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Abstract

For fully convex problems of optimal control, the
Hamiltonian dynamical system provides a global de-
scription of evolution of the subdifferentials of the value
function from those of the initial cost. We employ
this description and the convex structure of the prob-
lem to investigate the differentiability properties of the
value function. Motivation is provided by questions of
regularity of optimal feedback, the key ingredients of
which the the value function, and by the fact that the
Hamiltonian may lead to a reasonable dynamical sys-
tem, even if the underlying control problem involves
various constraints and penalties.

1 Introduction

The Hamiltonian function and the associated Hamil-
tonian dynamical system are important objects in the
analysis of optimal control problems. The dynamical
system is involved in optimality conditions, and the
Hamiltonian itself characterizes the value function – a
key ingredient in the optimal feedback – through the
Hamilton-Jacobi equation.

In this note we discuss how, for fully convex problems,
properties of the Hamiltonian dynamical system influ-
ence the regularity of the value function. Results in
this direction are taken mainly from Goebel [8], [9].
A key tool is provided by a global description of the
evolution of subdifferentials of the value function in
the Hamiltonian dynamical system, given by Rockafel-
lar and Wolenski [14]. In other words, this descrip-
tion globally validates – for the fully convex setting –
a generalized method of characteristics for the appro-
priately understood Hamilton-Jacobi equation. We de-
scribe how the Hamiltonian dynamical system ”stores”
all the information about the initial cost of the problem
(Theorem 2.3), show when ”shocks” introducing non-
smoothness of the value function cannot appear (The-
orem 3.1), and state how Hamiltonians with Lipschitz
continuous gradients lead to Lipschitz continuity of the
optimal feedback (Theorem 3.3). Through examples we
illustrate that problems with abundant nonsmoothness
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in the cost can still lead to reasonable Hamiltonians,
satisfying in particular the assumptions of mentioned
results.

Problems of our interest are the fully convex general-
ized problems of Bolza: given any τ ∈ [0,+∞) and any
ξ ∈ IRn we consider the problem

P(τ, ξ) :
minimize g(x(0)) +

∫ τ

0

L(x(t), ẋ(t)) dt

subject to x(τ) = ξ,

(1)

where both the initial cost g : IRn 7→ IR, and the La-
grangian L : IRn×IRn 7→ IR, are convex functions. Min-
imization is carried out over all absolutely continuous
arcs x : [0, τ ] 7→ IRn satisfying the terminal condition
x(τ) = ξ. The optimal value in P (τ, ξ), parameterized
by (τ, ξ) defines the value function V : [0,+∞)×IRn 7→
IR associated with the Bolza problem. Convexity as-
sumptions on L and g guarantee that V (τ, ·) is convex,
for any fixed τ (and in fact proper and lower semicon-
tinuous, under the assumptions we state below).

Mild requirements on the cost functions L and g give
the extended problems of Bolza a wide range of mod-
eling possibilities. Control problems with explicit dy-
namics, control constraints, and various penalty func-
tions can be expressed in the current format, as well
as problems with a terminal cost and an initial condi-
tion (for which the value function is the ”cost to go”).
For further details on modeling capabilities see the In-
troduction in Clarke [5], or Rockafellar [11]. We note
though that insisting on convexity essentially limits us
to control problems with linear dynamics. Exact as-
sumptions, in force in what follows, are:

(A1) The functions g(·) and L(·, ·) are convex, proper
and lsc on, respectively, IRn and IRn × IRn.

(A2) The set F (x) = {v | L(x, v) < ∞} is nonempty
for all x, and there is a constant ρ such that
dist(0, F (x)) ≤ ρ(1 + |x|) for all x.

(A3) There are constants α and β and a coercive,
proper, nondecreasing function θ(·) on [0,∞)
such that L(x, v) ≥ θ(max{0, |v| − α|x|}) − β|x|
for all x and v.



The assumptions can be equivalently stated in terms
of the Hamiltonian H : IRn× IRn → IR associated with
the given control problem:

H(x, y) = sup
v∈IRn

{〈y, v〉 − L(x, v)} . (2)

Lagrangian L satisfies (A1), (A2), (A3) whenever the
Hamiltonian H is finite, concave in x for any fixed
y, convex in y for any fixed x, and has some mild
growth properties, always in place for example when
H – and equivalently, L – is piecewise linear-quadratic,
or when the Hamiltonian has the form H(x, y) =
〈Ax, y〉 − h1(x) + h2(y) for some matrix A and con-
vex functions h1, h2.

