔ K−1i q ↔ q−1 �

Theorem 1.3. We have an isomorphism of C-vector spaces L(∞)∩U res
q (g)∩L(∞) ∼= L(∞)/qL(∞) ∼= U−(g)

via the obvious maps.

Definition 1.4. Letting π be the first isomorphism in Theorem 1.3, we define the global basis G(∞) =
π−1(B(∞)). �

Remark 1.5. There is an alternative characterization of G(∞) which is sometimes useful. For each b ∈
B(∞), there is a unique bg ∈ L(∞) ∩ Uresq (g) which is congruent to b mod q and such that bg = bg.

The following remarkable property shows that this construction immediately gives a canonical basis for
each V (λ):

Theorem 1.6. The set of non-zero elements in G(∞)/Iλ is a basis for V (λ) for all dominant weights λ.

Example 1.7. Here is what G(∞) looks like for some small examples.

(1) For sl2, G(∞) = {F (n) | n ≥ 0}.
(2) For sl3, G(∞) = {F (a)

1 F
(b)
2 F

(c)
1 , F

(a)
2 F

(b)
1 F

(c)
2 | b ≥ a + c} (when a + c = b, the two expression are

equal).
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(3) In sl4, not all elements of G(∞) ca be expressed as monomials in the Fi. For instance, the element

F
(2)
2 F1F3F2 − F (3)

2 F1F3 = F2F1F3F
(2)
2 − F1F3F

(3)
2 is in G(∞).

(4) The example of ŝl2 can be found in [Lu2, 14.5.5]. There as well, not all elements are monomials. �

If the Cartan matrix is symmetric, then G(∞) has an additional important property: the multiplicative

structure constants are positive. That is, bb′ =
∑
cb
′′

b,b′b
′′ where cb

′′

b,b′ ∈ Z≥0[q, q−1]. This is why many people

like to “categorify” by identifying U−q (g) with the Grothendieck group of a (graded) category, and having
the global basis correspond to irreducible objects. Note however that this is false in other types. See [MO]
for explicit counterexamples in types G2, B3, C4.

Remark 1.8. Unlike in the crystal (q = 0) case, the tensor product of global bases does not give a global
basis for each irreducible component of the product. In fact, the tensor product of global bases does not
even give a basis respecting the decomposition into isotypic. �

2. Lusztig’s construction

In this section g is of finite type. The results here can be found in [Lu1] for type ADE, and the extension
to other types can be found in [S]. See also [CP, Chapter 14.2].

Let Ũq(g) be the completion of Uq(g) in the weak topology defined by all matrix elements of all finite

dimensional representations. So, an element of Ũq(g) can be defined by describing how it acts on all finite
dimensional representations.

Definition 2.1. Ti ∈ Ũq(g) acts on V by

Tiv =
∑

a+c+b≥0
a−b+c=(wt(v),αi)

(−1)bqb−aci E
(a)
i F

(b)
i E

(c)
i .

Define CTi
∈ EndUq(g) via

Ei 7→ −FiK−1i , Fi 7→ −KiEi, KH 7→ Ksi(H)

Ej 7→
−aij∑
r=0

(−1)r−aijKr
i E

(−aij−r)
i EjE

(r)
i (j 6= i)

Fj 7→
−aij∑
r=0

(−1)r−aijK−ri F
(−aij−r)
i FjF

(r)
i (j 6= i)

where H =
∑
ciHi is an element of the coweight lattice, and KH =

∏
Kci
i . �

The notation is explained because conjugation by Ti in Ũq(g) preserves Uq(g), and acts by the given
formulas. The CTi define an action of the braid group on Uq(g). So we can define Tw = Tik · · ·Ti1 given a
reduced expression sik · · · si1 = w for w ∈W , and this is independent of the choice of reduced expression.

Fix a reduced expression for the longest word w0 = siN · · · si1 , and let βk = Ti1 · · ·Tik−1
(Fik). Then

{wt(βk) | 1 ≤ k ≤ N} = ∆−.
The following was essentially proven by Lusztig [Lu1] in type ADE, and was shown in all finite type cases

by Saito [S]. This precise statement can be found at the end of the introduction of [S].

Theorem 2.2. {βaNN · · ·β
(a1)
1 | a1, . . . , aN ≥ 0} is a basis for L(∞). Furthermore the residue to this set

modulo q is equal to Kashiwara’s local basis B(∞).

Call the above basis the PBW basis PBWσ corresponding to the reduced expression σ for w0. One
key property is that the ordering {β1, . . . , βN} is convex: the nonnegative spans of {β1, . . . , βk} and
{βk+1, . . . , βN} are empty for all k.

One can then define the canonical basis element bc corresponding to b ∈ B to be the unique element in
spanZ[q]PBWσ which is equal to b modulo q, and such that b̄c = bc.

Remark 2.3. Lusztig originally developed this theory in type ADE only. He developed the theory of
canonical bases independently of Kashiwara’s construction, using a connection with quiver varieties. �
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Remark 2.4. It may seem natural to ask (as Chris Dodd did in class) if the transition matrix between
Lusztig’s PBW basis and the global basis G(∞) has any nice properties. In fact, at least in type ADE,
for certain well chosen words σ for w0, the transition matrix is triangular with respect to an appropriately
chosen order on the PBW basis (see [Lu1, Chapter 9]). The words where this is true are words adapted to
some orientation of the Dynkin-quiver (we’ll define some of these words later on). The appropriate order is
defined geometrically (see [Lu1, Chapter 9.1]), and I’m not sure how good a combinatorial definition there
is. I’ve been looking through the literature to try and find out how well this generalizes, but the search has
been inconclusive so far. Hopefully I’ll be able to give an update on this soon.

Related to this, if one is careful there is also a triangularity result between the canonical basis and a well

chosen set of expressions in the divided powers F
(k)
i of the Chevalley generators. See [Li, Proposition 10.3].

Anyway, if you are reading this and happen to know the precise situation, I’d be grateful if you tell me. �
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