
QUANTUM GROUPS AND KNOT INVARIANTS

MARTINA BALAGOVIĆ (LIVE TEXED BY STEVEN SAM)

1. Knots

We discuss the Jones-Conway polynomial, also known as Homfly polynomial. It is a knot invari-
ant, and we prove its existence and uniqueness given some simple axioms (value on the unknot and
the so-called skein relations). The proof is following [2].

Definition 1.1. Informally, a knot is obtained by gluing together the endpoints of a shoelace in
R3, considered up to isotopy (but remembering orientation). A link is the same as a knot, but
multiple shoelaces are allowed. A tangle consists of (oriented) shoelaces and two parallel sticks,
an upper and a lower, which we may glue some endpoints to. In addition, we assign + and − signs
to the points where the end of a shoelace is attached to the stick, dependent on the orientation of
the shoelaces, in the following way: on the upper stick, assign + to all the shoelaces leaving it, and
− to all the shoelaces arriving to it, and on the lower stick, assign − to all the shoelaces leaving it,
and + to all the shoelaces arriving to it. �

The meaning of the sticks here is that the order of + and − is fixed. The shoelaces have ends
attached to them, but they do not wind around the sticks or interact with them in any other way.
In fact, we can assume that the entire tangle is in R3 between planes z = 1 and z = 0, and that
the sticks are parallel lines at heights 0 and 1.

We are originally interested in distinguishing knots, and partially achieve it by constructing a
strong invariant of oriented links. The main theorem we prove, using quantum groups and R-
matrices, is the following.

Theorem 1.2 (The Jones–Conway Polynomial). There is a unique map from the set of oriented
links in R3 to the polynomial ring Z[x, x−1, y, y−1], denoted by L 7→ PL(x, y), such that

(1) If L and L′ are isotopic, then PL = PL′.
(2) P	(x, y) = 1 where 	 is the unknot.
(3) (Skein relations) If (X+, X−, X0) is a Conway triple of oriented links, meaning a triple where

all their links have one distinguished crossing, with all orientations pointing down, such that
on that crossing X+ contains X with / on top of \, X− contains X with \ on top of /, and X0

contains ||, and the rest of the links are the same; then polynomials associated to them satisfy
the skein relation xPX+ − x−1PX− = yPX0.

Example 1.3. Let 	n be n disjoint copies of the unknot. Then

P	n(x, y) = (
x− x−1

y
)n−1P	(x, y).

Draw a picture with figure eights This diagram shows that xP	n − x−1P	n = yP	n+1 . �

We will first prove Theorem 1.2 assuming the following theorem, and then prove that theorem
in the second half of the talk. This theorem constructs a large family of numerical invariants of
knots.
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Theorem 1.4. Let q ∈ C∗, not a root of unity, and m > 1 a positive integer. There is a unique
map Φ = Φm,q from the set of oriented links in R3 to C such that

(1) If L and L′ are isotopic, then Φ(L) = Φ(L′),

(2) Φ(	) =
qm − q−m

q − q−1
6= 0,

(3) Given a Conway triple (L+, L−, L0), qmΦ(L+)− q−mΦ(L−) = (q − q−1)Φ(L0).

LetR = Z[x, x−1, y, y−1] andK be the set of isotopy classes of links. Set S = R[K]/(skein relations),
and consider it as an R-module.

Proposition 1.5. The map Q : R→ S defined by Q(1) = [	] is an isomorphism of R-modules.

Note that this implies Theorem 1.2 by setting PL(x, y) = Q−1([L]). All three axioms of the-
orem 1.2 are satisfied by definition of Q, which proves existence of the map L 7→ PL from the
Theorem 1.2. The uniqueness also follows directly: if there was another map L 7→ P ′L, it would
induce a different map Q′; but then Q and Q′ would be two different maps of free R-modules of
rank 1, with the same image of the generator, so they can’t be different.

Let us now prove Proposition 1.5, assuming Theorem 1.4.

