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Abstract— We expand the class of systems to which back-
stepping is applicable, by allowing states that are used as
virtual controls to appear in non-invertible maps. Representing
these maps as products of C

1 bijective maps and sign definite
C

0 gains, we develop a recursive design which is robust
to multiplicative uncertainties. When the linearization of the
system is controllable, our design achieves global asymptotic
stability, otherwise it guarantees global practical stability. The
designed feedback system possesses desirable inverse optimality
properties.

I. INTRODUCTION

Much of the recent research for general triangular systems

ẋ1 = F1(x1, x2),
ẋ2 = F2(x1, x2, x3),
...
ẋn = Fn(x1, ..., xn, u),

(1)

focused on the existence of stabilizing controls under the
least restrictive assumptions about nonlinearities Fi. Coron
and Praly [1] initiated this line of work with a sufficient con-
dition for existence of continuous (not necessarily smooth)
locally asymptotically stabilizing (LAS) control laws for (1).
They proved that such laws exist if all ki = min{j ∈
Z+ | ∂jFi

∂x
j

i+1

(0) 6= 0}, i = 1, .., n are finite and odd. Under

this condition, Čelikovski and Aranda-Bricaire [10] used a
homogeneous approximation of (1) to construct continuous
feedback laws to achieve LAS. Tsinias [8] proved the exis-
tence of continuous dynamic GAS control laws for systems
(1) with Fi(x1, ..., xi+1) =

∑pi−1
j=0 x

j
i+1aij(x1, ..., xi)+x

pi

i+1

where pi is an odd integer and aij(0, ..., 0) = 0. Ap-
plying this existence result, Tzamzi and Tsinias [9] con-
structed continuous GAS control laws for Fi(x1, ..., xi+1) =∑i

j=1 cijxj+x
pi

i+1. When Fi(x1, ..., xi+1) = F i(x1, ..., xi)+

x
pi

i+1, |F i(x1, ..., xi)| ≤ Di ∈ IR, and F i(0, ..., 0) = 0, they
constructed bounded continuous GAS control laws. Further
advance was made by Lin and Qian [6] with their ’adding
a power integrator’ procedure. In [3] they developed an
adaptive version of their design. The designs in [8], [9], [6],
[3] are for ’power integrators’ x

pi

i+1, where pi is odd, resulting
in non-Lipschitz control laws. Qian and Lin [4], [5] have also
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designed C1 GAS control laws for special forms of Fi’s, such
as, F1(x1, x2) = x

q
1 + x3

2 with q ≥ 3.
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Fig. 1. Representative examples of allowed φi(x)

In this paper we expand the class of triangular systems in
a direction that has not been explored before. We consider
Fi(x1, ..., xi+1) = fi(x1, ..., xi) + φi(xi+1), where φi is not
required to be bijective away from zero. A pair of such
nonlinearities φi is shown in Figure (1). To circumvent the
obstacle of non-invertibility of φi we introduce factorization
φi(s) = µ̃i(s)φ̃i(s), where φ̃i is a ’nice’ nonlinearity and
µ̃i is a gain specified only by its bounds. When φi is ’bad’
locally, φ

′

i(0) = 0, our C1 feedback laws achieve global
practical stability (GPS) of x = 0. Our design retains the
simplicity of standard backstepping with quadratic Lyapunov
functions and expands its applicability to nonlinearities that
do not satisfy the Coron-Praly condition at x = 0.

Section II describes the factorization of φi. Section III
states the main result and displays three distinct cases with
the help of examples. Design procedure and the proof of the
main result are in Section IV. Section V extends the class of
systems to which our result applies. Optimality properties of
the designed control laws are discussed in Section VI, while
Section VII contains conclusions.

In what follows, s always denotes a scalar variable, x a
vector in IRn, xi its ith component, and xi ∈ IRi the first i

coordinates of x.

II. FACTORIZATION

The factorization relies on the following fact.

Lemma 2.1: Let φ : IR 7→ IR be continuous, φ(s) 6= 0 for
s 6= 0, and lims→−∞ φ(s) = − lims→+∞ φ(s) equals to



either ∞ or +∞ (automatically, φ(0) = 0).

