
LECTURE 7: REALIZTING U
−(g) USING LUSZTIG’S NILPOTENT VARIETY

GIORGIA FORTUNA, PETER TINGLEY AND ALEJANDRO MORALES

This will be the first in a series of lectures on a geometric way of realizing the algebra U
−(g), the

crystal B(∞), highest weight representations of g, and crystals of these highest weight modules.
Note that, although we realize both the reprsentation of g and the crsytal of this representation,
we do not realize it as a representation of Uq(]g). This can be done (see ), but is much more
difficult. The geometric spaces we use will be Lusztig’s varieties Λ(V ) from [L] (sometimes called
Lusztig’s nilpotent variety), and later on Nakajima’s varieties L(v, w) from [N]. Note that through-
out this story we assume that g is a symmetric Kac-Moody algebra. Some constructions can be
extended to the symmetrizable case by “folding” arguments based on the observation that U(g) for
symmetrizible g can be embedded into U(g�) for a related symmetric g�.

Today we define Λ(V ). Then we construct a product on ⊕vM(Λ(V )/GL(V )) (i.e. on the sum of
the spaces of invariant constructible functions on Λ(V ) as the dimension vector dimV varies) so
that U(g) �→ ⊕vM(Λ(v)/GL(V )).

1. Quivers and path algebras

Fix a symmetric (generalized) Cartan matrix and its associated Dynkin diagram. For example,




2 −2 −1 0
−2 2 −1 0
−1 −1 2 −1
0 0 −1 2



 ⇐⇒
1 2 3 4

Let Q be the diagram with two directed arrows for each edge (note that there are no loops). So
the above example would become

1 2 3 4

We denote by I the set of vertices, and by H the set of arrows. The path algebra CQ of Q is the
algebra which as a vector space is just the C span of the paths in Q, and where multiplication is
given by concatination. So for example

( 2 �� 3 )( 1 �� 2 ) = 1 �� 2 �� 3 and

( 1 �� 2 )( 2 �� 3 ) = 0.

Let πi be the path of length 0 at vertex i, which is a projection in CQ.

Fix an I graded vector space V = V1 + · · ·Vn. Let

(1) E(V ) := { representations of CQ on V | Vi = πiV }
Explicitly E(V ) :=

�
a:i→j Hom(Vi, Vj), where the sum is over paths a from i to j.
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2. The Nilpotent variety Λ(V )

The variety E(V ) is a bit too simple for our purposes. To define the nilpotenet variety we need,
we color one arrow corresponding to each edge of the underlying graph.

1 2 3 4

For each arrows a ∈ H, let �(a) = 1 if a is black and −1 if a is red. Since the arrows come
in pairs corresponding the the edges of the underlying graph, we can define on involuton · on H

which interchanges the two edges in each pair (i.e. takes an arrow to the corresponding arrow with
reversed orientation).

Definition 2.1. The symplectic form on E(V ) is

�·, ·� : E(V )× E(V ) → C, (x, y) → tr

�

a

�(a)yaxa.

The moment map is

µ : E(V ) → gl(V ), x := (xa)a arrows →
�
�

a:i→
�(a)xaxa

�

i∈I

where gl(V ) :=
�

i gl(Vi).

Remark 2.1. �·, ·� is in fact symplectic. The group GL(V ) :=
�

I∈i
GL(Vi) acts on E(V ), and µ is

the moment map for this action. So, the terminology is justified.

Definition 2.2. Set
Λ(V ) := {x : µ(x) = 0, x nilpotent2}.

Nilpotent here means that, for some N > 0, all paths in CQ longer then N steps are sent to 0 in
the representation x.

Theorem 2.2. [L, Theorem 12.9] Λ(V ) is a Lagrangian subvariety of E(V ). In particular, it is
pure half dimensional.

Remark 2.3. (i) Λ(V ) is not irreducible,
(ii) People often write Λ(v), only recording the graded dimension of V . One can get away with

this because most constructions people consider are GL(V ) invariant.
(iii) Λ(V ) is sometimes defined as representations of the completed preprojective algebra P :=

CQ/
�

a:i→(−1)c(a)aa on V , where the completion is with respect to path length. This is
easily seen to be equivalent.

3. Realization of U−(g)

Denote by M(Λ(v)/GL(v)) the space of GL(v) =
�

GL(vi) invariant constructible functions on
Λ(V ). Note that, by GL(V ) invariance, this space is determined up to canonical isomorphism by
the graded dimension v := dimI(V ), so it is justified to forget the underlying vector space of Λ(V )
in the notation.

2The nilpotent condition is not needed in finite type
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To define the product of
�

v M(V (v)), we need to introduce a new variety: Fix V and a dimension
vector v� < dimV .

Λ(V ; v�) := {(x, u) : x ∈ Λ(v), ux− invariant subrepresentation dimU = v
�}.

Let v�� = dimV − v
�, and consider the following maps:

Λ(V, v�)/GL(V )
π2

��❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘
π1

��❤❤❤❤
❤❤❤❤

❤❤❤❤
❤❤❤❤

❤❤

Λ(V �)/GL(V �)× Λ(V ��)/GL(V ��) �� Λ(V )/GL(V )

Define ∗ : M(Λ(v�)) × M(Λ(v��)) → M(Λ(v)) by f ∗ g �→ (π2)!(π∗
1
)(f · g) where π! means push

forward in the “six functors” sense. For us, it is enough to know the following explicit formulation:
for a function F ∈ M(Λ(V, v�)/GL(V )),

(π2)!(F ) =
�

z∈C
z χ({[x, u] : π2[x, u] = x, F [x, u] = z}),

where χ is Euler characteristic.

Remark 3.1. The astute reader will point out that, in writing Λ(V )/GL(V ), I am really defining
a stack, not a variety or scheme. However, in the present context, all operations we need can
be defined without this language: π

∗
1
of a GL(V �) × GL(V ��) invariant constructable function on

Λ(V �)×Λ(V ��) is clearly a well defined GL(V ) invariant function on Λ(V, v�). To make sense of (π2)!,
one needs only notice that the fibers of this map are of the form {V � ⊂ V : V � is x invariant }. This
is an ordinary variety (which looks much like a grassmannian), so its Euler characteristic makes
sense, and our explicit definition of (π2)! is well defined.

One can check that ∗ defines an associative product by showing that f ∗ (g ∗ h) and (f ∗ g) ∗ h) can
both be defined as (π2)!π∗

1
, but with a new space is place of Λ(V, v�)/GL(V ). This new space is

roughly 2 step flags of submodules of V .

Let vi = 1i, the dimension vector which in 1 in degree i, and 0 elsewhere.

Theorem 3.2. Define a map U−(g) �→
�

v M(Λ(v)/GL(v)) by Fi �→ function 1 on Λ(1i). This
is an embedding of associative algebras.

Idea of proof. First check Serre’s relations, which only involves rank 2 calculations. This is done
by hand, and is a calculation involving Euler characteristics of grassmannians. This show this map
is a map of algebras. It remains to show that the map is injective. This can be done in various
ways; one argument can be found in [L, Chapter 12]. �

4. Exercises

Exercise 1. For the quiver considered in the previous examples one can show that.

F
2
2F3 + F3F

2
2 = 2F2F3F2.

For a slightly more difficult example, try

F
2
1F2 + F2F

2
1 = 2F1F2F1.

In general, show that Serres relations always hold.
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Exercise 2. One might guess that you could recover U
−
q (g) by keeping track of the degree in

homology contributing to each terms in the Euler characteristic. Show that this does not work.
The case of the sl3 quiver should suffice.

.
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