
HALL ALGEBRA REALIZATIONS OF QUANTUM GROUPS
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1. Quivers

Fix a field K and let Q = (Q0, Q1) be a loopless quiver. We consider finite-dimensional rep-
resentations of Q over K. Each representation has a naturally associated dimension vector. Let
∆ = (aij) be the Cartan matrix associated to the underlying graph of Q and let g = g(∆) be the
associated Kac–Moody algebra.

Theorem 1.1 (Kac). Assume K is algebraically closed. The dimension vectors of the indecompos-
able representations of Q are precisely the positive roots of g. Furthermore, there is a unique such
indecomposable if and only if the positive root is real.

In particular, Q has finitely many indecomposables if and only if the underlying graph of Q is
a disjoint union of copies of type ADE graphs. In this case, the above theorem is true for any
field. Hence we can identify the isomorphism class of a representation over a Dynkin quiver with a
function from the positive roots of ∆ to the nonnegative integers.

The path algebra of Q is hereditary, so Exti(M,N) = 0 for all modules M,N and i > 1. Given
two representations M,N , define the Euler form

〈M,N〉 = dimK Hom(M,N)− dimK Ext1(M,N).

This descends to the Grothendieck group K0(Q) of Q, so the above number only depends on the
dimensions of M and N . Furthermore, the symmetrized Euler form

(M,N) = 〈M,N〉+ 〈N,M〉

recovers the Cartan pairing associated with the root system ∆.
For each vertex i ∈ Q0, let Si denote the simple module of Q of dimension 1 concentrated at i.

2. Hall algebras

Now assume that K is a finite field. Given representations M,N1, . . . , Nt, let FMN1,...,Nt
be the

set of filtrations

M = M0 ⊃M1 ⊃ · · · ⊃Mt = 0

such that Mi−1/Mi
∼= Ni for i = 1, . . . , t and let FMN1,...,Nt

be the cardinality of FMN1,...,Nt
.

Theorem 2.1 (Ringel [4]). Let Q be a Dynkin quiver. Given representations M,N1, . . . , Nt, there
is a polynomial PMN1,...,Nt

such that PMN1,...,Nt
(#K) = FMN1,...,Nt

.

The polynomials P are the Hall polynomials.
Let H(Q) be the free Z[q]-module spanned by isomorphism classes of representations of Q. For

a dimension vector d, let H(Q)d be the submodule generated by representations of dimension d, so
that we have a NQ0-grading

H(Q) =
⊕
d

H(Q)d
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We can put a product on H(Q) via

[N1] � [N2] =
∑
M

PMN1,N2
(q)[M ].

Then H(Q) becomes an associative, unital, graded Z[q]-algebra.

Example 2.2. Consider the quiver 1→ 2. Let M be the isomorphism class of the indecomposable
representation of dimension (1, 1). We have

[S1] � [S1] � [S2] = (q + 1)[2S1] � [S2] = (q + 1)([2S1 ⊕ S2] + [M ⊕ S1])
[S1] � [S2] � [S1] = ([S1 ⊕ S2] + [M ]) � [S1] = (q + 1)[2S1 ⊕ S2] + [M ⊕ Si]
[S2] � [S1] � [S1] = [2S1 ⊕ S2]

(we just use that #P1 = q + 1). Similarly, one has

[S1] � [S2] � [S2] = (q + 1)([M ⊕ S2] + [S1 ⊕ 2S2])

[S2] � [S1] � [S2] = [M ⊕ S2] + (q + 1)[S1 ⊕ 2S2]

[S2] � [S2] � [S1] = (q + 1)[S1 ⊕ 2S2].

This implies the relations

[S1] � [S1] � [S2]− (q + 1)[S1] � [S2] � [S1] + q[S2] � [S1] � [S1] = 0

q[S2] � [S2] � [S1]− (q + 1)[S2] � [S1] � [S1] + [S1] � [S2] � [S2] = 0. �

We see from this example that the relations between [S1] and [S2] depend on the direction of the
arrow. If we want to relate this to quantum groups, we would want to remove this dependency. To
do this, we modify the product �.

Let A = Z[v, v−1] and set q = v2. Let H∗(Q) = H(Q) ⊗Z[q] A. We define a multiplication on
H∗(Q) via

[N1] ∗ [N2] = v〈dimN1,dimN2〉[N1] � [N2].

This H∗(Q) is an associative, unital, graded A-algebra. A direct computation gives some relations.

[Si] ∗ [Sj ]− [Sj ] ∗ [Si] = 0 if aij = 0,

[Si] ∗ [Si] ∗ [Sj ]− (v + v−1)[Si] ∗ [Sj ] ∗ [Si] + [Sj ] ∗ [Si] ∗ [Si] = 0 if aij = −1.