(a) Suppose that φ is differentiable at s = 0 with φ
′

(s) 6= 0.
Then there exist C1 functions φ̃, M and a C0 function
µ̃ such that, for all s ∈ IR,

φ(s) = µ̃(s) φ̃(s), (2)

φ̃(0) = 0 and φ̃
′

(s) > 0, (3)

1 ≤ µ̃(s) ≤ M(s). (4)

(b) Suppose that for some d > 0, φ is differentiable on
(−d, d) with φ′(0) = 0 but either φ′(s) > 0 for all
s 6= 0 in (−d, d), or φ′(s) < 0 for all s 6= 0 in (−d, d).
Assume moreover that φ−1 is a well-defined function
between φ(−d) and φ(d). Then for any δ in (−d, d),
there exist C1 functions φ̃, M and a C0 function µ̃

such that

φ(s + δ) − φ(δ) = µ̃(s) φ̃(s)

and (3), (4) hold for all s ∈ IR.

An explicit formula for φ̃ can be given. Consider φ as in
(a), with φ

′

(0) > 0. For s > 0 define

φ̃(s) =
1

s

∫ s

0

min
x≥t

f(x) dt.

The integrand is the greatest nondecreasing function bound-
ing φ from below. Defining φ̃ symmetrically for s < 0 and
setting φ̃(0) = 0 yields a function with desired properties
(note that φ̃

′

(0) = 1
2φ

′

(0)).
Of course, other constructions are possible. We illustrate

this by factoring

φ(s) =





|s|s, |s| ≤ 1,

1, 1 ≤ |s| ≤
√

2,
1
2 |s|s, |s| ≥

√
2,

shown in Figure 1, solid. Note φ
′

(0) = 0 but φ
′

(s) > 0 for
s ∈ (−1, 1), s 6= 0. We obtain (with δ = 0.5)

φ̃(s) =





1.572s3 − 2.26s2 + 1.605s − 0.03,

for 1
10 ≤ s ≤

√
2 − 1

2 ,

1.482s3 + 2.111s2 + 1.178s − 0.008,
for − 7

10 ≤ s ≤ − 1
10 ,

0.925s3 + 3.819s2 + 5.861s + 2.468,

for −
√

2 − 1
2 ≤ s ≤ −1,

φ(s + δ) − φ(δ), otherwise.

Figure 2 shows φ̃ along with φ(s + δ) − φ(δ) and the
corresponding µ̃(s) ≥ 1 and M(s). A constant bound is
obtained, maxa µ̃(a) = 1.86. However, this bound is too
conservative and may lead to unnecessarily large control
signal. Instead, M(s) = 1.9+0.1s4

1+0.1s4 is much less conservative.
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Fig. 2. Left graph: dashed line - φ̃(x); solid line - φ(x + δ) − φ(δ).
Right graph: solid line - µ̃(x); dashed line - M(x); dash-dotted line -
maxx M(x).

III. MAIN RESULT AND DISCUSSION

With φi : IR → IR that satisfy the assumptions of Lemma
2.1, and C1 maps fi : IRi → IR, fi(0) = 0, we consider

ẋ1 = f1(x1) + φ1(x2),
ẋ2 = f2(x1, x2) + φ2(x3),
...
ẋn = fn(x1, ..., xn) + φn(u).

(5)

Our task is to construct a C1 feedback control law u : IRn →
IR which renders x = 0 globally asymptotically stable (GAS)
if the linearization of (5) at x = 0 is controllable. If not, then
u is to render x = 0 globally practically stable (GPS).

Standard backstepping does not apply to (5) because it
requires that φi be bijective. Even if bijective, φi may have
points where φ

′

i = 0, thus disallowing division by φ
′

i.
Moreover, when φ

′

i(0) = 0, the linearization of (5) at x = 0
is not controllable.

Definition 3.1: An equilibrium of (5) obtained with u =
u∗ = const is called linearly controllable, and denoted by
x∗, if the linearization of (5) at (x∗, u∗) is controllable.

When x = 0 of (5) is not linearly controllable, in order
to design C1 GAS control laws, further restrictions must be
imposed on fi, see [4], [5]. Instead, we design C1 control
laws which achieve GPS of x = 0.

We now state our main result. Its proof is the design
procedure in Section IV.

