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So far we have realized U−(g) geometrically in the sense that we have an injection U−(g) ↪→⊕
vM(Λ(v)/GL(v)) of U−(g) into the ring of GL(v) invariant constructible functions under a

geometrically defined product. We are interested in realizing the highest weight representations
V (λ). As representations of U−(g), these are of the form U−(g)/Iλ for some left ideal Iλ. We
would like to understand these quotients and the actions of the raising operators Ei in terms of
the geometry. The main obstacle is that, on some level, we have been working with the moduli
space Λ(v)/GL(v), which is not a variety at all, but rather a “stack.” The solution will be to
replace Λ(v)/GL(v) by a new space which is actually a variety, and retains the information of the
appropriate quotient of the ring

⊕
vM(Λ(v)/GL(v)).

This will be achieved in two ways. The first, which will be the topic of today’s lecture, replaces
Λ(v)/GL(v) with GrP(v;M), the “grassmannian” of subrepresentations of a fixed representation
M of the preprojective algebra. If M is injective, the result is a representation of U(g), and has a
natural subrepresentation isomorphic an irreducible representation V (λ).

The second approach uses Nakajima’s quiver varieties [N]. The two constructions lead to isomor-
phic varieties, although Nakajima’s construction has some advantages, since the resulting variety
is naturally a Lagrangian subvariety of a larger smooth symplectic variety.

1. naively trying to apply Ei

Recall that for dimV ′ = v + 1i, we defined

Λ(V ′; v) = {(x′, V ) | x′ ∈ Λ(V ′), V ⊂ V ′, dimV = v}.

and maps

Λ(v + 1i; v)/GL(v + 1i)

π2 **π1uu
Λ(v)/GL(v) Λ(v + 1i)/GL(v + 1i).

We also defined Fi := (π1)!(π2)∗ :M(Λ(v)/GL(v))→M(Λ(v+1i)/GL(v+1i)), whereM(Λ(v)/GL(v))
is the space of GL(V )-invariant constructible functions on Λ(V ) for some vector space V with
dimV = v. Ei and Fi are supposed to be pretty symmetric, so a natural guess would be to define
Ei = (π1)!π

∗
2. But there are some problems, as the following example illustrates.

Example 1.1. Take g = sl2 so the quiver Q is a single vertex. Consider the case v = 0, so that Λ(v)
and Λ(v + 1; v) are both points. Then Λ(1; 0)/GL(1) = pt/C∗. So the fiber of π1 over Λ(0) = pt
is pt/C∗. We need to take this Euler characteristic in defining (π1)!π

∗
2, so we are in some trouble.

We might try to make sense of this in terms of stacks to compute Euler characteristics. In fact,
stacky people say χ(pt/C∗) = χ(CP∞) = ∞, which is kind of ok as we might think of this as
the limiting representation as the highest weight gets large, but I’m not sure this is a meaningful
answer. Things only get worse if you try to apply E to M(Λ(v)/GL(v) for v > 1. �
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2. Quiver grassmannian approach

One way to deal with the problem displayed in Example 1.1 is to work inside a fixed “universal”
representation M .

Example 2.1. Continuing with the sl2 example: Fix a vector space M of dimension m, thought of
as a representation of the quiver with one node and no arrows. Instead of working with Λ(v)/GL(v),
we work with the variety of subrepresentations of M , which is just the grassmannian Gr(v,M).
Furthermore, we replace Λ(v + 1, v) with the 2-step flag variety Fl(v + 1, v;M). Thus

Λ(v′; v)/GL(v′)

π2 ((π1vv
Λ(v)/GL(v) Λ(v′)/GL(v′)

becomes
Fl(v + 1, v;M)

π2 ((π1ww
Gr(v;M) Gr(v + 1;M).

