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Abstract: Robust asymptotic stability for hybrid systems is considered. For
this purpose, a generalized solution concept is developed. The first step is to
characterize a hybrid time domain that permits an efficient description of the
convergence of a sequence of solutions. Graph convergence is used. Then a
generalized solution definition is given that leads to continuity with respect to
initial conditions and perturbations of the system data. This property enables
new results on necessary conditions for asymptotic stability in hybrid systems.
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1. INTRODUCTION

One of the most common tasks in nonlinear con-
trol is to design a feedback algorithm that ro-
bustly, asymptotically steers a dynamical system
to a target set. This fact motivates the extensive
literature on asymptotic stabilization for nonlin-
ear differential equations and difference equations.

In a quest to provide more flexible tools for achiev-
ing the stabilization task and wider relevance for
its solution, recent research efforts have focused
on developing control algorithms that produce
closed-loop systems where continuous variables
interact with variables that make instantaneous
jumps. A special case is when the control al-
gorithm contains logic variables which take on
discrete values. Systems with continuous variables
and variables that jump are called hybrid systems.
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In order to understand the capabilities of hybrid
control systems, one of the first steps is to get a
firm grasp on what is meant by a solution to a hy-
brid system. Some of the issues that come up when
talking about solutions of hybrid systems include
generalizing the “time” domain of a solution, char-
acterizing when jumps happen, and dealing with
systems that make an infinite number of jumps
in a finite amount of ordinary time. Several dif-
ferent hybrid solution concepts have appeared in
the literature. See, for example, (Tavernini, 1987),
(Michel and Hu, 1999), (Lygeros et al., 1999),
(van der Schaft and Schumacher, 2000), (Aubin
et al., 2002), and (Prieur, 2003).

Together with the definition of solutions, it is
also important to understand their structural
properties, including continuity with respect to
initial conditions and perturbations of the sys-
tem data. Some work in this direction can be
found in (Hiskens and Pai, 2000), (Simić et al.,
2001), (Prieur, 2003), (Prieur and Astolfi, 2003),
(Lygeros et al., 2003). Somewhat related is work
on continuous dependence for impulsive differen-



tial inclusions. See, for example, (Plotnikov and
Kitanov, 2002).

The next step in understanding the stabilizing
capabilities of hybrid control systems is to develop
characterizations of asymptotic stability, which is
typically induced for the purpose of steering to
a target set asymptotically. This concept and its
robustness properties are well-understood for dif-
ferential and difference equations. Asymptotic sta-
bility has been addressed in the hybrid systems lit-
erature and many sufficient conditions have been
provided. See (Branicky, 1998), (Ye et al., 1998),
(Michel and Hu, 1999), (DeCarlo et al., 2000),
(Liberzon, 2003), and (Lygeros et al., 2003).

Certain necessary conditions for asymptotic sta-
bility, including some converse Lyapunov theo-
rems, have been established as well. See, for exam-
ple, (Ye et al., 1998), (Michel and Hu, 1999). How-
ever, to the best of our knowledge, missing from
the literature are general statements for hybrid
systems about asymptotic stability’s robustness,
which is important for predicting the behavior of
a hybrid control system in the presence of mea-
surement noise and other modeling uncertainty.
For this reason, when robust asymptotic stability
is desired, robustness is usually proved separately.
An example of this situation can be found in
(Prieur and Astolfi, 2003).

General results on robust asymptotic stability for
hybrid systems probably are not available because
the efforts to develop solution notions for hybrid
systems rarely have been linked to the pursuit
of robustness for asymptotic stability. A notable
exception can be found in (Prieur, 2003).

In this paper, we will attempt to motivate giv-
ing attention to this link between the definition
of solution and robust asymptotic stability. To
that end, we will sketch a notion of solution for
hybrid systems that bears some resemblance to
notions that have appeared previously but which
has some unique features. For “single-valued” hy-
brid systems, it can be thought of as a “gen-
eralized” hybrid solution notion, a la Filippov
(Filippov, 1960) (see also (Filippov, 1988)) or
Krasovskii (Krasovskii, 1970) for discontinuous
differential equations. Like for differential equa-
tions, hybrid Filippov and Krasovskii solutions
have strong structural properties, including nice
continuity properties with respect to perturba-
tions of initial conditions and system data. In
turn, asymptotic stability using hybrid Krasovskii
solutions can be linked to robustness to mea-
surement noise and other small perturbations in
hybrid control systems, like in differential equa-
tions (Hermes, 1967), (Hájek, 1979). Moreover,
in contrast to the case for differential equations,
the use of hybrid Filippov or Krasovskii solutions
does not preclude nice closed-loop behaviors re-

sulting from hybrid controllers that are not possi-
ble using their continuous-time counterparts. See
(Ceragioli, 2002) for examples illustrating the neg-
ative consequences of using Filippov or Krasovskii
solutions for certain continuous-time control sys-
tems that use discontinuous feedback. We will
conclude with a series of necessary statements
that follow from asymptotic stability using the
solution notion presented in this paper.