Theorem 3.2: If x = 0 in (5) is linearly controllable then
a C1 feedback control law which renders it globally asymp-
totically stable can be constructed by a recursive procedure.
If x = 0 is not linearly controllable but for any small ε > 0
there exists a linearly controllable x∗, ‖x∗‖ ≤ ε, then a C1

feedback control law can be constructed to render x = 0
globally practically stable.

A key assumption in Theorem 3.2 is the existence of
x∗, which we compute starting with a choice of x∗

1 and
recursively solving the equations

fi(x
∗
i ) + φi(x

∗
i+1) = 0, i = 1, .. n (6)

with x∗
n+1 = u∗. If x∗

i+1 6= 0, ∀i = 1, n this is an acceptable
x∗. If x∗

i+1 = 0 for some i, the computation can continue



provided φ
′

i(0) > 0. If φ
′

i(0) = 0, a different choice of x∗
1

is needed. It may happen that x∗
i+1 = 0 for any small x∗

1, as
when fi(xi) ≡ 0 or fi(xi) = fi−1(xi−1) + φi−1(xi). Then,
there are no linearly controllable equilibria near x = 0.

The three cases which can occur in the design of C1

control laws for system (5) are now described with the help
of examples.

Case of x
∗

= 0. Consider the system

ẋ1 = x1 + φ1(x2) = x1 + µ̃1(x2)φ̃1(x2),

ẋ2 = x1x2 + φ2(u) = x1x2 + µ̃2(u)φ̃2(u),
(7)

where φ1 and φ2 satisfy Lemma 2.1.1 with 1 ≤ |µ̃1(x2)| ≤
M1 and 1 ≤ |µ̃2(u)| ≤ M2. Differentiating V1 = 1

2x2
1 and

adding and subtracting x1γ1(x1) , −3x2
1 we get

V̇1 = x1(x1 + γ1(x1)) + µ̃1(x2)x1(φ̃1(x2)
−γ1(x1)) + (µ̃1(x2) − 1)x1γ1(x1)

≤ − 3
2x2

1 + 1
2M2

1 (φ̃1(x2) + 3x1)
2.

For V2 , V1 + 1
2 (φ̃1(x2) + 3x1)

2 we obtain

V̇2 ≤ − 1
2x2

1 + (φ̃1(x2) + 3x1)
2σ(x1, x2)

+φ̃
′

1(x2)(φ̃1(x2) + 3x1)µ̃2(u)φ̃2(u),

where σ(x1, x2) = 50+ 7
2M2

1 +(φ̃
′

1(x2)x2)
2 > 0. To render

V̇2 < 0 ∀x 6= 0 we require

φ̃2(u) < − 1

φ̃
′

1(x2)
(φ̃1(x2) + 3x1)σ(x1, x2).

Because φ̃
′

1 is only C0, and can not be used for a C1 control
law, we select C1 maps κ1, π1 : IR → IR, 0 < κ1(x2) ≤
φ̃

′

1(x2) ≤ π1(x2) and get

φ̃2(u) = −100 + 7M2
1 + 2π2

1(x2)x
2
2

2κ1(x2)
(φ̃1(x2) + 3x1)

which can be solved for u because φ̃−1
2 exists by construc-

tion. This control law yields V̇2 ≤ −V2, and, hence, x = 0
is GES.

Case of x
∗ 6= 0. Let φ1 and φ2 in (7) satisfy conditions

of Lemma 2.1 (b) and φ
′

1(0) = φ
′

2(0) = 0. Because now
a C1 control law that achieves asymptotic stabilization of
x = 0 does not exist, we select arbitrarily small x∗

1, compute
x∗

2, u
∗ such that x∗

1 + φ1(x
∗
2) = 0, x∗

1x
∗
2 + φ2(u

∗) = 0 and
rewrite (7) using x̂ = x − x∗, û = u − u∗

˙̂x1 = x̂1 + φ1(x̂2 + x∗
2) − φ1(x

∗
2),

˙̂x2 = x̂1(x̂2 + x∗
2) + x∗

1x̂2 + φ2(û + u∗) − φ2(u
∗).