Proof. Surjectivity: We will prove surjectivity by induction on the number of crossings of a link.
Let L be a link with m crossings. Pick one of them and let (X+, X−, X0) be the corresponding
Conway triple, with L = X+ or L = X−. Both X+ and X− have at most m crossings, and X0 has
< m crossings. Using skein relations, we conclude that, modulo elements with < m crossings, [L] is
equal to [L with one crossing switched] multiplied by some power of x. In other words, by induction
assumption and after finitely many such steps, the class of L is equivalent, modulo image(Q), to
the class of L with finitely many crossings switched. It is possible to turn any knot into 	m by a
finite number of switches of the form X+ ↔ X−. Furthermore, [	n] is in the image of Q by the
argument in Example 1.3. So, [L] is in the image of Q.

Note we used very little about the ring here, just that x and x−1 are invertible (not even that
they multiply to 1). This is because this part of the proof is essentially topological; it proves that
any link can be unknotted using Conway triples, in the sense that one can always find a Conway
triple consisting the desired link and two simpler links. This gives the algorithm for computing
the map L 7→ PL, by successive applications of the skein relations. The next part of the proof, the
injectivity of Q, shows that L 7→ PL is well defined by such an algorithm. It is algebraic and uses
the properties of the ring R in a significant way.

Injectivity: Define Φ′m,q : R[K] → R → C where the first map is Φm,q ⊗ R from Proposition 1.4

and the second map is the evaluation x 7→ qm and y 7→ q − q−1. This factors through the skein
relations, so we get a map Φ′′m,q : S → C. So if f ∈ kerQ, then f(qm, q − q−1) = 0 for all q,m with
q not a root of unity, which implies f = 0. �

This proves Theorem 1.2 assuming Theorem 1.4. The next section proves Theorem 1.4 using
representations of quantum groups. Let us show an example of an application of Theorem 1.2.

Example 1.6. Using the Jones–Conway polynomial, we can show that the trefoil knot L maybe
insert a picture of a trefoil knot? is not isotopic to its mirror image. Namely, calculating PL by
using skein relations, we get it is equal to

PL(x, y) = 2x−2 − x−4 + x−2y2.

To calculate the Jones–Conway polynomial of its mirror image L̃, we can either use the same

procedure or first prove that the polynomial of the mirror image P̃ of a link is always obtained
from the polynomial P of the link by substitution

P̃ (x, y) = P (x−1,−y).
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Either way, we get

P
L̃

(x, y) = 2x2 − x4 + x2y2 6= PL(x, y). �

2. Tensor categories

We will be using two tensor categories. One is V , the category of finite dimensional vector
spaces (secretly, we will a define structure on it that will reflect the structure of finite dimensional
representations of quantum groups on it). The other one is the category of tangles, defined in
Definition 1.1.

Definition 2.1. The tangle category T is defined as follows. The objects of T are finite
sequences of pluses and minuses, including the empty sequence. The space of morphisms from the
sequence S1 to S2 is the C-span of all possible tangles up to isotopy whose endpoints are labeled
by S1 on the lower wooden stick and S2 on the upper one. The tensor product on T is given
by concatenation of sequences. The composition of two maps is obtained by identifying wooden
sticks in the obvious way. The unit object is the empty sequence. The identity morphism on some
sequence of n signs is the tangle made of n parallel shoelaces, oriented to make attaching them at
the bottom and the top possible (not that the +− orientation was made consistently on top and
bottom stick in this way). �

Remember that in tensor categories, for objects U, V , one might want to look for an isomorphism
between tensor products U⊗V and V ⊗U . In some examples this isomorphism is given by a simple
flip, and in some examples it is more complicated, or might not exist.

Let us consider some examples.

Example 2.2. First, let us think of the category V . There is an obvious isomorphism U ⊗ V and
V ⊗ U , given by u ⊗ v 7→ v ⊗ u. Let us denote it by (12), as it permutes the first and the second
factor. It is then easy to see that, as operators from triple tensor product U ⊗ V ⊗W , they satisfy
(12)(23)(12) = (23)(12)(23) (as both are equal to the permutation (13)). In other words, the flip
satisfies the Yang–Baxter equation (we’ll call this the trivial solution). Note that the flip squares to
the identity. This induces a representation of the symmetric group on the n-tuple tensor products
U⊗n. (For more information, look up symmetric tensor categories). �

