
LECTURE 4: RECOGNITION OF CRYSTALS

STEVEN SAM AND PETER TINGLEY

The goal for today is to characterize crystals. we would perhaps like to give a set of axioms on

the data B, ei, fi of a set B along with candidates ei, fi for the Kashiwara operators that would

guarantee that we see the crystal of a representation V or g. However, this is difficult, and we

take a sort of half-way ground: A axiomatize the notion of a combinatorial crystal, which includes

things which are not crystal graphs of representations. We then study various ways to prove that

such a combinatorial crystal does in fact arise as the crystal of a representation. That is what we

mean by recognition theorems.

For today, g is a symmetrizable Kac-Moody algebra.

1. Combinatorial crystals

Definition 1.1. An integrable combinatorial g-crystal is a set B with operators ei, fi with the

properties:

(1) integrable: For all i and all b ∈ B, there is some N > 0 such that eNi (b) = fN
i (b) = 0.

(2) weighted: Define

εi(b) = max{n | eni b �= 0}, ϕi(b) = max{n | fn
i b �= 0}

ε(b) =
�

i

εi(b)ωi, ϕ(b) =
�

i

ϕi(b)ωi

wt(b) = ϕ(b)− ε(b).

Then fi has weight −αi and ei has weight αi.

(3) Partial permutations: fib = b� if and only if eib� = b. �
Example 1.2. This is not enough to characterize the crystals of integrable representations of g.
For example

satisfies all the axioms, but is not the crystal of any representation. �
Remark 1.3. B(∞) is not covered by this definition. �
Definition 1.4. (see [K3, Section 7.2])A combinatorial crystal is a tuple (B, fi, ei,wt, εi,ϕi)

where wt: B → P (P is the weight lattice), ei, fi : B → B � {0}, εi,ϕi : B → Z ∪ {−∞} such that
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(1) ϕi(b)− εi(b) = �wt(b),αi� whenever the left hand side is finite.

(2) ei increases ϕi by 1 and decreases εi by 1.

(3) ei has weight αi.

(4) fib = b� if and only if eib� = b.
(5) If ϕi(b) = −∞, then eib = fib = 0. �

Remark 1.5. An integrable combinatorial crystal is in particular a combinatorial crystal, where

one defines ϕi(b) = �ϕ(b),α∨
i � and εi(b) = ��(b),α∨

i �.

Remark 1.6. The cases ϕi(b) = −∞ are included to allow certain combinatorial constructions

that come in handy. They don’t ever really correspond to crystals of representations.

Example 1.7. B(∞) is a combinatorial crystal where we define wt(1) = 0, εi(b) = max{n | eni b �=
0}, and then allow this to determine ϕi(b). �

2. Recognizing integrable crystals

The follow theorems will be our tools for showing that later constructions (using quiver varieties

etc.) actually give the crystals of integrable representations of g.

Theorem 2.1 (Kashiwara). There is a unique family of integrable crystals {B(λ)} indexed by
dominant weights λ which is closed under ⊗ and taking connected components. These are the
crystals for the highest weight representations V (λ).

Theorem 2.2 (Kashiwara). Assume C(λ) is a graph with a unique source bλ such that the length
of the i root string leaving bλ is �α∨

i ,λ�, and such that, for each i, j ∈ I, the graph obtained by
ignoring the other colors is an integrable rank 2 crystal for the corresponding rank 2 Kac–Moody
algebra. Then C(λ) = B(λ).

Remark 2.3. For crystals of simply laced Kac-Moody algebras, Theorem 2.2 was enhanced by

Stembridge [S] by giving a “local” characterization of integrable sl3 crystals.

3. Recognizing B(∞)

The previous section is only concerned with integrable crystals, so cannot recognize B(∞). For

that, we need to introduce more structure. Recall that we have an inner product (, ) on U−
, L(∞),

and L(∞)/qL(∞). Working over Z, B(∞) ∪ −B(∞) = {b | (b, b) = 1}.

Definition 3.1. ∗ is the anti-algebra involution on U−
which fixes each Fi. . �

Proposition 3.2 ([K2, Proposition 5.2.1]). For all u, v ∈ U−, we have (u, v) = (∗u, ∗v). In
particular, ∗ preserves the set {(b,−b) | b ∈ B(∞)} (but not pointwise). By ignoring signs, we get
an involution, also denoted ∗, on B(∞). Also, define e∗i = ∗◦ei ◦∗, and define ϕ∗

i , ε
∗
i in the obvious

way.

Remark 3.3. It was shown by Lusztig that, at least in types ADE, the signs in the above are all

+. This is conjectured to hold in other types as well.

Definition 3.4 (see [K3, Section 7.5]). Let B(i)
be the following crystal

· · · b(i)(1) i−→ b(i)(0)
i−→ b(i)(−1)

i−→ b(i)(−2) · · ·

where wt(b(i)(k)) = kαi, ϕi(b(i)(k)) = k, εi(b(i)(k), and for j �= i, ϕi(b(i)(k) = ε(b(i)(k)) = −∞.
Here the arrows show the action of fi. �
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Theorem 3.5. [K1, Theorem 2.2.1] For each i, there is a morphism of crystals

Φi : B(∞) → B(∞)⊗B(i)

u0 �→ u0 ⊗ b(i)(0).

Furthermore, Ψ satisfies

(1) Φi(b) = (e∗i )
ε∗i (b)(b)⊗ b(i)(−ε∗i (b)).

(2) imageΦi = {b⊗ bi(k) | k ≤ 0, ε∗i (b) = 0}. �
Furthermore B(∞) can be characterized as the unique crystal for which the above holds. This

is made precise as follows

Theorem 3.6 ([KS, Proposition 3.2.3]). Let {B, ei, fi,wt, εi,ϕi} be a combinatorial crystal with
an element b+ such that wt(b) = 0, εi(b) = 0 for all i ∈ I, and {fiN · · · fi1b+ : i1, . . . , iN ∈ I} = B.
Assume also that

(1) εi(b) ∈ Z for every i.
(2) For every i, there is a strict embedding (that is, an embedding of crystals) Φi : B → B ⊗B(i).
(3) Φi(B) ⊂ B ⊗ {bi(−k) : k ≥ 0}.
(4) For each b �= b+ ∈ B, there some i ∈ I such that Φi(b) = b� ⊗ b(i)(−k) with k > 0.

Then B is isomorphic to B(∞).

The proof that the properties from Theorem 3.6 uniquely characterize the resulting crystal is

quite simple. Essentially, one can see that these properties imply that B is isomorphic to the crystal

generated by

· · · b(i2)(0)⊗ bi1(0) ∈ · · ·B(i2) ⊗B(i1),

for appropriate . . . i2, i1. It then follows from Theorem 3.5 that this unique crystal is in fact B(∞).

The following is another wording of this result which makes the role of ∗ more obvious.

Corollary 3.7. Let B be a highest weight combinatorial crystal with highest weight element b+
such that, for all b ∈ B and all i, �i(b) ≥ 0, and �i(b+) = 0. Fix an involution ∗ on B, and define
e∗i = ∗ei∗ and �∗i (b) = �i(∗b). Define Φi : B → B ⊗B(i) by

Φi(b) = (e∗i )
ε∗i (b)(b)⊗ b(i)(−ε∗i (b)).

If Φi is an embedding of crystals for all i, then B = B(∞) and ∗ is Kashiwara’s involution.
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