1. Gelfand–Tsetlin bases

1.1. General construction. Recall: the finite-dimensional irreducible polynomial representations of $\text{GL}_n(\mathbb{C})$ are in bijection with partitions $\lambda = (\lambda_1 \geq \cdots \geq \lambda_n \geq 0)$, which we represent as Young diagrams with at most n rows. Call this latter set Y_n. Let V_λ denote the representation corresponding to λ. Our goal is to construct nice bases for V_λ that are well-behaved with respect to restrictions and tensor products.

The idea is work by induction. Suppose that we have a Gelfand–Tsetlin (G-T) basis for all irreducible representations of GL_{n-1}. We consider the restriction of V_λ to GL_{n-1}, decompose it as a direct sum of irreducible representations, and take the Gelfand–Tsetlin basis of each of these. This gives a basis for V_λ itself. Of course, we have to make a choice when we decompose V_λ into irreducible representations of GL_{n-1}, so the notion of Gelfand-Tsetlin basis can only be well defined up to such choices. However, in this case the decomposition is multiplicity free, so in the end we get a basis for $V(\lambda)$ which is well defined up to rescaling each basis vector.

1.2. Combinatorics.

Definition 1.1. For $\lambda \in Y_n$ and $\lambda' \in Y_{n-1}$ with $\lambda' \subset \lambda$, say that λ/λ' is a *horizontal strip* if each column in λ/λ' has at most 1 element.

Then we have

$$V_\lambda \cong \bigoplus_{\lambda'/\lambda' \text{ horizontal strip}} V_{\lambda'}$$

as GL_{n-1}-representations.

Definition 1.2. A *GT-pattern* is a triangular array of numbers $(\lambda_{ij})_{n \geq i \geq j \geq 1}$ such that $\lambda_{ij} \geq \lambda_{i-1,j} \geq \lambda_{i,j+1}$. These are in bijection with semistandard Young tableaux by considering the successive shapes

$$\lambda_1, \bullet \subseteq \lambda_2, \bullet \subseteq \cdots \subseteq \lambda_n, \bullet$$

and labeling the boxes in $\lambda_i, \bullet \setminus \lambda_{i-1}, \bullet$ with the number i. Call this bijection τ.

The G-T basis of V_λ is parametrized by GT-patterns with $\lambda_{n, \bullet} = \lambda$. To describe the restriction $V_\lambda \downarrow_{\text{GL}_{n-1}}$, take the union of GT-bases for GL_{n-1} representations, where you forget about the top row.

1.3. Orthogonal Lie algebras. The representations of \mathfrak{so}_{2n+1} are parametrized by sequences $\lambda_1 \geq \cdots \lambda_n \geq 0$ which are either all integers or all half-integers and for \mathfrak{so}_{2n}, they are parametrized by $\lambda_1 \geq \cdots \lambda_{n-1} \geq |\lambda_n|$ which are either all integers or all half-integers.

The branching rules are

$$V_\lambda \downarrow_{\mathfrak{so}_{2n+1}} \cong \bigoplus V_\mu$$

where $\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \cdots \geq \lambda_n \geq |\mu_n|$ and

$$V_\lambda \downarrow_{\mathfrak{so}_{2n-1}} \cong \bigoplus V_\mu$$

Date: April 8, 2011.
where \(\lambda_1 \geq \mu_1 \geq \cdots \geq \mu_{n-1} \geq |\lambda_n| \).

Once again the branchings are multiplicity free, so one can define analogues of G-T bases
and G-T patterns in this case.

2. G-T bases compatible with crystal structure

Now consider \(U_q(\mathfrak{gl}_n(\mathbb{C})) \). One can construct GT bases for the irreducible representations \(V_\lambda \), just
as for \(\text{GL}_n \), which are well defined up to individual rescaling of the basis vectors. Also, consider
the vector representation \(V \). It is well known that \(V^{\otimes N} \cong \bigoplus_T V_{\text{shape}(T)} \), where \(T \) ranges over standard
Young tableaux with \(N \) nodes and at most \(n \) rows.