2. EXAMPLES OF HYBRID SYSTEMS

In a hybrid dynamical system, the state some-
times flows (continuously) while at other times
it makes jumps. Whether flow occurs or a jump
occurs depends on the state’s location in the state
space. Thus, a hybrid dynamical system is usually
described by two functions, f and g, and two sets
C and D. The function f generates a differential
equation that governs flow while the function g
generates a reset equation that governs jumps.
The function f is often only specified for variables
that can flow while the function g is often only
specified for variables that can jump. The set
C indicates where in the state space flow may
occur while the set D indicates where in the state
space jumps may occur. Where these sets overlap,
both flowing and jumping may be possible. Some
examples of hybrid systems are given next. We will
not be precise about what is meant by a solution
for these systems until subsequent sections.

Oscillator using hysteresis. This example de-
scribes an oscillator with a single continuous state,
denoted x, and a state q that can take values in
the discrete set {−1, 1}. Thus, the state space for
(x, q) is R × {−1, 1}. The flow equation for x is
given by ẋ = q =: f(q, x) and it applies on the set

C := {q = −1 & x > −1 , or q = 1 & x < 1}.

The jump equation is q+ = −q , applying on

D := {q = −1 & x ≤ −1 , or q = 1 & x ≥ 1}.

A sample trajectory is shown in Figure 1. The
trajectories tend to the set [−1, 1] × {−1, 1}.
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Fig. 1. Trajectories for oscillator using hysteresis.



Bouncing ball. This example describes the be-
havior of a ball bouncing on the floor. The state is
two-dimensional, with x1 being the ball’s height
above the floor and x2 being the ball’s velocity.
The state space corresponds to x1 ≥ 0 and x2 ∈ R.
The flow equation is given by

ẋ =

[

x2

−γ

]

=: f(x) ,

where −γ is the acceleration due to gravity. The
flow equation applies in

C := {x1 > 0, or x1 = 0 & x2 > 0} .

The jump equation for velocity is x+

2 = −µx2 =:
g(x) where µ ∈ (0, 1) is a dissipation factor.
It applies in D := {x1 = 0 & x2 ≤ 0}. Figure
2 contains a sample trajectory for this system.
Visually, the trajectories tend toward the origin.
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Fig. 2. Bouncing Ball trajectories.

Sampled-data stabilization of an integrator
to the integers. Consider stabilizing the state of
an integrator ẋ = u to the set of integers using
sampled-data feedback. Let T > 0 denote the
period between taking samples of the state. Let
int(x) denote the closest integer to the value x ∈
R. For the sake of resolving ambiguity for values
x halfway between two integers, define int(x) to
be the smaller of the two closest integers in this
case. The state of the overall system will consist of
the state x of the integrator, the sampled feedback
value, denoted z, and ρ which keeps track of time.
The flow equation can be written

ẋ = T−1z
ż = 0
ρ̇ = T−1

and it applies on the set C := {ρ ≤ 1}. The jump
equation is given by

z+ = −x + int(x)
ρ+ = 0

and it applies on the set D := {ρ ≥ 1}. The
trajectories of this system tend to the set where x
is an integer, z = 0 and ρ ∈ [0, 1].

Nonholonomic integrator. Consider a simpli-
fied version of the hybrid controller for a nonholo-
nomic integrator in (Hespanha and Morse, 1999)
proposed by (Ryan, 1996). Let q ∈ {0, 1}, x ∈
R

3. The flow is governed by ẋ = f(x, q) where
f(x, q) := (u1, u2, x1u2 − x2u1) and

[

u1

u2

]

= (1 − q)

[

1
1

]

+ q
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.

Additionally, f(0, 1) = 0. It applies on the set

C :=

{

q = 0, x2
1 + x2

2 ≤ ρ|x3|
}

∪
{

q = 1, x2
1 + x2

2 ≥ |x3|
}

,

where ρ > 1. The jump equation for q is

q+ = 1 − q =: g(x, q)

which applies on D, the set of points with x 6= 0
in

{

q = 0, x2
1 + x2

2 ≥ ρ|x3|
}

∪
{

q = 1, x2
1 + x2

2 ≤ |x3|
}

.

The trajectories of this hybrid system tend to the
set where x = 0 and either q = 0 or q = 1. Indeed,
if initially q = 0, eventually there is a jump to
q = 1 and from then on, q is constant with x
converging to 0 exponentially fast.

Rotate and dissipate. Consider a planar system
with flow governed by the equation

ẋ = f(x) :=

[

x2

−x1

]

,

which applies on the set

C := {x | x2
1 + x2

2 ≤ 2, x1 6= 0},

and jumps governed by the equation

x+ = g(x) :=

[

µx2

0

]

µ ∈ (0, 1) ,

which applies on the set

D := {x | x2
1 + x2

2 ≤ 1, x1 = 0}.