Our interest in the Hamiltonian and the value func-
tion comes in part from their relation to the optimal
feedback – a map describing optimal controls – opti-
mal velocities in our setting – at any given state of
the system. We define the possibly set-valued Φ :
int dom ∂ξV →→ IRn by

Φ(t, x) = ∂yH(x, ∂ξV (t, x))

= {∂yH(x, η) | η ∈ ∂ξV (t, x)} .
(3)

Above, ∂yH(x, η) and ∂ξV (t, x) denote, respectively,
the subdifferentials of convex functions H(x, ·) and
V (τ, ·). Referring to Φ as the optimal feedback map-
ping is justified by the following result:

Theorem 1.1 (Goebel [8]). Fix any (τ, ξ) ∈
[0,+∞) × IRn. If x(·) is an optimal arc for P(τ, ξ),
and ∂ξV (τ, ξ) 6= ∅, then

ẋ(t) ∈ Φ(t, x(t)) for almost all t ∈ [0, τ ]. (4)

On the other hand, if x(·) is such that x(τ) = ξ, (4)
holds, and x(t) ∈ int domV (t, ·) for almost all t ∈ [0, τ ]
(as always is the case if either L or g is finite), then
x(·) is optimal for P(τ, ξ).

The mapping (3) has closed and compact values, how-
ever they need not be convex. In Section 3 we give
several conditions on the Hamiltonian which guarantee
that the optimal feedback mapping, and consequently
the differential inclusion (4), is more regular.

Feedback results applicable to other nonsmooth con-
trol problems are known, see for example Berkovitz
[1], Cannarsa and Frankowska [3] and Clarke, Ledyaev,
Stern and Wolenski [6]. While these can handle nonlin-
ear dynamics, they have limited applicability to prob-
lems with unbounded control sets or non-Lipschitz
costs, this is outlined in further detail by Goebel [8],
for a discussion of related issues in the Hamilton-Jacobi
theory see Rockafellar and Wolenski [14] and Galbraith
[7]. We add that the well-developed notion of viscos-
ity solutions has a limited application in presence of
convexity.

2 Hamiltonian Dynamical System

By a Hamiltonian trajectory on an interval [a, b]
we understand a pair of absolutely continuous arcs
(x(·), y(·)) : [a, b] 7→ IRn such that
{

−ẏ(t) ∈ ∂̃xH (x(t), y(t)) ,

ẋ(t) ∈ ∂yH (x(t), y(t)) ,

for almost
all t ∈ [a, b].

(5)

Above, ∂̃xH(x, y) is the subdifferential (in the con-
cave sense) of the concave function H(·, y) and equals
−∂x(−H)(x, y), where the latter subdifferential should
be understood in the convex sense. Both subdifferen-
tials in (5) reduce to gradients if the Hamiltonian is
differentiable. Key to our analysis of the regularity
of the value function is the following description of its
subgradients.

Theorem 2.1 (Rockafellar and Wolenski [14]). A
point (xt, yt) is in the graph of ∂ξV (t, ·) if and only if
for some (x0, y0) ∈ gph ∂g, there is a Hamiltonian tra-
jectory (x(·), y(·)) on [0, t] with (x(0), y(0)) = (x0, y0),
(x(t), y(t)) = (xt, yt).

As an illustration of the above theorem, we show
that the value function need not be piecewise linear-
quadratic, even if the terminal cost function g is
quadratic and the Hamiltonian is smooth, with piece-
wise linear gradient.

Example 2.2 Consider a one-dimensional problem of
Bolza with the cost functions

L(x, v) =
1

2
v2 +

{

0 x < 0,
1
2x

2 x ≥ 0,
g(x) =

1

2
(x+ 3)2.

The corresponding Hamiltonian and its gradient are:

H(x, y) =

{

1
2y

2 x < 0,
− 1

2x
2 + 1

2y
2 x ≥ 0,

∇H(x, y) =

{

(0, y) x < 0,
(−x, y) x ≥ 0.

A Hamiltonian trajectory (x(·), y(·)) must satisfy
ẋ(t) = y(t) = const when x(t) < 0, and x(t) =
αet + βe−t, y(t) = αet − βe−t for suitably chosen α, β
when x(t) > 0. We parameterize the segment between
(−2, 1) and (−1, 2) by (xs(0), ys(0)) = (s−2, s+1), s ∈
[0, 1], and calculate the Hamiltonian trajectories origi-
nating at points (xs(0), ys(0)). We get (xs(t), ys(t)) =
((s + 1)t + s − 2, s + 1) for 0 ≤ t ≤ 2−s

s+1 , and

(xs(t), ys(t)) = (s + 1)
(

sinh(t− 2−s
s+1 ), cosh(t−

2−s
s+1 )

)

for t ≥ 2−s
s+1 . It is easy to check that for any t > 1,

the set {(xs(t), ys(t)), s ∈ [0, 1]} is not a straight line
segment, nor is it a union of segments. Now note that
the segment between (−2, 1) and (−1, 2) is in gph∇g,
while {(xs(t), ys(t)), s ∈ [0, 1]} ⊂ gph ∂ξV (t, ·). Thus,
V (t, ·) is not piecewise linear-quadratic.