The main result states the following: there is an appropriate decomposition of choice of \(V^{\otimes N} \)
into irreducible representations \(V(T_R) \) corresponding to each standard Young tableau \(T \), and an
appropriate normalization of the G-T bases for each of these representations, such that when \(q \to 0 \),
the G-T basis vector approach the standard basis vectors of \(V^{\otimes N} \). For \(q^{-1} \to 0 \), the same is true, but
we use different decompositions \(V(T_L) \), and a different normalization of the G-T basis elements. In
modern language, this occurs because both the G-T bases (correctly normalized) and the standard
basis of \(V^{\otimes N} \) are crystal bases. In fact, the results discussed in this section, due to Date, Jimbo
and Miwa [3], were an important precursor to the notion of a crystal basis.

The remainder of this section is occupied with making these statements precise and providing a
proof.

2.1. Action of \(U_q(\mathfrak{gl}_n(\mathbb{C})) \) on G-T basis. \(U_q(\mathfrak{gl}_n(\mathbb{C})) \) is generated by \(q^{\lambda/2}, q^{-\lambda/2}, X_j^+, X_j^- \). Then
denoting the Gelfand-Tsetlin basis elements of the \(U_q(\mathfrak{gl}_n(\mathbb{C})) \)-module \(V_\lambda \) by \(|m\rangle \), the action of
the above generators is given as follows:

\[
q^{\lambda/2}|m\rangle = q^{\sum_{i=1}^j m_{ij} - \sum_{i=1}^{j-1} m_{i,j-1} - \sum_{i=1}^{j-1} m_{ij} - \sum_{i=1}^j m_{i,j-1}}|m\rangle
\]

\[
X_j^+|m\rangle = \sum_{j} c_j(m, m')|m'\rangle
\]

\[
X_j^-|m\rangle = \sum_{j} c_j(m, m')|m'\rangle,
\]

where \(c_j(m, m') \neq 0 \) only if there exists \(i \) such that \(m'_{ij} = m_{ij} - 1 \), \(m'_{ab} = m_{ab} \forall (a, b) \neq (i, j) \), in
which case the coefficients are rather complicated to write down. The highest weight vector is given
by the Gelfand-Tsetlin pattern with first row \((\lambda_1, \cdots, \lambda_n)\), second row \((\lambda_1, \cdots, \lambda_{n-1})\) and so on.

2.2. The embedding \(V_W \subset V_Y \otimes V \). Say \(Y \to W \) if \(W \) is obtained from \(Y \) by adding a box
in the \(\mu \)th row. We will now describe explicitly the decomposition \(V_Y \otimes V \cong \bigoplus_Y \bigoplus_W V_W \). Given
\(|m\rangle \in GT(W) \), define \(|m'\rangle = |m; i_1, n, \cdots, i_j \rangle \in GT(Y) \) (note the slight abuse of notation: \(|m'\rangle \) is
not a single element), where for \(j \leq k \leq n, 1 \leq i_k \leq k \), \(m'_{ik} = m_{ik} - 1 \) if \(j \leq k \leq n, i = i_k \) and
\(m'_{ik} = m_{ik} \) otherwise. Then the above branching rule is determined explicitly by the following,
where the coefficients \(w_q(m; i_1, \cdots, i_j) \) are known as Wigner coefficients.

\[
|m\rangle = \sum_{j=1}^n \sum_{i_n = \mu, i_{n-1}, \cdots, i_1} w_q(m; i_1, \cdots, i_j)|m; i_1, i_2, \cdots, i_j \rangle \otimes v_j
\]

2.3. RSK. We’ll define two bijections \(\alpha \) and \(\beta \) between \(\{1, \ldots, n\}^N \) and \(\prod_Y S(Y) \times T(Y) \)
ranging over all Young diagrams \(Y \) with \(N \) nodes and at most \(n \) rows, where \(S(Y) \) is the set of semistandard
Young tableaux of shape \(Y \), and \(T(Y) \) is the set of standard Young tableaux of shape \(Y \).