Example 2.3. Next, consider the category of finite dimensional representations of a quantum
group, for example A = Uq(sl2) or more generally Uq(g). It is clear that the simple flip (12) isn’t
an isomorphism in this category, as the action on the tensor product of two representations is given
by the coproduct, and the coproduct is not symmetric. However, in this case there is an invertible
element R ∈ A ⊗ A, called the universal R-matrix, such that conjugation by it interchanges the
coproduct with the opposite coproduct, and such that R12 = R ◦ (12) (the flip composed with the
action of R on the tensor product) is the isomorphism we require. One of the requirements for
this element is that R12R23R12 = R23R12R23 (in other words, we have a well-defined isomorphism
U ⊗ V ⊗ W → W ⊗ V ⊗ U). However, this R12 doesn’t square to 1. This doesn’t define a
representation of the symmetric group, but of its cover, the braid group. (For more information,
look up braided tensor categories).

Let us just mention that there is a choice involved here; we could also be looking for R such that
the role of (12) is played by (12) ◦R instead of R ◦ (12). �

Example 2.4. Finally, consider the category of tangles. For S1 and S2 two sequences of +−, we
can find an isomorphism S1⊗S2 → S2⊗S1; namely, the tangle where all the strings starting at S1

are parallel to each other, all the strings starting at S2 are parallel to each other, and strings from S1

all pass above all strings of S2. Notice that this indeed satisfies the Yang–Baxter equation, defines
the representation of the braid group on the n-tuple tensor products, and gives T the structure of
a braided tensor category. Notice also that this operator does not square to the identity. In fact,
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its inverse, the tangle where all strings from S1 pass below all strings of S2, is another solution of
the same problem, defining another structure of a braided tensor category on T . �

Let us also talk about the question of duals in tensor categories, on an example of representations
of a Hopf algebra A.

Example 2.5. Let V be a finite dimensional representation of a Hopf algebra A. Let S be the
antipode on A. On a vector space V ∗, one can define two structures of A-representation: for
a ∈ A, v ∈ V, ϕ ∈ V ∗, one can define (a.ϕ)(v) = ϕ(S(a).v) or (a.ϕ)(v) = ϕ(S−1(a).v). The
dual object should satisfy some compatibility axioms with respect to evaluation and coevaluation
morphisms. One of the two above definitions will satisfy:

evV : V ∗ ⊗ V → C and coevV : C→ V ⊗ V ∗

are morphisms in the category

and the other one will satisfy:

evV : V ⊗ V ∗ → C and coevV : C→ V ∗ ⊗ V
are morphisms in the category.

In general, it is impossible to get all four to be morphisms (except in symmetric cases).
Remember that as vector spaces, V and V ∗∗ are naturally identified. However, as representations

of A, if we use S to define the structure of the representation on V ∗, and then use S again to define
the structure on V as the double dual, we end up with two different actions of A on V : one given,
and the other one twisted by S2, which is an automorphism of A but might not be the identity. �

Although the category V can be equipped with the structure of a symmetric tensor category
by the usual flip and the identification V ∼= V ∗∗, nothing is stopping us from defining a more
interesting structure on it (as if we would in the above examples, when the vector spaces had the
additional structure of a representation of A).

Definition 2.6. An enhanced R-matrix on a finite-dimensional space V is an element c ∈
Aut(V ⊗ V ) satisfying the Yang–Baxter equation and an element µ ∈ Aut(V ) satisfying some
compatibility conditions with c. Morally, we think of c as a nontrivial replacement for the flip (12),
and of µ as the nontrivial replacement for the isomorphism V → V ∗∗. Note that c is called an
R-matrix, but is in fact more like a braiding: it only gives an isomorphism V ⊗ V → V ⊗ V for a
specific vector space V , while an actual R-matrix should give an isomorphism U ⊗ V → V ⊗U for
all pairs of objects U, V in the category. �

Lemma 2.7. Let q ∈ C, m a positive integer. On an m-dimensional vector space Vm with a fixed
basis vi, define c ∈ Aut(V ⊗ V ) and µ ∈ Aut(V ) as follows (0 ≤ i < j ≤ m):

µ(vi) = qm−2i+1vi

c(vi ⊗ vi) = q−m+1vi ⊗ vi
c(vi ⊗ vj) = q−mvj ⊗ vi
c(vj ⊗ vi) = q−mvj ⊗ vi + q−m(q − q−1)vj ⊗ vi.