Theorem 2.1 suggests that the Hamiltonian dynami-
cal system propagates all the information on ∂g, unless
some Hamiltonian trajectories escape to infinity in fi-
nite time. A stronger conclusion can be then made, two
different initial costs will not yield equal value functions
at any time τ > 0:

Theorem 2.3 (Goebel and Rockafellar [10]). Let V1,
V2 be value functions corresponding to initial costs g1,
g2 and a Lagrangian L. Assume that for the Hamilto-
nian dynamical system associated with L, no trajecto-
ries escape to infinity in finite time. Then the following
are equivalent, and either implies that V1 = V2.

(a) For some τ > 0, V1(τ, ξ) = V2(τ, ξ) for all ξ ∈
IRn.

(b) g1(x) = g2(x) for all x ∈ IRn.

Note that the result above does not require the unique-
ness of Hamiltonian trajectories originating at any
given point. We add that the assumption about no
finite escape time holds for example for Hamiltoni-
ans depending only on x or only on y, for any piece-
wise linear-quadratic Hamiltonian, and for H(x, y) =
〈Ax, y〉 − h1(x) + h2(y).

The concavity and convexity of the Hamiltonian, and
consequently the monotone structure of ∂̃xH, ∂yH,
displayed in the fact that the mapping (x, y) 7→
(−∂̃xH(x, y), ∂yH(x, y)) is maximal monotone, has
various implications on the nature of Hamiltonian tra-
jectories. In particular, if (xi(·), yi(·)), i = 1, 2 are
Hamiltonian trajectories on [a, b], then the function

f(t) = 〈x1(t)− x2(t), y1(t)− y2(t)〉

is nondecreasing on [a, b]. This was noted by Rockafel-
lar [12], where the study of generalized Hamiltonian
systems for saddle Hamiltonians was initiated. Fur-
ther assumptions of strict concavity or convexity of the
Hamiltonian lead to f strictly increasing.

3 Regularity of the Value Function

We now employ the properties of the Hamiltonian dif-
ferential inclusion to investigate the single-valuedness
and continuity of the subdifferential ∂ξV (τ, ·). For sim-
plicity of presentation, we assume:

• Value functions under consideration are finite.

This is always the case if either L or g is finite. An im-
portant consequence of single-valuedness of ∂ξV (τ, ·)
is displayed in the equivalence of the following state-
ments:

(a) For every τ > 0, the subdifferential mapping
∂ξV (τ, ·) is single-valued.

(b) V is differentiable on (0,∞)× IRn,

Under either of the above conditions, ∇V is continuous
on (0,∞) × IRn. These facts follow from in part from
the Hamilton-Jacobi equation appropriate for the cur-
rent setting, as described by Rockafellar and Wolenski
[14].

For any finite convex function f , single-valuedness of
∂f is equivalent to the following: for any y1 ∈ ∂f(x1),
y2 ∈ ∂f(x2), 〈x1−x2, y1− y2〉 > 0 unless y1 = y2. The
description of ∂ξV (τ, ·) of Theorem 2.1, combined with
the behavior of 〈x1(1)−x2(t), y(1)−y(2)〉 for Hamilto-
nian trajectories (xi(·), yi(·)), as described at the end of
Section 2, leads to the conclusion: if H(x, ·) is strictly
convex for every x, then ∂ξV (τ, ·) is single-valued for
all τ > 0. Thus, strict convexity of the Hamiltonian
in y guarantees differentiability of the value function,
on (0,+∞)× IRn, independently of the regularity of g.
However, the strict convexity of H(x, ·) is equivalent
to smoothness of L(x, ·), a condition rarely satisfied,
especially in presence of hard control constraints.

In the method of characteristics for the Hamilton-
Jacobi equation, a “shock” is said to occur when two
Hamiltonian trajectories (characteristic curves) origi-
nating on gph ∂g have different endpoints but with the
same x-coordinate. The proof of the result below shows
that in our convex setting, a shock can only happen in
presence of nonuniqueness of Hamiltonian trajectories.
This is in great contrast to the nonconvex case.