(8)

The linearization of (8) at x̂ = 0 is controllable. Using
φ1(x̂2 + x∗

2) − φ1(x
∗
2) = µ̃1(x̂2)φ̃1(x̂2) and φ2(û + u∗) −

φ2(u
∗) = µ̃2(û)φ̃2(û), we bring (8) to the form of (7). A C1

control achieving GAS of x̂ = 0 guarantees GPS of x = 0.
Case of x

∗ not existing. Local behavior around x = 0 is
more complex for the system

ẋ1 = x1 + φ1(x2), ẋ2 = φ2(u). (9)

Although φ1 and φ2 satisfy conditions of Lemma 2.1 (b),
there are no solutions of x∗

1 + φ1(x
∗
2) = 0, φ2(u

∗) = 0 for
which the linearization of (9) is stabilizable. Thus, there does
not exist a C1 AS control law for any (x∗, u∗). We show that
it is still possible to achieve GPS of x = 0. With arbitrarily
small x•

1, u
• we compute x•

2 such that x•
1 +φ1(x

•
2) = 0 and,

using x̂ = x − x•, û = u − u•, we get

˙̂x1 = x̂1 + φ1(x̂2 + x•
2) − φ1(x

•
2) = x̂1 + µ̃1(x̂2)φ̃1(x̂2),

˙̂x2 = φ2(û + u•) − φ2(u
•) + φ2(u

•)

= µ̃2(û)φ̃2(û) + φ2(u
•).

For V2 = 1
2 x̂2

1 + 1
2 (φ̃1(x̂2) + 3x1)

2 we obtain

V̇2 ≤ − 1
2 x̂2

1 + (φ̃1(x̂2) + 3x̂1)
2σ(x̂1, x̂2)

+µ̃2(û)φ̃
′

1(x̂2)(φ̃1(x̂2) + 3x̂1)φ̃2(û) + φ2
2(u

•)

with σ(x̂1, x̂2) = 9+ 1
4π2

1(x̂2)+M1(3+ 81
2 M1) and κ1(x̂2),

π1(x̂2) as in the case of x∗ = 0. Then

φ̃2(û) = − 1

κ1(x̂2)
(φ̃1(x̂2) + 3x̂1)

(
σ(x̂1, x̂2) +

1

2

)
(10)

guarantees V̇2 ≤ −V2 + φ2
2(u

•), forcing x̂(t) to converge to
{x̂ ∈ IR2 : V2(x̂) ≤ φ2

2(u
•)}. Because u• is arbitrary, and V2

does not depend on u•, the control law (10) achieves GPS
of x̂ = 0, that is of x = x• in the original coordinates. Since
‖x•‖ can be arbitrarily small, x = 0 is also GPS.

A distinguishing feature of this case is that u• directly
influences φ̃2, and φ̃

′

2(0) → 0 as |u•| → 0. This makes it
more difficult to prove GPS for higher-order systems (5) that
do not possess x∗.

In the above constructions the use was made of the fact
that if g : IRi → IR, g(0) = 0, is C1 then there exist C1

maps gj : IRi → IR+, j = 1, i and g̃ : IRi → IR+ such that

|g(xi)| ≤ ∑i
j=1 |xj |gj(xi),

|xi||g(xi)| ≤ ∑i−1
j=1 x2

j + x2
i g̃(xi).

(11)

IV. DESIGN PROCEDURE

Case of x
∗

= 0. By Lemma 2.1, there exist C1 maps φ̃i

and C0 maps µ̃i, Mi such that φi(xi+1) = µ̃i(xi+1)φ̃i(xi+1)
and 1 ≤ µ̃i(xi+1) ≤ Mi(xi+1) for i = 1, ...n. An equivalent
representation of (5) is then

ẋ1 = f1(x1) + µ̃1(x2)φ̃1(x2),

ẋ2 = f2(x2) + µ̃2(x3)φ̃2(x3),
...
ẋn = fn(x) + µ̃n(u)φ̃n(u).

(12)

In the first step we let V1 = 1
2x2

1 and get

V̇1 = x1(f1(x1) + γ1(x1)) + µ̃1(x2)x1(φ̃1(x2)
−γ1(x1)) + (µ̃1(x2) − 1)x1γ1(x1),

(13)

where a C1 map γ1 : IR → IR, γ1(0) = 0, is chosen to
satisfy for, c1 > 0,

x1γ1(x1) ≤ 0, x1(f1(x1) + γ1(x1)) ≤ −(n + 1)x2
1.



Such a γ1 exists because f1 is C1 and f1(0) = 0. With
M1(x2) ≥ µ̃1(x2) ≥ 1, we obtain

V̇1 ≤ −nx2
1 + 1

4M1(x2)
2(φ̃1(x2) − γ1(x1))

2. (14)

For the ith step we use induction. Suppose that Vi−1 :
IRi−1 → IR+ and C1 maps γj : IRj → IR, γj(0) = 0,
j = 0, i − 1, γ0 = 0, φ̃0(x1) = x1, satisfy

V̇i−1 ≤ −∑i−2
j=0(n − i + 2)(φ̃j(xj+1) − γj(xj))

2

+ 1
4M2

i−1(xi)(φ̃
′

i−2(xi−1))
2(φ̃i−1(xi) − γi−1(xi−1))

2.

Our goal is to construct Vi : IRi → IR+ and a C1 map γi :
IRi → IR, γi(0) = 0 such that the analog of the inequality
above holds for Vi. Considering Vi = Vi−1 + 1

2 (φ̃i−1(xi) −
γi−1(xi−1))

2 we get

V̇i ≤ −
∑i−2

j=0(n − i + 2)(φ̃j(xj+1) − γj(xj))
2

+(φ̃i−1(xi) − γi−1(xi−1))(φ̃
′

i−1(xi)ẋi −
∑i−1

j=1
∂γi−1

∂xj
ẋj)

+ 1
4M2(xi)(φ̃

′

i−2(xi−1))
2(φ̃i−1(xi) − γi−1(xi−1))

2

≤ −
∑i−2

j=0(n − i + 2)(φ̃j(xj+1) − γj(xj))
2

+(φ̃i−1(xi) − γi−1(xi−1))φ̃
′

i−1(xi)µ̃i(xi+1)φ̃i(xi+1)

+|φ̃i−1(xi) − γi−1(xi−1)||Gi(xi)|
(15)

where C1 map Gi : IRi → IR, Gi(0) = 0 satisfies

|Gi(xi)| ≥ | 14M2
i−1(xi)(φ̃

′

i−2(xi−1))
2(φ̃i−1(xi)

−γi−1(xi−1)) −
∑i−1

j=1
∂γi−1

∂xj
ẋj + φ̃

′

i−1(xi)fi(xi)|.
(16)

Using (11) we construct a C1 map G̃i : IRi → IR+ such that

|φ̃i−1(xi) − γi−1(xi−1)||Gi(xi)| ≤
∑i−2

j=0(φ̃j(xj+1)

−γj(xj))
2 + (φ̃i−1(xi) − γi−1(xi−1))

2G̃i(xi).
(17)

We then select γi : IRi → IR to satisfy

γi(xi)(φ̃i−1(xi) − γi−1(xi−1)) ≤
− G̃i(xi)+n−i+1

φ̃
′

i−1
(xi)

(φ̃i−1(xi) − γi−1(xi−1))
2 (18)

Map φ̃i−1 is C1. In order to avoid non-differentiability of
γi, we replace φ̃

′

i−1 in (18) with C1 map κi−1 : IR → IR

such that ∀xi ∈ IR, 0 < κi−1(xi) ≤ φ̃
′

i−1(xi). Throughout
the design, whenever the smoothness of γi is needed, φ̃

′

i−1

is replaced by a suitable κi−1. Using (15), (18), and adding
and subtracting φ̃

′

i−1(xi)γi(xi)(φ̃i−1(xi) − γi−1(xi−1)) we
get:

V̇i ≤ −∑i−1
j=0(n − i + 1)(φ̃j(xj+1) − γj(xj))

2

+ 1
4Mi(xi+1)

2(φ̃
′

i−1(xi))
2(φ̃i(xi+1) − γi(xi))

2

+(µ̃i(xi+1) − 1)φ̃
′

i−1(xi)γi(xi)(φ̃i−1(xi) − γi−1(xi−1)).

By (18) and µ̃i(xi+1) ≥ 1 the last term above is non-positive,
and it can be omitted. The inequality is thus the desired
analog of the bound on V̇i−1.

