THE PETER-WEYL THEOREM FOR CLASSICAL AND QUANTUM sly

DAVID JORDAN (LIVE TEXED BY STEVEN SAM)

Theorem 0.1 (Peter—Weyl). Let G be a simply-connected semisimple complex algebraic group.
Then
OGI=PV'RV
v

as (G, G)-bimodules, and where the sum is over all irreducible representations of G.

Let H be a Hopf algebra. If H is finite dimensional, then H* is also a Hopf algebra by dualizing
all operations from H. We run into issues if H is infinite-dimensional, but we can find a fix. For a
finite-dimensional H-module V', an element v € V| and f € V*, define a linear functional on H by
cto(u) = f(uv). Call these linear functionals matrix coefficients.

Proposition 0.2. (1) c¢f ¢y uw = oo 00w
(2) For a representation V', let {e1,...,en} be a basis and {e7, ..., e}} be a dual basis for V*. Then
A(cfﬂ)) = Zz Cf.ei ®Eei,v

(3) H® has an antipode S = S*.
(4) Suppose ¢: V. — W is a map of H-modules. Then cfuy = Corfp-

The algebra of matrix coefficients is the subalgebra H" of H* spanned by all matrix coeffi-
cients.

Recall that H* is an H — H-bimodule as follows. For f € H*, a,b € H, (a ® b)f is the function
satisfying:

(a®b)f(u) = f(S(a)ub).

This equips H° with a bimodule structure by restriction.
Proposition 0.3 (Peter—Weyl for semi-simple Hopf algebras). Suppose that H is semisimple,

i.e., every finite-dimensional representation is completely reducible. Then we have the following
decomposition of H° as a H — H-bimodule.

HO%@X*@X
X

where the sum is over all irreducible representations X.
Proof. Define
cysy =Clesy | fEVH, veV}c H.
We have a map
tx: XWX — ex- x
fRv = cpy

We claim that @y tx is an isomorphism. Clearly each tx is an inclusion. This map @xtx is
H x H-linear, and so Im(vx) N Im(ty) = 0 for all distinct X and Y appearing in the sum, since
they are non-isomorphic simple subrepresentaitons.

To show surjectivity, let V' be a finite-dimensional H-module. We have a natural map ¢y : V* X
V — H° and we need to show that Im(uy) C @xIm(tx) over all simple X’s.
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Decompose V' = @, X; into its irreducible components. Let jx,: X; — V be the inclusion
given by the direct sum, and let my,: V* — X be the dual map. Similarly, let jx:: X7 —
V* and 7xx: V — X; be the maps given by the decomposition V* = @X; We have two maps
1M, : VKX, = VRV and mx, K1: VK X; — X* X X;.

Write any pure tensor f X v € V* XV in terms of its irreducible components:

f= ijg (mx,(f), v= iji(ﬂxg (v))
Then, we have:

v(fXo) ZJX* 7, () W jx, (mx; (v))
= Z(?Txm(f)) X 7x; jx, (Tx;(v)),
applying Proposition [0.2(|4)). Each term in the sum for which X, 2 X, will be zero, since 7x:x jx, =

0, in that case. Thus, we have:
m(ty) C @Im(bxi),

as desired. (]

Recall that finite-dimensional representations of SLy are tensor generated by the defining repre-
sentation V,,, = CV. Let {e1,...,ex} be the standard basis. This implies that Ul(sly)? is generated
by Vi KV, . In other words, U(sly)° is generated by aj = Ceie;

Proposition 0.4.
U(sly) = O(SLy) = Cla} | 1 < i,j < N]/(det ~1).

Proof. The fact that the aé commute follows from the fact that the tensor product of representations
is symmetric, i.e., we have an isomorphism of G-modules:

T:VRV VRV,
a®Rb—b®a.

We consider the image of a vector v’ ® v/ Kvy, v, under the maps 7* Kid and id X7. We compute:

(0.5) Vi@ v Ko, @ v
atal =v7 @v' Ko, @ v @0 Ky ® vy, = alal,

The two images are equal in U(sly)" by Proposition . Thus, we have a};a{ = a{ a}; for all
1,7, k, 1, so the algebra is commutative. We have a surjection C[aé |1 <id,7 < N]— U(sly)°.
Define

x:1— VeN

2z Z Z(w Ew(1) @ & Cy(N)-
WEX N
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We get maps x* X 1: (V)Y K1 - 1*K1and 1X x: (V)N K1 — (V)N K VEN We apply
these to an element vV @ ---v! K1 € (V*)®VN K 1.

(0.6) vl )1
1=1K1 S (DN w)oN @ - @ vt Kluyq) ® -+ @ vy

Ew(—l)l(w)ai}u) e gy = det

Thus, applying Proposition , we get the equation det = 1, and this gives a surjection (C[a; |
1 <i,j < NJ/(det —1) — U(sly)?. To prove injectivity, one passes to an associated graded (we
omit the details). O

This is most useful when we want to compute Oy(SLy) := U,(sly)". Again, O,(SLy) is gener-
ated by the a’ = c.i ... However, the aj do not commute.
We have a braiding ¢ instead of 7. We introduce notation:

o VeV-aVeV
v; @ vj = ZRffw@vk.
k.l

We can write R explicitly as

Rf‘,f = qai,j(si,kéj,f + (q - q71)0<2 — ])5276(5]’]{:

where 0(t) is 1 if t > 0 and 0 otherwise. If we try to find the relations among the aé» using the
braiding instead of 7 in ((0.5)), we consider instead:

(0.7) v @ v Mo, @ v
S RI@uvm Ky, @0 S, RPvi@v Ko, ®
m,n ttmn k l 0,p s v Up © Vo
i m n op_Jj i
Zm,n Rinay'a Zo,p Ry apag

Thus, applying Propositon , we conclude:
Z R qlla] = Z aﬁa;Rﬁz.
n,m o,p
We also have a map
Xq: 1 — yoeN

1 > (=) o,y @ @ v

geEX N

and a g-determinant:
detg = > _ (=)™ Vagy - agy).

oEXN
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Using x4 in place of x in diagram , we can present O, (SLy ) as the non-commutative polynomial
ring generated by the a} subject to the above relations and dety = 1.

Example 0.8. O,(SLy) is generated by a, b, ¢, d subject to the relations
ac = qca, ab=qgba, cd=qda, bd=qdb, bc=cb, ad=da+ (¢—q Dbe, ad—q tbc=1
This is a flat deformation of O(SLy ). O



