Loyola University Chicago

Math 161, Section 002, Fall 2009
Name (print): \qquad Signature: \qquad

You have 30 minutes. Show your work. Notes not allowed! Problems are on both sides of this sheet.

Problem 1. (9 pts) Find the following limits:
$\lim _{x \rightarrow 0} \frac{2 x}{a^{x}-1}$, where $a>0$ is a constant
Solution:

$$
\lim _{x \rightarrow 0} \frac{2 x}{a^{x}-1}=\lim _{x \rightarrow 0} \frac{2}{\ln a a^{x}}=\frac{2}{\ln a}
$$

$\lim _{x \rightarrow \infty}\left(1+\frac{1}{2 x}\right)^{3 x}$
Solution:

$$
\begin{aligned}
\lim _{x \rightarrow \infty}\left(1+\frac{1}{2 x}\right)^{3 x} & =\lim _{x \rightarrow \infty} e^{\ln \left(\left(1+\frac{1}{2 x}\right)^{3 x}\right)}=\lim _{x \rightarrow \infty} e^{3 x \ln \left(\left(1+\frac{1}{2 x}\right)\right.}=e^{\lim _{x \rightarrow \infty} 3 x \ln \left(1+\frac{1}{2 x}\right)} \\
& =e^{3 \lim _{x \rightarrow \infty} \frac{\ln \left(1+\frac{1}{2 x}\right)}{\frac{1}{x}}}=e^{3 \lim _{y \rightarrow 0} \frac{\ln \left(1+\frac{y}{2}\right)}{y}}=e^{3 \lim _{y \rightarrow 0} \frac{\frac{1}{1+\frac{y}{2}} \frac{1}{2}}{1}} \\
& =e^{\frac{3}{2}}
\end{aligned}
$$

$\lim _{t \rightarrow 0} \frac{t \sin t}{1-\cos t}$
Solution:

$$
\lim _{t \rightarrow 0} \frac{t \sin t}{1-\cos t}=\lim _{t \rightarrow 0} \frac{\sin t+t \cos t}{\sin t}=\lim _{t \rightarrow 0} \frac{\cos t+\cos t-t \sin t}{\cos t}=2
$$

Problem 2. (5 pts) You are designing a rectangular poster to contain 50 square inches of printing with a 4 inch margin at the top and bottom and a 2 inch margin at each side. What overall dimensions will minimize the amount of paper used?

Solution: Let x be the height of the whole poster, let y be the width of the whole poster. We need to minimize $A=x y$. Printed area being 50 means that $(x-8)(y-4)=50$, so $y=4+\frac{50}{x-8}$. Then

$$
A(x)=x\left(4+\frac{50}{x-8}\right)
$$

Need to minimize this function over $x>8$.

$$
A^{\prime}(x)=4-\frac{400}{(x-8)^{2}}, \quad \text { so } A^{\prime}(x)=0 \text { gives } x=18
$$

Is this really a minimum?

$$
A^{\prime \prime}(x)=\frac{800}{(x-8)^{3}}>0
$$

so the function is concave up, so $x=18$ is the absolute minimum. When $x=18, y=9$.

Problem 3. (6 pts) Let a and b be constants and consider the function

$$
f(x)=\frac{x+a}{x^{2}+b^{2}} .
$$

Find and identify critical points of f and say, using interval notation, where the function is increasing and where the function is decreasing.

Solution:

$$
f^{\prime}(x)=\frac{-x^{2}-2 a x+b^{2}}{\left(x^{2}+b^{2}\right)^{2}}
$$

$f^{\prime}(x)=0$ has two solutions:

$$
x_{1}=-a-\sqrt{a^{2}+b^{2}}, \quad x_{2}=-a+\sqrt{a^{2}+b^{2}} .
$$

The sign of $f^{\prime}(x)$ is determined by the denominator, which is a quadratic function with a negative coefficient at x^{2} (so upside-down parabola). Hence, function is decreasing on

$$
\left(-\infty, x_{1}\right]
$$

and on

$$
\left[x_{2}, \infty\right)
$$

and it is increasing on

$$
\left[x_{1}, x_{2}\right] .
$$

Also, x_{1} is a local minimum, x_{2} is a local maximum.