For i = n, (18) yields the control law

φ̃n(u) , γn(x) = − G̃n(x)+1
κn−1(xn) (φ̃n−1(xn) − γn−1(xn−1))

(19)

which guarantees that V̇n ≤ −2Vn, hence achieves GAS of
x = 0 for (5).

Case of x
∗ 6= 0. When the linearization at x = 0 of (5) is

not controllable, we select a linearly controllable x∗, ‖x∗‖ ≤
ε. With x̂ = x − x∗, û = u − u∗ and using factorization
φi(x̂i+1 +x∗

i+1)−φi(x
∗
i+1) = µ̃i(x̂i+1)φ̃i(x̂i+1), we obtain:

˙̂x1 = f̂1(x̂1) + µ̃1(x̂2)φ̃1(x̂2),
˙̂x2 = f̂2(x̂2) + µ̃2(x̂3)φ̃2(x̂3),
...
˙̂xn = f̂n(x̂) + µ̃n(û)φ̃n(û),

(20)

where f̂i(x̂i) = fi(x̂i + x∗
i ) + φi(x

∗
i+1), f̂i(0) = 0. Since

the linearization of (20) at x̂ = 0 is controllable, we use the
design procedure for system (12) to construct a C1 control
law

φ̃n(û) = − Ĝn(x̂) + 1

κn−1(x̂n)
(φ̃n−1(x̂n) − γ̂n−1(x̂n−1)). (21)

Above, Ği(x̂i), Ĝi(x̂i) and γ̂i(x̂i), satisfy (16), (17) and (18)
respectively, with f̂i(x̂i) substituted for fi(xi), i = 1, ...n.
Control law (21) renders x = x∗ of system (5) GAS. Since
‖x∗‖ ≤ ε, and ε can be arbitrarily small, it follows that x = 0
of (5) is GPS.

Case of x
∗ not existing. This case is illustrated on the

system

ẋ1 = f1(x1) + φ1(x2),
...
ẋk−1 = fk−1(xk−1) + φk−1(xk),
ẋk = φk(xk+1),
ẋk+1 = fk+1(xk+1) + φk+1(xk+2),
...
ẋn = fn(x) + φn(u),

(22)

where maps φi, i = 1, ...n, i 6= k, satisfy assumptions of
Lemma 2.1 (a), and φk satisfies those of (b). Because x∗

k+1 =
0, the linearization is not controllable. We construct a C1

control law to achieve global ultimate boundedness with an
arbitrarily small bound on a subset of states.

Let x• =
[
0k, x•

k+1, 0n−k−1

]
where x•

k+1 is sufficiently
small. With x̂ = x − x•, and applying factorization
φi(x̂i+1) = µ̃i(x̂i+1)φ̃i(x̂i+1), i = 1, n, i 6= k and
φk(x̂k+1 + x•

k+1) − φk(x•
k+1) = µ̃k(x̂k+1)φ̃k(x̂k+1), i = k,

we get:

˙̂x1 = f1(x̂1) + µ̃1(x̂2)φ̃1(x̂2),
...
˙̂xk−1 = fk−1(x̂k−1) + µ̃k−1(x̂k)φ̃k−1(x̂k),
˙̂xk = µ̃k(x̂k+1)φ̃k(x̂k+1) + φk(x•

k+1),
˙̂xk+1 = fk+1(x̂k+1) + µ̃k+1(x̂k+2)φ̃k+1(x̂k+2),
...
˙̂xx = fn(x̂) + µ̃n(u)φ̃n(u).



The linearization at x̂ = 0 is controllable, but x̂ = 0 is not
an equilibrium because φk(x•

k+1) 6= 0. The design for the
system above closely follows the one for (12), except that
terms due to φk(x•

k+1) appear in V̇i, i = k, n:

∂(φ̃i−1(x̂i)−γi−1(x̂i−1))
2

∂x̂k
φk(x•

k+1) ≤ φ2
k(x•

k+1)+
1
4 (φ̃i−1(x̂i) − γi−1(x̂i−1))