The fiber of π1 over any point is Pm−v+1 and the fiber of π2 is Pv. One can then calculate that

(π2)!π
∗
11Gr(v;M) = v1Gr(v+1;M) and (π1)!π

∗
21Gr(v+1;M) = (u− v)1Gr(v;M),

where 1Gr(v;M) denotes the constant function 1 on Gr(v;M). It follows that span{1Gr(v;M) : 0 ≤
v ≤ u} is the standard m + 1 dimensional representation of U(sl2), where we define the action of
the generators by Fi → (π2)!π

∗
1 and Ei → (π1)!π

∗
2. �

So we have realized the finite dimensional irreps of U(sl2) geometrically, achieving our goal in
the simplest case. Now consider the double quiver of a general symmetric Cartan matrix (not
necessarily of finite type). Fix a representation M of the completed preprojective algebra P. For
each dimension vectors v′ > v, let GrP(v,M) be the variety of v-dimensional subrepresentations of
M , let FlP (v′, v;M) be the variety of two step flags of subrepresentations of dimensions v′ and v,
and letM(GrP(v,M)) be the space of constructible functions on GrP(v,M). Then we can consider
the correspondence

FlP(v + 1i, v;M)

π2 ))
π1vv

GrP(v;M) GrP(v + 1;M),

and attempt to define an action of U(g) on ⊕vGrP(v;M) by

(2.2) Fi → (π2)!π
∗
1 and Ei → (π1)!π

∗
2.

It is not always true that this defines an action of U(g) on ⊕vGrP(v;M). However, if M = q is
injective, it does. In fact, we can make the following somewhat more precise claim:

Theorem 2.3. Let Si denote the simple module for P with dimension vector 1i (i.e. 1 over node i,
and zero over all other nodes). Fix a highest weight λ =

∑
i aiωi, where ωi in the ith fundamental

weight. Let q be the injective hull of S := ⊕iS⊕aii . Then Equation (2.2) defines an action of U(g)
on ⊕vGrP(v; q).

Remark 2.4. If the underlying Dynkin diagram is not of finite type, then the injective module q
is infinite dimensional. However, one can show that, for any finite v, Gr(v; q) is a finite dimensional
variety, and the theory still works in this case.
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I believe theorem 2.3 can be proven by directly checking all the defining relations of U(g), but
proofs that exist in the literature all work by showing that GrP(v; q) is isomorphic to a variety
of Nakajima [N], and appealing to known results in that case. See [L, S] for the proof of this
isomorphism in a slightly different content (they use projectives instead of injectives and also
need to impose some conditions on the representations in the grassmannians) and [ST] for the
isomorphism in the present setting.

Remark 2.5. In fact, the operators Fi make sense on ⊕vM(GrP (v,M)) for any M , and define an
action of U(g) on this space. The submodule generated by the function 1 on the point Gr(0,M) is
always contained in the space of functions which have the property that they are equal on subrep-
resentations which are isomorphic as representations (i.e. isomorphic, but where the isomorphism
is not require to extend to an automorphism of M). In general, the operators Ei do not respect this
subvariety, essentially because subrepresentations being isomorphic is not equivalent to quotients
being isomorphic. However, if M = q is injective, the Ei do preserve this space.

Remark 2.6. It is instructive to prove that Equation (2.2) does not define an action of U(g) on
⊕PM(Gr(v,M)) in a particular case. For instance, this fails for M = S1 ⊕ S1 ⊕ S2 in the A2 case.

Remark 2.7. Morally, the point of the injective assumption in Theorem 2.3 is that, if V ⊂ q is a
subrepresentation of q, then all non-trivial extensions of V are isomorphic to subrepresentations of
q. Thus GrP(v, q) “sees” enough information about the category of representations of P.

Example 2.8. The injective module q from Theorem 2.3 is actually the direct sum of a copy of qi

for each copy of Si in its socle, where qi is the injective hull of Si. Often these qi are very simple.
For instance, in type A4, one has

Q =

q1 =

q2 =

q3 =

q4 =
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Here each node represents a basis vector in Vi, where i is the node of the quiver directly above it,
and each arrow represents a matrix element of 1 for the corresponding arrow of the quiver. All
other matrix elements are 0. �

Next time we will discuss Nakajima’s construction [N], and how the two constructions are related.
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