Theorem 3.1 (Goebel [8]). Assume that the Hamilto-
nian H satisfies the following “uniqueness condition”,
for every τ > 0:

If (x(·), yi(·)), i = 1, 2, are Hamiltonian trajec-
tories on [0, τ ] with the same initial condition
(x(0), yi(0)) = (x0, y0), then y1(·) = y2(·).

If the initial cost function g(·) is differentiable, then so
is V (τ, ·), for every τ > 0.

Proof: Fix τ > 0 and pick two points (x′, y′1) and
(x′, y′2) in the graph of ∂ξV (τ, ·). Theorem 2.1 implies
that there exist points (xi, yi) ∈ gph ∂g and Hamilto-
nian trajectories on [0, τ ], (xi(·), yi(·)), from (xi, yi) to
(x′, y′i), for i = 1, 2. We get

〈x1 − x2, y1 − y2〉 = 〈x1(0)− x2(0), y1(0)− y2(0)〉

≤ 〈x1(τ)− x2(τ), y1(τ)− y2(τ)〉 = 〈x
′ − x′, y′1 − y′2〉,

with the first quantity being nonnegative and the last
one equal to 0. So 〈x1 − x2, y1 − y2〉 = 0. Differentia-
bility of g, and so single-valuedness of ∂g, is equivalent



to 〈x1 − x2, y1 − y2〉 > 0 unless y1 = y2, and thus the
last equality must hold. The above estimation shows
also that 〈x1(t) − x2(t), y1(t) − y2(t)〉 is constant on
[0, τ ]. Under this condition, the following pair of arcs
is also a Hamiltonian trajectory, for any α, β ∈ [0, 1]:
x′(·) = (1−α)x1(·) +αx2(·), y

′ = (1− β)y1(·) + βy2(·)
(Rockafellar [12]). By taking α = 0, β = 1 we see that
(x1(·), y2(·)) is a Hamiltonian trajectory. Notice that
(x1(0), y2(0)) = (x1, y2) = (x1, y1) = (x1(0), y1(0)).
The uniqueness assumption implies that y1(·) = y2(·),
and in particular that y′1 = y′2. This shows the single-
valuedness of ∂ξV (τ, ·).

Example 3.2 Consider a control problem

minimize g(x(0)) +

∫ τ

0

l(x(t), u(t)) dt

subject to ẋ(t) = u(t), u(t) ∈ U(x(t)),

with the cost and state-dependent control constraint
set given by

l(x, u) =

n
∑

i=1

{

0 for ui ≥ 0,
1
2u

2
i for ui < 0,

U(x) = {u | ui ≤ xi, i = 1, 2, . . . , n} .

Translating this control problem to a Bolza setting
yields the Lagrangian

L(x, v) =
1

2
|v−|

2 + δIRn

+
(x− v).

Here, the negative part v− of v is described as (v−)i = 0
if vi ≥ 0 and (v−)i = vi if vi < 0, while the indicator
function δIRn

+
(z) equals 0 if z ∈ IRn

+ and +∞ otherwise.

As the Lagrangian is separable:

L(x, v) =

n
∑

i=1

(

1

2
|(vi)−|

2 + δIR+
(xi − vi)

)

,

and for any convex function f(z1, z2) = f1(z1)+ f2(z2)
one has f∗(w1, w2) = f∗1 (w1)+f∗2 (w2), we only consider
the Hamiltonian for n = 1, and obtain

H(x, y) =















{

xy, for y ≥ 0
1
2y

2, for y < 0
, if x ≥ 0,

{

xy − 1
2x

2, for y ≥ x
1
2y

2, for y < x
, if x < 0.

In other words, the Hamiltonian is given by xy − 1
2x

2

in the region A, xy in B, and 1
2y

2 in C.

C

BA

Y

X

Y

X

In the neighborhood of any point (x0, y0) with x0 ≤ 0
or y0 6= 0, the Hamiltonian is differentiable, and ∇H

is Lipschitz continuous. As in such cases ∂̃xH = ∇xH

and ∂yH = ∇yH, trajectories emanating from such
(x0, y0) are unique for small time intervals. Global
analysis of such trajectories (approximate sketch is
above on the right) shows that they remain in the
described region where ∇H is Lipschitz continuous.
Therefore, they are unique.

For points (x, y) such that x ≥ 0, y = 0, we have
∂̃xH(x, y) = {0}, ∂yH(x, y) = [0, x]. Any trajec-
tory originating at (x0, 0) with x0 ≥ 0 must satisfy
ẋ(t) ∈ [0, x(t)], ẏ(t) = 0, and so y(t) = 0, while x(t)
is nondecreasing. Thus, the ”uniqueness condition”
holds. Consequently, if the initial cost g(·) is differ-
entiable, then so is the value function.