Intuitively, the trajectories that originate in the
unit disk rotate clockwise continuously until they
hit the x2-axis at which point they rotate instanta-
neously to the x1-axis, decreasing in magnitude by
the factor µ. This process is recurrent and, in this
way, these trajectories tend to the origin. Outside
of the unit disk the trajectories rotate clockwise
continuously without jumps or dissipation.



3. HYBRID TIME DOMAINS

In this section we make more precise what we
mean by a solution for a hybrid dynamical system.
The first issue to address is the “time” domain on
which the solutions are defined.

To ease notation, from now on when making
general statements about hybrid systems, we do
not mention the discrete variable q explicitly,
and denote the state of the system as just x.
The discrete set of potential values of q – often
consisting of descriptive elements like “on” and
“off” – can be identified with a finite subset of
integers, and then one of the coordinates of x can
be used to represent q.

3.1 Partitioning ordinary time

The simplest choice is to use the ordinary time
domain broken into non-overlapping intervals that
cover the ordinary time domain. Then, the solu-
tions to the hybrid system are functions 2 satisfy-
ing

ẋ(t) = f(x(t)) (1)

and x(t) ∈ C on each interval of continuity and
whose right limits x(t+) = limτ↘t x(τ) at the
jump times t, which are determined by x(t) ∈ D,
are related to x(t) through

x(t+) = g(x(t)) . (2)

This choice of the time domain does not allow for
more than one jump at a given time. This is not an
obstacle to the analysis of systems for which times
between jumps can be uniformly bounded below
(as it is the case for the Oscillator with Hysteresis
and for the Nonholonomic Integrator). However,
it may preclude limits of solutions with increasing
number of jumps in a finite amount of time.

For example, consider the Bouncing Ball. There
does not exist a solution originating at the origin:
the “expected” solution x(t) = 0 for all t ≥ 0 does
not satisfy the continuous dynamics (1), while
a solution that keeps on jumping according to
(2) from the origin to the origin is not piecewise
continuous. For any initial point above the floor,
there does exist a unique solution, and each such
solution is Zeno: there are infinitely many jumps
in a finite amount of time (as illustrated on Figure
2). Note, however, that the solutions that one
obtains by dropping the ball from lower and lower
heights do not have a “limiting” solution.

2 Throughout the paper, when the time derivative of a

function is used, the function is assumed to be piecewise

absolutely continuous and the derivative condition is as-

sumed to hold almost everywhere.

Lack of “limiting” solutions is a fundamental
obstacle to robustness analysis, as one cannot
expect a reasonable dependence of solutions on
initial conditions and perturbations.

3.2 Hybrid time domain

An alternate approach is to consider the state of
a system not only as a function of time but also of
the number of jumps that occurred. To this end,
by a hybrid time domain we understand a subset
of [0,+∞) × IN0 given as a union of finitely or
infinitely many intervals [tj , tj+1]×{j}, where the
numbers 0 = t0, t1, ... form a finite or infinite and
nondecreasing sequence. Here, IN 0 = {0, 1, 2, ...}.
We do allow for the “last” interval to be of the
form [tj , T ) × {j} with T finite or T = +∞.

A sketch of a hybrid time domain corresponding
to the Bouncing Ball is shown in Figure 3.
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Fig. 3. Hybrid time domain for the Bouncing Ball.

This concept builds upon the one in (Lygeros
et al., 1999), (Aubin et al., 2002), and (Lygeros
et al., 2003), but gives a more explicit role to
the “discrete” variable j: the state of the system
will be parameterized by (t, j). (Height of the
Bouncing Ball as a function of (t, j) is shown
in Figure 4; cf. Figure 2. ) The benefits of this
approach will be underlined in the sections to
come. We add that each hybrid time domain can
be embedded in [0,+∞) via an “order-preserving”
function (t, j) → t + j (embeddings of hybrid
systems into [0,+∞) are relied upon in (Michel
and Hu, 1999), (Michel, 1999); here we note that
different hybrid time domains need not be subsets
of a pre-described “time-space”).

In this framework, a solution to the hybrid system
is a function defined on a hybrid time domain,
such that

ẋ(t, j) = f(x(t, j)) (3)

and x(t, j) ∈ C are satisfied on (tj , tj+1), while for
all j,

x(tj+1, j + 1) = g(x(tj+1, j)) (4)

and x(tj+1, j) ∈ D.

Note that unless one makes a priori requirements
that tj+1 > tj , more than one jump can occur
at a single moment of ordinary time. (Figure 5
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Fig. 4. Height of the Bouncing Ball as a function of (t, j) on its hybrid time domain.

shows a hybrid time domain with three jumps at
a single moment, this corresponds to the behavior
of Newton’s cradle with four balls, see (van der
Schaft and Schumacher, 2000).) In fact, a purely
discrete evolution is possible – if tj = 0 for all
j, then the hybrid time domain can be identified
with 1, 2, ... and thus the evolution is according to
a difference equation (4). Still, further generaliza-
tion is possible, to allow multiple ordinary times
at which an infinite number of jumps occurs; see
(van der Schaft and Schumacher, 2000). We do
not pursue this here.
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Fig. 5. