
A MINUS SIGN THAT USED TO ANNOY ME BUT NOW I KNOW WHY

IT IS THERE

(TWO CONSTRUCTIONS OF THE JONES POLYNOMIAL)

PETER TINGLEY

Abstract. We consider two well known constructions of link invariants. One uses skein
theory: you resolve each crossing of the link as a linear combination of things that don’t
cross, until you eventually get a linear combination of links with no crossings, which you
turn into a polynomial. The other uses quantum groups: you construct a functor from a
topological category to some category of representations in such a way that (directed framed)
links get sent to endomorphisms of the trivial representation, which are just rational functions.
Certain instances of these two constructions give rise to essentially the same invariants, but
when one carefully matches them there is a minus sign that seems out of place. We discuss
exactly how the constructions match up in the case of the Jones polynomial, and where the
minus sign comes from. On the quantum group side, we are led to use a non-standard ribbon
element.
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1. Introduction

These expository notes begin by briefly explaining two constructions of the Jones polynomial
(neither of which is the original construction due to Jones [J]). The first is via the skien-
theoretic construction of the Kauffman bracket [K]. The second is as a Uq(sl2) quantum
group link invariant. This second construction uses a circle of idea developed by a number of
authors starting in the late 1980s (see [T] and references therein). We attempt to give some
explanation of how quantum group knot invariants work in general, but only fully develop the
simplest case. We then discuss how the two constructions are related. Much of the content of
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2 PETER TINGLEY

these notes can be found in, for instance, [O, Appendix H]. The main difference here is that
we use the non-standard ribbon element from [ST].

The Kauffman bracket is an isotopy invariant of framed links. The functor used in the quan-
tum group construction involves a category where morphisms are tangles of directed framed
ribbons. In particular, endomorphisms of the trivial representations are directed framed links,
and the image of such a link is a Laurent polynomial, which is the invariant. In the case
we consider, this invariant does not depend on the directing, and, up to an annoying sign,
agrees with the Kauffman bracket. Part of the purpose of these notes is to explain the an-
noying sign, but the real purpose is to describe how the skein relations used in the Kauffman
bracket arise naturally in the quantum group construction. To this end we modify the quan-
tum group construction to obtain a functor from a category whose morphisms are tangles of
undirected framed ribbons. We find it is necessary to use the non-standard ribbon element
from [ST]. With this change, the annoying minus sign disappears, and the two constructions
agree exactly!

The Jones polynomial is an invariant of directed but unframed links, which can be con-
structed via a simple modification of the Kauffman bracket (explained in Theorem 2.7 below).
We actually compare constructions of invariants of framed but undirected links, so a more
accurate subtitle for these notes might be “two constructions of the Kauffman bracket.”

1A. Acknowledgements. These notes are based on a talk I gave in 2008 at the university of
Queensland in Brisbane Australia. I would like to thank Murray Elder and Ole Warnaar for
organizing that visit. I would also like to thank Noah Snyder for many interesting discussions
about knot theory.

2. The Kauffman bracket construction of the Jones polynomial

Up to a change in the variable q, the following is the well known construction of the
Kauffman bracket [K].

Definition 2.1. Let L be a link diagram (i.e. A link drawn as a curve is the plane with

crossings). Simplify L using the following relations until the result is a polynomial in q1/2 and

q−1/2. That polynomial, denoted by K(L), is the Kauffman bracket of the link diagram.

(i)
@@

@@�
�
�

= q1/2 + q−1/2 � �� 

(ii) ��
��

= −q − q−1

(iii) If two tangle diagrams are disjoint, their Kauffman brackets multiply.

Note that (i) depends on which strand is on top.

Comment 2.2. In order for Definition 2.1 to make sense, one needs to assume that all
crossings are simple crossings. We will always make this assumption about link diagrams.
Once we introduce twists, we will also assume that these occur away from crossings. It is clear
that, up to isotopy, any link can be drawn with such a diagram (although not in a unique
way).
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The Kauffman bracket is not an isotopy invariant of links, but is instead an isotopy invariant
of framed links (that is, links tied out of orientable “ribbons”), where the framing is “flat on
the page.” One can allow twists of the framing to occur in the diagram if one introduces the
following extra relation (here both sides represent a single framed string):

(1) = −q3/2

regardless of directing of the ribbon (note that the direction of the twist, i.e. clockwise versus
counter clockwise, does matter).

Theorem 2.3. (see [O, Theorem 1.10]) The Kauffman bracket as calculated using the above
relations is an isotopy invariant of framed links. �

We now describe a modification that leads to an invariant of directed but unframed links.
The invariant does still depend on more then just the underlying link (i.e. the choice of
directing), but now the amount of choice is much smaller. In fact, for knots (i.e. links with a
single component), the invariant does not depend on the directing either (see Comment 2.8).

Definition 2.4. (i) A positive crossing is a crossing of the form

�
�
�
��

@@

@@

�
�
�
��

@@

@@
���@@I

.

That is, a crossing such that, if you approach the crossing along the upper ribbon in
the chosen direction and leave along the lower ribbon, you have made a left turn.

(ii) A negative crossing is a crossing of the form

��

��

@
@

@
@@

��

��

@
@

@
@@

���@@I

.

That is, a crossing such that, if you approach the crossing along the upper ribbon in
the chosen direction, then leave along the lower ribbon, you have made a right turn.

(iii) A positive full twist is a twist of the form

6

(iv) A negative full twist is a twist in the opposite direction to a positive full twist.
(v) The writhe of a link diagram L, denoted by w(L), is the number of positive crossings

minus the number of negative crossings plus the number of positive full twists minus
the number of negative full twists.
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Comment 2.5. Here we have drawn every component with its framing. Sometime we will
just draw lines, and use the convention that these stand for ribbons lying flat on the page.
This is often referred to as the “blackboard framing”.

Lemma 2.6. (see [K]) The writhe w(L) is an invariant of directed framed links. �

The following is one of the more fundamental theorems in knot theory.

Theorem 2.7. (see [O, Theorem 1.5]) Let L be any link. Then the Jones polynomial,

(2) J(L) := (−q3/2)−w(L)K(L),

is independent of the framing. Hence J(L) is an isotopy invariant of directed (but not framed)
links. �

Theorem 2.7 is sometimes stated in terms of link diagrams, not framed links. The result
for framed links follows by noticing that the positive full twist from Definition 2.4 is isotopic
to

with the blackboard framing.

Comment 2.8. It is straightforward to see that positive full twists are sent to positive full
twists if the direction of the ribbon is reversed, and positive crossings are sent to positive
crossings if the directions of both ribbons involved are reversed. It follows that the choice of
directing only affects the Jones polynomial for links with at least two components.

3. The quantum group construction of the Jones polynomial

3A. The quantum group Uq(sl2) and its representations. Uq(sl2) is an infinite dimen-
sional algebra related to the Lie-algebra sl2 of 2× 2 matrices with trace zero. It is the algebra
over the field of rational functions C(q) generated by E,F,K and K−1, subject to the relations

(3)

KK−1 = 1,

KEK−1 = q2E,

KFK−1 = q−2F,

EF − FE =
K −K−1

q − q−1
.

For our purposes it is convenient to adjoin a fixed square root q1/2 to C(q).
Uq(sl2) has a finite dimensional representation Vn for each integer n which we now describe.

Introduce the “quantum integers”

(4) [n] :=
qn − q−n

q − q−1
= qn−1 + qn−3 + · · ·+ q−n+1.
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The representation Vn has C(q)-basis {vn, vn−2, · · · , v−n+2, v−n}, and the actions of E,F and
K are given by

(5)

E(v−n+2j) =

{
[j + 1]v−n+2j+2 if 0 ≤ j < n

0 if j = n,

F (vn−2j) =

{
[j + 1]vn−2j−2 if 0 ≤ j < n

0 if j = n,

K(vk) = qkvk.

This can be expressed by the following diagram:

(6)

t t t t t t. . .- - - - - -
� � � � � �

1 [2] [3] [n− 2] [n− 1] [n]

[n] [n− 1] [n− 2] [3] [2] 1

qn qn−2 qn−4 q−n+4 q−n+2 q−n

F :

E :

K :

There is a tensor product on representations of Uq(sl2), where the action on a⊗ b ∈ A⊗B
is given by

(7)

E(a⊗ b) = Ea⊗Kb+ a⊗ Eb,
F (a⊗ b) = Fa⊗ b+K−1a⊗ Fb,
K(a⊗ b) = Ka⊗Kb.

It turns out that A⊗B is always isomorphic to B⊗A, and furthermore there is a well known
natural system of isomorphisms

(8) σbrA,B : A⊗B → B ⊗A

for each pair A,B, called the braiding. The braiding has a standard definition, which can be
found in, for example [CP] (or Theorem 5.3 below can also be used as the definition). Here
we only ever apply the braiding to representations isomorphic to the standard 2-dimensional
representation of Uq(sl2), so we can use the following:

Definition 3.1. Let V be the 2 dimensional representation of Uq(sl2). Use the ordered basis

{v1 ⊗ v1, v−1 ⊗ v1, v1 ⊗ v−1, v−1 ⊗ v−1} for V ⊗ V . Then σbrV,V : V ⊗ V → V ⊗ V is given by
the matrix

σbr = q−1/2


q 0 0 0
0 q − q−1 1 0
0 1 0 0
0 0 0 q

 .

To simplify notation, we usually denote σbrV,V simply by σbr.
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There is a standard action of Uq(sl2) on the dual vector space to Vn. This is defined using
the “antipode” S, which is the algebra anti-automorphism defined on generators by:

(9)

S(E) = −EK−1,
S(F ) = −KF,
S(K) = K−1.

For v̂ ∈ V ∗n and X ∈ Uq(sl2), set X · v̂ to be the element of V ∗n defined by

(10) (X · v̂)(w) := v̂(S(X)w)

for all w ∈ Vn. It is straightforward to check that this is in fact an action of Uq(sl2) on V ∗n . It
turns out that Vn is always isomorphic to V ∗n , which will be important later on.

Example 3.2. An isomorphism between the standard representation of Uq(sl2) and its dual.
Let v1, v−1 be the basis for V . For i = ±1, let v̂i be the element of V ∗ defined by

(11) v̂i(vj) = δi,j .

Calculating using the above definition, the action of Uq(sl2) on V ∗ is given by

(12) v̂−1 v̂1,
-

�

F : −q−1

E : −q

Consider the map of vector spaces f : V → V ∗ defined by

(13)

{
f(v1) = v̂−1

f(v−1) = −q−1v̂1

One can easily check that f is in fact an isomorphism of Uq(sl2) representations.

Comment 3.3. If one sets q = 1, the representations Vn described above are exactly the
irreducible finite dimensional representations of the usual Lie algebra sl2, where one identifies

E ↔
(

0 1
0 0

)
, F ↔

(
0 0
1 0

)
,

K −K−1

q − q−1
↔
(

1 0
0 −1

)
.(14)

Of course, one needs to be a bit careful about interpreting the third identification here, since
it looks like you divide by 0. This issue is addressed in [CP, Chapters 9 and 11]. For us, this
observation will be sufficient justification for thinking of Uq(sl2) as related to ordinary sl2.

Comment 3.4. Notice that K acts as the identity on all Vn at q = 1. Uq(sl2) actually has
some other finite dimensional representations where K does not act as the identity at q = 1.
So we have not described the full category of finite dimensional representation of Uq(sl2), but
only the so called “type 1” representations. The other representations rarely appear in the
theory.
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3B. Ribbon elements and quantum traces. Much of the following construction can be
found in, for example, [CP, Chapter 4] or [O]. The main difference here is that we work with
two ribbon elements throughout. Each satisfies the definition of a ribbon element as in [CP].
Consequently we also have two different quantum traces, and two different co-quantum traces.
The non-standard ribbon element Qt is discussed extensively in [ST].

Definition 3.5. The ribbon elements Qs and Qt are elements in some completion of Uq(sln)
defined by

• The standard ribbon element Qs acts on Vn as multiplication by the scalar q−n
2/2−n.

• The “non-standard” or “half-twist” ribbon element Qt acts on Vn as multiplication by

the scalar (−1)nq−n
2/2−n.

Comment 3.6. One can also think of Qs or Qt as a natural system of automorphisms of
each finite dimensional type 1 representations of Uq(sl2). Specifically, Qs is the system which

acts on Vn as multiplication by q−n
2/2−n. Similarly, Qt is the system which acts on Vn as

multiplication by (−1)nq−n
2/2−n.

Definition 3.7. The “grouplike elements” associated to Qs and Qt are elements in some
completion of Uq(sln) defined by

• gs acts on vn−2j ∈ Vn as multiplication by qn−2j.
• gt acts on vn−2j ∈ Vn as multiplication by (−1)nqn−2j.

Comment 3.8. The group like elements in Definition 3.7 are related to the ribbon elements
in Definition 3.5 as described in [CP, Chapter 4.2C].

Definition 3.9. (see [O, Section 4.2]) Define the following maps:

(i) ev is the evaluation map V ∗ ⊗ V → F .
(ii) qtrQs is the standard quantum trace map V ⊗ V ∗ → F defined by,

for φ ∈ End(V ) = V ⊗ V ∗, qtrQs(φ) = trace(φ ◦ gs).
(iii) qtrQt is the “half-twist” quantum trace map V ⊗ V ∗ → F defined by,

for φ ∈ End(V ) = V ⊗ V ∗, qtrQt(φ) = trace(φ ◦ gt).
(iv) coev is the coevaluation map F → V ⊗ V ∗ defined by coev(1) = Id, where Id is the

identity map in End(V ) = V ⊗ V ∗.
(v) coqtrQs is the standard co-quantum trace map F → V ∗ ⊗ V defined by

coqtrQs(1) = (1⊗ g−1s ) ◦ Flip ◦ coev(1),

where Flip means interchange the two tensor factors.
(vi) coqtrQt is the “half-twist” co-quantum trace map F → V ∗ ⊗ V defined by

coqtrQt(1) = (1⊗ g−1t ) ◦ Flip ◦ coev(1).

Comment 3.10. Although this may not be obvious, the maps in Definition 3.9 are all mor-
phisms of Uq(sl2) representations.
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Comment 3.11. It is often useful to express the maps from Definition 3.9 in coordinates.
So, fix f ∈ V ∗, v ∈ V , and {ei}, {ei} be dual basis for V ∗ and V . Then:

(15)

ev(f ⊗ v) = f(v),

qtrQ(v ⊗ f) = f(gv),

coev(1) =
∑
i

ei ⊗ ei,

coqtrQ(1) =
∑
i

ei ⊗ g−1ei.

One can choose Q to be either Qs or Qt, and then one must use the grouplike element gs or
gt accordingly.

3C. Two topological categories. Quantum group knot invariants work by constructing a
functor from a certain topological category to the category of representations of the quantum
group. We now define the relevant topological category. In fact, we will need two slightly
different topological categories.

Definition 3.12. DRIBBON (directed orientable topological ribbons) is the category where:
• An object consists of a finite number of disjoint closed intervals on the real line each

directed either up or down. These are considered up to isotopy of the real line. For example:

.

‘ • A morphism between two objects A and B consists of a “tangle of orientable, directed
ribbons” in R2 × I, whose “loose ends” are exactly (A, 0, 0) ∪ (B, 0, 1) ⊂ R×R× I, such that
the direction (up or down) of each interval in A ∪ B agrees with the direction of the ribbon
whose end lies at that interval. These are considered up to isotopy. For technical details of
the definition of “a ribbon”, see [CP].
• Composition of two morphisms is given by stacking them on top of each other, and then

shrinking the vertical axis by a factor of two. For example,

◦ =
.

Definition 3.13. RIBBON (undirected orientable topological ribbons) is the category ob-
tained from DRIBBON by forgetting the directings. So an object consists of a finite number
of disjoint closed intervals on the real line, a morphism consists of a tangle of undirected
ribbons, and composition is still stacking of tangles.

3D. The functor. The following is the main ingredient in the quantum group construction
of knot invariants. It holds in much greater generality than stated here, which allows for the
construction of a great many invariants.

Theorem 3.14. (see [CP, Theorem 5.3.2]) Let V be the standard 2 dimensional representation
of Uq(sl2). For each ribbon element Q (i.e. Qs or Qt), there is a unique monoidal functor FQ

from RIBBON to Uq(sl2)-rep such that
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(i) FQ( ) = V and FQ( ) = V ∗,

(ii)

FQ

( )
= ev, FQ

( )
= qtrQ,

FQ

( )
= coev, FQ

( )
= coqtrQ,

(iii) FQ


 = Q, thought of as an automorphism of either V or V ∗.

(iv) FQ


 = σbr

as a morphism from the tensor product of the bottom two objects to the tensor product
of the top two objects, regardless of the directions of the ribbons. �

Comment 3.15. If one or both of the ribbons is directed down, one must be cautious using
Definition 3.1 to calculate σbr; one must first choose an explicit isomorphism from V ∗ to V .
By naturality, the resulting morphism σbr will not depend on this choice. This technicality
comes up again in Example 4.6, where we deal with it in detail.

Comment 3.16. Notice that FQ sends the negative full twist to Q. This seems like a strange
way to set things up, but it is done to match other fairly standard conventions. In some
ways it works well; Qs acts as multiplication by q to a negative exponent, so positive twists
correspond to positive exponents.

Let L be a directed framed link. Then one can draw L as a composition of the elementary
features in Theorem 3.14, and hence find the morphism associated to L. This is a morphism
from the identity object to itself in the category of Uq(sl2) representations, which is just

multiplication by a rational function in q1/2 (and this turns out to be a polynomial in q1/2 and

q−1/2). By Theorem 3.14, FQ is well defined on tangles up to isotopy. In particular, FQ(L),
is an isotopy invariant. It is related to the Kauffman bracket as follows:

Theorem 3.17. (see [O, Theorem 4.19]) Fix a framed link L. Then FQs(L) is independent

of the choice of directing of L. Furthermore, FQs(L) = (−1)w(L)+#LK(L), where w(L) is the
writhe of L and #L is the number of components of L. �

Comment 3.18. Theorem 3.17 is not hard to prove using Corollary 4.4 below and the ob-
servation that FQs(L)/FQt(L) is an isotopy invariant that cannot tell the difference between
overcrossings and undercrossings, and hence can only depend on the number of components
of L and the writhe of each component mod 2 (see also [ST, Proposition 5.22]). Note that
w(L) mod 2 does not depend on the directing of L.

The (−1)w(L)+#L in Theorem 3.17 is the sign referred to in the title of these notes. It is
certainly explicitly defined, so in some sense it is not a problem; just an annoyance. Section 4
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develops one way to get rid of this sign by using Qt in place of Qs, although in some sense this
just moves the annoyance into the definition of the ribbon element. The real justification for
using Qt is not so much that it explains the sign, but that it makes Theorem 4.1 functorial.

4. Matching the two constructions using the non-standard ribbon element

We now show how the skein relations used in defining the Kauffman bracket can be explained
using the quantum group formulation. This section is similar to [O, Appendix H], although the
presentation is simplified by use the non-standard ribbon element Qt throughout. The idea is
to modify the functor from Theorem 3.14 to obtain a function from RIBBON to Uq(sl2)−rep,
as opposed to from DRIBBON . One argument for wanting this is that the Kauffman bracket
is defined for framed but undirected links, which are morphisms in RIBBON , but not in
DRIBBON .

There is only one “elementary” object in RIBBON (the single interval), as opposed to
two in DRIBBON (the single interval, but with two possible directions). Our morphism will
send this single interval to the two dimensional representation V . We must then send each
feature in the knot diagram to a morphism between the appropriate tensor powers of V . For
instance,

should be sent to a morphism from V ⊗ V to the trivial object. This is as opposed to the
directed case, where such “caps” are sent to morphisms from V ∗ ⊗ V or V ⊗ V ∗ to the trivial
object. To do this, we will use the fact that, in this particular situation, V is isomorphic to
V ∗ (for instance, via the isomorphism from Example 3.2). We obtain:

Theorem 4.1. Choose an isomorphism f : V → V ∗. There is a unique functor Ff :
RIBBON → Uq(sl2)-rep such that

(i) Ff takes the object consisting of a single interval to V ,

(ii) Ff

( )
= ev ◦ (f ⊗ Id) = qtrQt ◦ (Id⊗ f) : V ⊗ V → C(q),

(iii) Ff

( )
= (Id⊗ f−1) ◦ coev = (f−1 ⊗ Id) ◦ coqtrQt : C(q)→ V ⊗ V ,

(iv) Ff

  = σbr,

(v) Ff


 = Qt (or, equivalently, multiplication by −q−3/2).

Furthermore, for any link L, any choice of directing of L, and any choice of f , Ff (L) =
FQt(L).
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Comment 4.2. Theorem 4.1 implies that, for any link L, Ff (L) is independent of the chosen
isomorphism f . However, the functor Ff does depend on this choice. For instance, Ff applied
to a cap clearly depends on f .

Comment 4.3. Quantum trace and co-quantum trace depend on the ribbon element, and
the subscript indicates that we are using the ribbon element Qt. If one tries to use Qs instead
of Qt, then the two expressions on the right sides in Theorem 4.1 parts (ii) and (iii) are off by
a minus sign, and the construction does not work. That the two sides of (ii) and (iii) agree
follows from the fact that Uq(sl2)− rep, along with “pivotal structure” related to the ribbon
element Qt, is unimodal, as defined in [T]. For an explanation of this pivotal structure and a
proof that it is unimodal see [ST, Section 5B]. It is also not hard to directly verify that the
expressions agree.

Proof of Theorem 4.1. This proof is a bit informal. You should draw a non-trivial element of
RIBBON , then follow what is being said.

First, verify by a direct calculation that the two expressions on the right for parts (ii) and
(iii) agree. Thus Ff is well defined on framed link diagrams. We will now show that it agrees
with FQt calculated with respect to any directing. Since FQt is a functor, this implies that
Ff is as well.

Fix a directing of L. Insert f ◦ f−1 into FQt(L) somewhere along every segment of L that

is directed down. This clearly doesn’t change the morphism. By the naturality of σbr,

(16) (1⊗ f) ◦ σbr = σbr ◦ (f ⊗ 1).

Use this to pull all the f and f−1 through crossings until they are right next to cups and caps.
But now you are exactly calculating Ff (L). Hence Ff = FQt . �

We are now ready to see how skein relations appear. For the rest of this section we use the
blackboard framing (i.e. ribbons lie flat on the page, and are drawn simply as lines). A simple
calculation shows that

(17) Ff

(
��
��)

= multiplication by − q − q−1.

Another direct calculation shows that

(18) σbr = q1/2Id+ q−1/2(Id⊗ f−1) ◦ coev ◦ qtrQt ◦ (Id⊗ f) : V ⊗ V → V ⊗ V.

Equivalently,

(19) Ff

(
�
�
�@@

@@

)
= q1/2Ff

( )
+ q−1/2Ff

(
� �� )

.

But these are exactly the relations used in Definition 2.1 to define the Kauffman bracket!
Noticing that Equation (1) and Theorem 4.1(v) are also compatible, this implies that Ff of a
framed but undirected link gives the Kauffman bracket. Applying Theorem 4.1 we see:

Corollary 4.4. Let L be a framed link. Then FQt(L) is independent of the chosen directing,
and is equal to the Kauffman bracket K(L). �
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Comment 4.5. The non-standard ribbon we use exists in many cases beyond Uq(sl2), and
can also help explain the correspondence between various constructions of knot polynomials
in those cases.

Example 4.6. A way to verify the definition of quantum trace. Recall that FQ is supposed
to be defined on DRIBBON , and morphisms there are ribbon tangles up to isotopy. One can
use an isotopy to change a right going cap to the composition of a twist, a crossing, and a left
going cap. Since we have only explicitly defined σbr acting on V ⊗ V , not acting on V ⊗ V ∗,
we also put in copies of f and f−1, where f is the isomorphism from Example 3.2. By the
naturality of the braiding, this does not affect the morphism. Diagrammatically,

f

f−1

,

'

where the boxes in the diagram mean “put in a copy of the isomorphism f when you apply
FQ.” Such “tangles with coupons” are defined precisely in e.g. [CP]. Algebraically, this says

(20) qtrQ = ev ◦ (f ⊗ Id) ◦ σbr ◦ (Id⊗Q−1) ◦ (Id⊗ f−1).

Since the action of each element on the right side has been explicitly defined, one can now
check that the two sides agree on all basis vectors. Note that both sides depend on the choice
of ribbon element Qs or Qt.

Comment 4.7. For our purposes, we could simply use the calculation in Example 4.6 to
define qtr. However, if we were to more fully develop the theory, the fact that qtr can be
defined as qtrQ(φ) = trace(φ ◦ g) for a grouplike element g (see Definition 3.9) is important.
The reason is that this implies quantum trace is multiplicative on tensor products. See [CP,
Remark 1 after Definition 4.2.9].

5. Another advantage: the half twist

We now discuss an invertible element X in a certain completion of Uq(sl2), which is related
to the non-standard ribbon element by Qt = X−2. As discussed in [ST], this element has an
interesting topological interpretation.

Definition 5.1. X is the operator that acts on Vn by Xvn−2j = (−1)n−jqn
2/4+n/2v−n+2j .

Comment 5.2. There is actually some choice in how we define X: the operator X ′ that

acts on Vn by X ′vn−2j = inqn
2/4+n/2v−n+2j , where i is the complex number i, also has all

the properties discussed below. This type of modification is discussed in [ST, Section 5C] and
[KT, Section 8].

One can easily check that X−2 = Qt. Comparing with Theorem 3.14(iii), one may hope
that X could be interpreted as an isomorphism, and that the functor FQt could be extended
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Figure 1. A morphism in the topological category of ribbons with half twists

in such a way that

(21) FQt

( )
= X−1.

Another indication that such an extended functor should exist comes from the following result
of Kirillov-Reshetikhin [KR, Theorem 3] and Levendorskii-Soibelman, [LS, Theorem 1] (see
[KT, Comment 7.3] for this exact statement).

Theorem 5.3. σbr = (X−1 ⊗X−1) ◦ Flip ◦∆(X). �

Theorem 5.3 can be interpreted via the following isotopy:

(22)
'

.
Here Flip◦∆(X) should be interpreted as a morphism corresponding to twisting both ribbons
at once by 180 degree, as on the bottom of the left side.

Such an extended functor has been defined precisely in [ST], resulting in a functor from a
larger category where ribbons are allowed to twist by 180 degrees, not just by 360 degrees
(although Mobius bands are still not allowed). Figure 1 shows an example of a morphism in
the resulting category. Notice that elementary objects come in both shaded and unshaded
versions.

The construction in [ST] can only extend FQt , not FQs . We feel this gives more evidence
that Qt is natural. One advantage of having such an extended functor is that, since both
σbr and Qt are constructed in term of the “half-twist” X, there is in some sense one less
elementary feature.
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