In the example above, while the Hamiltonian is not
smooth, it is differentiable in x for any fixed y. Lips-
chitz behavior of ∇xH is sufficient for the “uniqueness
condition” to hold, that is, the latter is implied by the
following: the Hamiltonian H is differentiable in the
x-variable, and for every (x0, y0), there exists a neigh-
borhood X0×Y0 of (x0, y0) and a constant K such that
the following is true

for all x ∈ X0, y1, y2 ∈ Y0,

|∇xH(x, y1)−∇xH(x, y2)| ≤ K|y1 − y2|.

Note that differentiability of V , even in presence of
the condition above, does not guarantee that the opti-
mal feedback map (3) is single-valued (it must, though,
have convex values). Also notice that the lack of Lips-
chitz behavior of ∇xH is not necessary for uniqueness
of Hamiltonian trajectories even in both components:
a simple analysis shows that Hamiltonian trajectories
for H(x, y) = −|x| + |y| are unique (this Hamiltonian
corresponds to the Lagrangian L(x, v) = |x| with the
velocity v constrained to [−1, 1]).

Stronger regularity properties of the value function,
possibly the Lipschitz continuity of its gradient, should
be expected if the Hamiltonian is differentiable, and
its gradients are Lipschitz continuous. A setting where
smoothness of a function automatically entails global
Lipschitz continuity of its gradient is that of piecewise
linear-quadratic functions. Hamiltonians fitting this



format naturally occur in various extensions of the clas-
sical linear-quadratic regulator problem. In the latter,
the Lagrangian is a quadratic function

L(x, v) =
1

2
〈x, Px〉+

1

2
〈v,Qv〉 ,

with the matrices P , Q symmetric and positive
semidefinite, and Q in fact positive definite. The
Hamiltonian corresponding to the L above is also
quadratic: H(x, y) = − 1

2 〈x, Px〉+ 1
2

〈

y,Q−1y
〉

. Addi-
tion of simple constraints of the form v(t) ∈ U for some
polyhedral set U , not necessarily bounded nor conical,
leads to a piecewise linear-quadratic and differentiable
Hamiltonian

H(x, y) = −
1

2
〈x, Px〉+ sup

v∈U

{

〈y, v〉 −
1

2
〈v,Qv〉

}

.

Similarly, a linear-quadratic regulator with an extra
state-dependent constraint v(t) ≤ Cx(t) + d for any
matrix C, any vector d, leads to a differentiable and
piecewise linear-quadratic H. On the other hand, con-
straints essentially guarantee (here, and in general con-
vex problems) that the Hamiltonian will not be C2.
This poses an obstacle to Riccati-like descriptions of
the gradient of the value function, as given for example
by Byrnes [2].

As these simple examples suggest, a nonsmooth and
infinite-valued Lagrangian may lead to a regular Hamil-
tonian. Further details, and in particular precise re-
sults on differentiability of the Hamiltonian for control
problems in the extended piecewise linear-quadratic
format, as proposed by Rockafellar [13], can be found
in Goebel [9].

When the gradient of the Hamiltonian is globally Lips-
chitz, so is the mapping sending a point (x0, y0) to the
endpoint of a Hamiltonian trajectory on [0, τ ] originat-
ing at (x0, y0). In general, small Lipschitz perturba-
tions of sets which are a graph of a Lipschitz map do
not damage the latter property. Theorem 2.1 then sug-
gests that ∇ξV (τ, ·) will remain Lipschitz for small val-
ues of τ , provided that the initial cost g has a Lipschitz
gradient. This in fact may hold, in some local sense,
in absence of convexity (see Caroff and Frankowska [4],
and note that the results described therein on differen-
tiability of V – for a nonconvex setting – require regu-
larity of the Lagrangian). In our setting, the structure
of the Hamiltonian dynamical system, in particular the
“monotonicity preserving” properties discussed at the
end of Section 2, yield a stronger result.

Theorem 3.3 (Goebel [9]). Suppose that both the
Hamiltonian H and the initial cost g are differentiable
and have globally Lipschitz gradients. For every fixed
τ > 0, ∇ξV (τ, ·) is globally Lipschitz on IRn, and in
fact the Lipschitz constant can be chosen uniformly
over τ on every bounded interval [0, T ].

Consequently, under the assumptions of Theorem 3.3,
the value function V is differentiable on (0,+∞)× IRn

and ∇V is locally Lipschitz. The optimal feedback
mapping (3) is locally Lipschitz continuous, and conse-
quently the inclusion (4) with the endpoint condition
x(τ) = ξ has unique solutions.
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