Let n+ be the upper triangular part of g generated by Ei and let Uq(n+) be the subalgebra of the

quantum group of g generated by the divided powers E
(n)
i . We see that we can define an A-algebra

homomorphism

η : Uq(n+)→ H∗(Q)

Ei 7→ [Si]

Theorem 2.3 (Ringel [5]). The map η is an isomorphism.

2.1. Canonical bases. Given a module M , define 〈M〉 = qdimK End(M)−dimK M [M ] where dimKM
means the sum of the entries of the dimension vector of M . We define a bar involution on H∗(Q)
by v̄ = v−1 and ¯[Si] = [Si]. This is just the image under η of the bar involution on Uq(n+).

Let α be a function from the positive roots of ∆ to N. There is a uniquely associated module
M(α) given by taken a direct sum of the indecomposable modules associated to each positive root
with multiplicities specified by α.

Choose a total ordering on the positive roots Φ+ in such a way that Hom(M(r),M(r′)) 6= 0
implies that r ≤ r′. Then write them in order r1 < r2 < · · · . For functions α, β : Φ+ → N, say that
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β < α if there exists j such that β(ri) = α(ri) for all i < j and β(rj) > α(rj). For each α, there is

a unique element C(α) ∈ H∗(Q) such that C(α) = C(α) and

C(α) = 〈M(α)〉+
∑
β<α

uα,β〈M(β)〉

for uα,β ∈ v−1Z[v−1]. Applying η−1 to the collection of C(α) gives the canonical basis of Uq(n+).

2.2. Complements. Green [1] introduced a coproduct structure on H∗(Q)Q which makes H∗(Q)Q
into a sort of “twisted bialgebra” (here it becomes relevant that Ext2 is identically 0). Given a
module [M ], we set aM = #Aut(M) and

∆([M ]) =
∑
N1,N2

v〈dimN1,dimN2〉aN1aN2

aM
PMN1,N2

(q)[N1]⊗ [N2]

ε([M ]) = δM,0.

H∗(Q)Q is not a bialgebra, since the map ∆ is not a morphism of algebras when H∗(Q)Q⊗H∗(Q)Q
is given the usual tensor product algebra structure. However, if the multiplication on H∗(Q)Q ⊗
H∗(Q)Q is twisted as follows:

([M1]⊗ [N1]) · ([M2]⊗ [N2]) = v〈dimN1,dimM2〉([M1] ∗ [M2])⊗ ([N1] ∗ [N2]),

then ∆ does become an algebra morphism.

One can get an honest bialgebra by enlarging H∗(Q)Q to H̃(Q) = H∗(Q)Q⊗Q[q]Q[K0(Q)] where
K0(Q) is the usual Grothendieck group of Q, and Q[K0(Q)] denotes its group algebra (which
is isomorphic to the ring of Laurent polynomials in #Q0 variables). Given α ∈ K0(Q), we let

kα ∈ Q[K0(Q)] denote the corresponding element. Then we define a multiplication on H̃(Q) via

kα[M ] = v〈α,dimM〉[M ]kα.

We define a new comultiplication on this enlarged algebra by

∆([M ]kα) =
∑
N1,N2

v〈dimN1,dimN2〉aN1aN2

aM
PMN1,N2

(q)[N1]kdimN2+α ⊗ [N2]kα.

With these definitions, H̃(Q) is a bialgebra. Xiao [7] introduced an antipode S so that H̃(Q)
becomes a Hopf algebra. Given a module M and an integer r, let SM,r denote the set of strict
filtrations L• of the form

0 6= Lr $ Lr−1 $ · · · $ L2 $ L1 = M.

We define

S([M ]kα) = k−1dimM+α(
∑
r≥1

∑
L•∈SM,r

(−1)r

aM
(
r∏
i=1

v〈dimLi/Li+1,dimLi+1〉aLi/Li+1
)[L1/L2] ∗ [L2/L3] ∗ · · · ∗ [Lr])

Then η can be extended to an isomorphism of Hopf algebras H̃(Q)→ Uq(h⊕ n+).
Much of the above extends to the case of an arbitrary loopless quiver Q, but some changes are

necessary. First, in general, an indecomposable representation need not be indecomposable after
base change of the field. The existence of Hall polynomials is known for affine quivers [2] but not
in general. Second, one considers only nilpotent representations of Q (otherwise, for example, the
Grothendieck group is not generated by the representations Si). However, one can still define a
map like η for any specialized value of q. Instead of being an isomorphism, η in general is an
embedding of Hopf algebras [6, Theorem 3.16].

Finally, let us mention the work of Peng and Xiao [3] which allows one to reconstruct the universal
enveloping algebra of g (in finite type) using a triangulated category associated with the quiver.
More precisely, letting T be the shift functor, this is the orbit category of the derived category of
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representations of Q where we have set T 2 = 1. However, one does not get quantized enveloping
algebra from this construction.
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