First, given a SSYT \(S \) and a number \(x \), define the \(\alpha \)-insertion \(S \leftarrow x \) to be the jdt rectification
of the shape obtained by adjoining \(x \) to the lower left corner of the tableau \(S \). Given a word
\(w = w_1 \cdots w_N \), define \(\alpha_S(w) = (((w_1 \leftarrow w_2) \leftarrow w_3) \cdots) \leftarrow w_N \), and let \(\alpha_T(w) \) record the growth
of the subsequent shapes. The bijection \(\alpha \) is then \(w \to (\alpha_S(w), \alpha_T(w)) \).
The second bijection β is defined in the same way, but where β-insertion, given a SSYT S and a number x, $S \downarrow x$ denotes the jdt rectification of the shape obtained by adjoining x to the upper right corner of the tableau S. Then $\beta_S(w)$ and $\beta_T(w)$ are defined as above. The importance of α-insertion and β-insertion to study the embedding $V_W \subset V_Y \otimes V$ is detailed in the below proposition:

Proposition 2.1. Given $Y \overset{\mu}{\to} W$, node added in the vth column. Fix $R \in S(W)$, and let $|m\rangle \in GT(W)$ be the corresponding Gelfand-Tsetlin pattern. Set

$$|m\rangle' = \begin{cases} \tau^{-1}(R \to \nu) & q \to 0 \\ \tau^{-1}(R \uparrow \mu) & q^{-1} \to 0 \end{cases}.$$

Here $R \to \nu$ (resp $R \uparrow \mu$) are the deletion procedures inverse to $S \leftarrow \mu$ and $S \downarrow \mu$. If the deletion throws away the letter j, then under the embedding $V_W \subset V_Y \otimes V$, we have:

$$\lim_{q^{-1} \to 0} |m\rangle = \lim_{q \to 0} (\pm 1)^{\mu-1}|m\rangle' \otimes v_j.$$

2.4. Proof of Main Theorem

First we explicitly describe the decomposition $V^\otimes N = \bigoplus_T V_T$ in two different ways: recall that T ranges over all standard tableau with N nodes and $\leq n$ rows. Given a fixed tableau T, suppose the entry k entry occurs in the position (μ_k, v_k). To describe the first decomposition $V^\otimes N \cong \bigoplus_T V(T_R)$, the embedding $V(T_R) \to V^\otimes N$ is defined inductively: let T_1 be the subtableau of T consisting of entries $\leq i$, then $V_{T_1} \cong V$, embed $V_{T_2} \to V_{T_1} \otimes V$, and so on until we get $V(T) = V(T_N) \leftarrow V_{T_{N-1}} \otimes V$; composing we get an embedding $V_T \to V^\otimes N$, and the direct sum decomposition $V^\otimes N \cong \bigoplus V(T_R)$ follows inductively from the decomposition $V_Y \otimes V \cong \bigoplus_Y W \otimes V_W$. The second decomposition $V^\otimes N \cong \bigoplus_T V(T_L)$ is defined similarly, but using a slightly different embedding $V(T_2) \to V \otimes V(T_1)$ and so on, using a modification of the Wigner coefficients.

With the notation developed above, for emphasis we now state in full detail the Main Theorem that was quickly mentioned above; and we will note that its proof follows directly from the Proposition above by induction on N.

Theorem 2.2. If $w = i_1i_2 \cdots i_N$, then $v_{i_1} \otimes \cdots \otimes v_{i_N} \in V^\otimes N \cong \bigoplus_T V(T_R)$, at the limit $q \to 0$, lies in the copy of V_{TR} where $T = \sigma_T(w)$, and is the Gelfand-Tsetl basis element corresponding to the SSYT $S = \alpha_S(w)$. A similar statement holds in the limit $q^{-1} \to 0$, where we instead use the decomposition $V^\otimes N \cong \bigoplus_T V(T_L)$. Thus in both cases, the union of the Gelfand-Tsetl basis coincides with the “obvious” bases of $V^\otimes N$.

This is clear using the proposition and using induction on N. Indeed, assume the statement for $N - 1$, consider what the vector $v_{i_1} \otimes \cdots \otimes v_{i_{N-1}}$ corresponds to under the decomposition, and then use the Proposition above to deduce the required statement.

References