2(∂(φ̃i−1(x̂i)−γi−1(x̂i−1))
∂x̂k

)2

We compensate for these terms by constructing a C1 map
Gi, Gi(0) = 0, i = k, n to satisfy

|Gi(x̂i)| ≥ | 14 (M2
i−1(x̂i)(φ̃

′

i−2(x̂i−1))
2+(

∂(φ̃i−1(x̂i)−γi−1(x̂i−1))
∂x̂k

)2

)(φ̃i−1(x̂i) − γi−1(x̂i−1))

−∑i−1
j=1

∂γi−1

∂x̂j

˙̂xj + φ̃
′

i−1(x̂i)fi(x̂i)|

instead of (16). The resulting control law is of the form (19)
and ensures that

V̇n ≤ −2Vn + pkφ2
k(x•

k+1), pk = n − k + 1. (23)

This proves global ultimate boundedness of x̂(t), which
converges to the positively invariant set {x̂ ∈ IRn : 2Vn(x̂) ≤
pkφ2

k(x•
k+1)} in finite time. Thus, for each summand in Vn,

(φ̃i−1(x̂i) − γi−1(x̂i−1))
2, i = 1, ...n, as t → ∞, we have

the bound,

|φ̃i−1(x̂i(t)) − γi−1(x̂(t)i−1)| ≤
√

pk|φk(x•
k+1)|.

Using this bound and the fact that the first k summands of Vn

are independent of x•
k+1, we can show that for any ε2 > 0,

there exists x•
k+1 such that

‖x̂k+1(t)‖ ≤ ε2, as t → ∞. (24)

If in addition

lim
|s|→0

|φk(s)|
|φ′

k(s)| = 0, (25)

then (24) holds for x̂k+2.

Corollary 4.1: Let k be the largest integer such that the
first k − 1 equations of (5), with xk as the control, possess
a linearly controllable equilibrium x∗

k, ‖x∗
k‖ ≤ ε1 for any

ε1 > 0. Then a C1 feedback control law that achieves
global ultimate boundedness and guarantees ‖xk+1(t)‖ ≤ ε2
as t → ∞, for any ε2 > 0, can be constructed by a
recursive procedure. If φk satisfies (25), then such a control
law guarantees ‖xk+2(t)‖ ≤ ε2 as t → ∞.

The control laws (19) and (21) are defined implicitly, via
φ̃n(u). When φ̃−1

n is not readily available, we enlarge the
system (5) or (20) with an integrator, u̇ = γn+1(x, u), to
obtain a system affine in controls. Then, we construct a
C1 map γn+1 : IRn+1 → IR such that (x, u) = (0, 0) is
GAS/GPS.

V. AN EXTENSION

In [6], the following triangular systems were considered

ẋ1 =
∑j1

k1=1 βk1
(x1)αk1

(x2) + φ1(x2),

ẋ2 =
∑j2

k2=1 βk2
(x2)αk2

(x3) + φ2(x3),
...
ẋn =

∑jn

kn=1 βkn
(x)αkn

(u) + φn(u),

(26)

with φi(xi+1) = x
pi

i+1, where pi is an odd integer,
αki

(xi+1) = xki

i+1 and βki
: IRi → IR, βki

(0) = 0 is C1,
ki = 1, pi − 1, i = 1, ...n, and a GAS C0 feedback control
law was constructed. We now let maps φi satisfy Lemma 2.1
and αki

: IR → IR be C1, ki = 1, ji, such that

lim
|xi+1|→∞

|αki
(xi+1)|

|φ−
i (xi+1)|

= 0. (27)

Corollary 5.1: Let the condition (27) hold for ki = 1, ...ji,
i = 1, ...n. If x = 0 of (26) is linearly controllable then a C1

control law which renders it globally asymptotically stable
can be constructed by a recursive procedure. If x = 0 is not
linearly controllable but for any small ε > 0 there exists a
linearly controllable equilibrium x∗, ‖x∗‖ ≤ ε then such a
control law renders x = 0 globally practically stable.

We illustrate Corollary 5.1 on the system

ẋ1 = x1
x2

ln(x2
2
+2)

+ (1 + x2
2 cos2 x2)x2

, β1(x1)α1(x2) + µ̃1(x2)φ̃1(x2),
ẋ2 = u,

(28)

to which no existing designs can be applied. Take φ̃1(x2) =
x2 and M1(x2) = 1 + x2

2. Then (27) holds, since

lim
|x2|→∞

α1(x2)

x2
= 0.