This is an enhanced R-matrix on Vm.

Secretly, c is the action of the universal R-matrix and µ is the identification V ∼= V ∗∗ of Vm,
both defined for a vector representation Vm of Uq(slm). We will not prove the lemma as we didn’t
define the enhanced R-matrix with all the axioms, but it is possible to prove that it really comes
from the Uq(slm) structure, and that it fits the intuition given above. For details, see [2].

Lemma 2.8. For every finite dimensional space V with an enhanced R-matrix on it, there exists
a unique tensor functor F : T → V determined by the following properties:
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• F (+) = V , F (−) = V ∗

• F sends the tangle which is a crossing X with \ under / and both strings them oriented
down to the morphism c, and the X with / under \ maps to c−1.
• F sends a tangle shaped like ∩ and going to the right, i.e., mapping the −+ sequence to the

empty sequence, to a morphism evV : V ∗ ⊗ V → C.
• F sends a tangle shaped like U and going to the right, i.e., mapping the empty sequence to

+−, to a morphism coevV : C→ V ⊗ V ∗
• F sends a tangle shaped like ∩ and going to the left, i.e., mapping the +− sequence to the

empty sequence, to a morphism evV ∗ ◦ (µ⊗ idV ∗) : V ⊗ V ∗ → C.
• F sends a tangle shaped like U and going to the left, i.e., mapping the empty sequence to
−+, to a morphism (idV ∗ ⊗ µ−1) ◦ coevV ∗ : C→ V ∗ ⊗ V .

To prove the lemma, one needs to show that the morphisms in T given above, i.e., two crossings
X with both strings going down, two U and two ∩, generate the category. Then one needs to find
explicit relations they satisfy, and prove they are compatible with the axioms for the enhanced
R-matrix. Instead, let us just note this fits the intuition given above for µ and c: if ∩ represents
evaluation and ∩ going −+ to the empty sequence is given by evV : V ∗⊗V → C, then ∩ going +−
to the empty sequence should be given by the evaluation V ⊗ V ∗ → C. However, this evaluation is
not a morphism, so we need to first use µ⊗idV ∗ : V ⊗V ∗ → V ∗∗⊗V ∗, and then evV ∗ : V ∗∗⊗V ∗ → C.

Lemma 2.9. In particular, the enhanced R-matrix on Vm from Lemma 2.7 gives us, by Lemma
2.8 a functor Fm,q : T → V . This functor satisfies:

(1) For X+ the crossing with \ under / and both strings oriented down, X− the crossing with \
over / and both strings oriented down, and X0 two parallel strings oriented down,

qmF (X+)− q−mF (X−) = (q − q−1)F (X0).

(2) F (	) =
qm − q−m

q − q−1
= [m]q.

Proof. The first claim is proved by explicit calculation on a tensor product of two basis vectors. The
second claim is obtained by decomposing 	 as U going right and ∩ going left, and then calculating

that evV ∗ ◦ (µ⊗ idV ∗) ◦ coevV = tr(µ) = qm−q−m

q−q−1 . �

End of proof of Proposition 1.4. In 2.7 we have constructed explicit enhanced R-matrices for every
q and m. In 2.8 we have shown how to turn an explicit enhanced R-matrix to a functor T → V .
We are trying to prove proposition 1.4, which constructs invariants of links. Now do the following.

For any link L, first interpret it as a tangle (by just putting a sticks above it and a stick below
it, it’s not tied to any of them). Then interpret this tangle as a morphism in the tangle category,
from an empty sequence to an empty sequence. Then apply the functor Fm,q to it, obtaining a
morphism F (L) : C → C. In V , the only such morphisms (linear maps) are multiplications by a
constant. Call this constant Φm,q. We claim this is the required map Φm,q from Proposition 1.4.

It is clearly isotopy invariant because of the definition of the tangle category. We saw in lemma
2.9 that it maps 	 to [m]q. Finally, the skein relations for Conway triples follow from part 2) of
lemma 2.9 by tensoring left and right, and then composing above and below, with an arbitrary
tangle. �
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