LECTURE 7: REALIZTING U™ (g) USING LUSZTIG’S NILPOTENT VARIETY

GIORGIA FORTUNA, PETER TINGLEY AND ALEJANDRO MORALES

This will be the first in a series of lectures on a geometric way of realizing the algebra U~ (g), the
crystal B(co), highest weight representations of g, and crystals of these highest weight modules.
Note that, although we realize both the reprsentation of g and the crsytal of this representation,
we do not realize it as a representation of U,(]g). This can be done (see ), but is much more
difficult. The geometric spaces we use will be Lusztig’s varieties A(V') from [L]| (sometimes called
Lusztig’s nilpotent variety), and later on Nakajima’s varieties £(v, w) from [N]. Note that through-
out this story we assume that g is a symmetric Kac-Moody algebra. Some constructions can be
extended to the symmetrizable case by “folding” arguments based on the observation that U(g) for
symmetrizible g can be embedded into U(g’) for a related symmetric g'.

Today we define A(V'). Then we construct a product on &, M(A(V)/GL(V)) (i.e. on the sum of
the spaces of invariant constructible functions on A(V) as the dimension vector dim V' varies) so
that U(g) — @M (A(v)/ GL(V)).

1. QUIVERS AND PATH ALGEBRAS

Fix a symmetric (generalized) Cartan matrix and its associated Dynkin diagram. For example,

2 -2 -1 0
-2 2 -1 0

4
— O
-1 -1 2 -1 i /

0O 0 -1 2

1 2 3

Let @ be the diagram with two directed arrows for each edge (note that there are no loops). So
the above example would become

We denote by I the set of vertices, and by H the set of arrows. The path algebra CQ of () is the
algebra which as a vector space is just the C span of the paths in @, and where multiplication is
given by concatination. So for example

(2 3)(1 2)=1—>2—>3 and
(1 2)(2 3)=0.
Let m; be the path of length 0 at vertex i, which is a projection in CQ.

Fix an I graded vector space V =V; +---V,. Let
(1) E(V) := { representations of CQ on V' | V; = m;V'}

Explicitly E(V) := @,.;_,;, Hom(V;,V;), where the sum is over paths a from i to j.

ai—j
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2. THE NILPOTENT VARIETY A(V)

The variety E(V) is a bit too simple for our purposes. To define the nilpotenet variety we need,
we color one arrow corresponding to each edge of the underlying graph.

1 2 3 4
P ———
o Nom 0 o)

For each arrows a € H, let ¢(a) = 1 if a is black and —1 if a is red. Since the arrows come
in pairs corresponding the the edges of the underlying graph, we can define on involuton * on H
which interchanges the two edges in each pair (i.e. takes an arrow to the corresponding arrow with
reversed orientation).

Definition 2.1. The symplectic form on E(V) is
() B(V)x E(V) = C,(z,y) = tr>_ e(a)yata.

a

The moment map is

ai—

p:EWV) = gl(V), 2 := (Za)a amrows  — (Z 6(a)xaa:a>
el

where gl(V') := @, gl(V}).

Remark 2.1. (-,-) is in fact symplectic. The group GL(V) := H GL(V;) acts on E(V), and p is

=
the moment map for this action. So, the terminology is justified.

Definition 2.2. Set
A(V) := {z : u(z) = 0,z nilpotent?}.

Nilpotent here means that, for some N > 0, all paths in CQ longer then N steps are sent to 0 in
the representation x.

Theorem 2.2. [L, Theorem 12.9] A(V') is a Lagrangian subvariety of E(V'). In particular, it is
pure half dimensional.

Remark 2.3. (i) A(V) is not irreducible,
(ii) People often write A(v), only recording the graded dimension of V. One can get away with
this because most constructions people consider are GL(V') invariant.
(iii) A(V) is sometimes defined as representations of the completed preprojective algebra P :=
CQ/ Y, (—1)@aa on V, where the completion is with respect to path length. This is
easily seen to be equivalent.

3. REALIZATION OF U™ (g)

Denote by M(A(v)/GL(v)) the space of GL(v) = [[ GL(v;) invariant constructible functions on
A(V'). Note that, by GL(V) invariance, this space is determined up to canonical isomorphism by
the graded dimension v := dim;(V), so it is justified to forget the underlying vector space of A(V)
in the notation.

2The nilpotent condition is not needed in finite type
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To define the product of @, M(V(v)), we need to introduce a new variety: Fix V' and a dimension
vector v < dim V.

A(V;0') :={(z,u) : # € A(v), ux — invariant subrepresentation dim U = v'}.

Let v” = dimV — ¢/, and consider the following maps:
A(V,0") ) GL(V)

AV GL(V") x A(V") ] GL(V") oo (V) / GL(V)
Define * : M(A(V")) x M(A(W")) = M(A(v)) by f*g — (m)i(7])(f - g) where m means push
forward in the “six functors” sense. For us, it is enough to know the following explicit formulation:

for a function F' € M(A(V,v")/GL(V)),
(ran(F) = 3 2 x({fe 1] = mole, 0] = 2, Flu] = 23),
zeC

where x is Fuler characteristic.

Remark 3.1. The astute reader will point out that, in writing A(V)/GL(V), I am really defining
a stack, not a variety or scheme. However, in the present context, all operations we need can
be defined without this language: 77 of a GL(V’) x GL(V") invariant constructable function on
A(V")x A(V") is clearly a well defined GL(V') invariant function on A(V,v’). To make sense of (m2)r,
one needs only notice that the fibers of this map are of the form {V' C V : V' is x invariant }. This

is an ordinary variety (which looks much like a grassmannian), so its Euler characteristic makes
sense, and our explicit definition of (m2) is well defined.

One can check that * defines an associative product by showing that f (g h) and (f *g) % h) can
both be defined as (m2)17f, but with a new space is place of A(V,v")/ GL(V). This new space is
roughly 2 step flags of submodules of V.

Let v; = 1;, the dimension vector which in 1 in degree %, and 0 elsewhere.
Theorem 3.2. Define a map U™ (g) — P, M(A(v)/ GL(v)) by F; — function 1 on A(1;). This

is an embedding of associative algebras.

Idea of proof. First check Serre’s relations, which only involves rank 2 calculations. This is done
by hand, and is a calculation involving Euler characteristics of grassmannians. This show this map
is a map of algebras. It remains to show that the map is injective. This can be done in various
ways; one argument can be found in [L, Chapter 12]. O

4. EXERCISES

Exercise 1. For the quiver considered in the previous examples one can show that.
FiFs 4 F3F? = 2F, F3F.

For a slightly more difficult example, try
F2F + FoF? = 2F Ly Fy,

In general, show that Serres relations always hold.
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Exercise 2. One might guess that you could recover U, (g) by keeping track of the degree in
homology contributing to each terms in the Euler characteristic. Show that this does not work.
The case of the sl3 quiver should suffice.
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