The C1 map η1(x1) , x1(e
|x1| +

√
2) satisfies

| x2

ln(x2
2 + 2)

||x1| ≤
1

2
|x2| + |η1(x1)|. (29)

Using

|α1(s1) − α1(s2)| ≤ max
s∈IR

|α′

1(s)||s1 − s2| ≤
3

2
|s1 − s2|

and (29), it can be shown that V2 = 1
2x2

1 + 1
2 (x2 − γ1(x1))

2

is a CLF for (28), where

γ1(x1) = −2x1

(
2 +

√
2 +

9

4
x2

1 + e
√

x2
1
+1

)
(30)

is C∞. The control law

u =
∂γ1

∂x1
ẋ1 −

1

4
(5 + M2

1 (x2))(x2 − γ1(x1))

yields V̇2 ≤ −2V2 and renders x = 0 GAS.



VI. INVERSE OPTIMALITY

It is of interest to investigate inverse optimality properties
of the designed feedback control laws, because it guards
against excessive control effort and ensures a sector margin
( 1
2 ,∞), as shown in [2], [7].
A stabilizing feedback control law u = γ(x) for ẋ =

f(x) + g(x)u is said to be inversely optimal if it minimizes

J =

∫ ∞

0

(l(x) + r(x)u2)dt (31)

for some r, l : IRn → IR+. If a Lyapunov function V and a
control law u = γ(x) satisfy

γ(x) = −1

2
r−1(x)

∂V

∂x
g(x) , −1

2
r−1(x)LgV (x)

for some r > 0, and l defined by

l(x) , −∂V

∂x
f(x) +

1

4
r−1(x)LgV

2(x) (32)

satisfies l > 0, then u = γ(x) is inversely optimal to (31)
and V is its optimal value function, Theorem 3.19 in [7].

For system (5) and

J =

∫ ∞

0

(l(x) + r(x)φ2
n(u))dt (33)

we now examine the optimality of φ̃n(u) = γn(x) defined
by (19). As a Lyapunov function we use Vn constructed in
Section IV. Noting that LgVn(x) = φ

′

n−1(xn)(φ̃n−1(xn) −
γn−1(xn−1)), we write

φn(u) = µ̃n(u)φ̃n(u) = −µ̃n(x) G̃n(x)+cn

κn−1(xn) ∗
(φ̃n−1(xn) − γn−1(xn−1)) , − 1

2r−1(x)LgVn(x)
(34)

where µ̃n(x) , µ̃n(φ̃−1
n (γn(x))) and r : IRn → IR+ is a C1

map defined by

r(x) =
κn−1(xn)φ̃

′

n−1(xn)

2µ̃n(x)(G̃n(x) + cn)
. (35)

An upper bound on l defined by (32) for V = Vn could
be obtained from (15) with i = n. The term cn is added to
ensure l > 0.

l(x) ≥ ∑n−2
i=0 (φ̃i(xi+1) − γi(xi))

2+

µ̃n(x)
φ̃
′

n−1(xn)

2κn−1(xn) (φ̃n−1(xn) − γn−1(xn−1))
2(G̃n(x) + cn)

−(φ̃n−1(xn) − γn−1(xn−1))
2G̃n(x).

Applying Theorem 3.19 in [7] and selecting

cn ≥ G̃n(x) (36)

we can prove the following corollary.

Corollary 6.1: Let (5) have a linearly controllable equilib-
rium at x = 0. Then C1 control law (34), (36) achieves GAS
of x = 0 and minimizes performance index (33) with l and
r given by (32) and (35) respectively, and Vn is the optimal
value function.

Similar inverse optimality properties can be guaranteed for
control law (21) as well.

VII. CONCLUSION

We have developed a constructive procedure for stabi-
lization of a wider class of triangular systems with C1

control laws. We allow that controlling nonlinearities be non-
invertible and non-smooth. When x = 0 is not linearly
controllable, to avoid non-Lipschitz control laws, we stabilize
another linearly controllable equilibrium close to x = 0. In
the absence of linearly controllable equilibria, our control
laws guarantee ultimate boundedness and force a subset of
states to be arbitrarily small. The designed control laws
possess desirable inverse optimality properties.
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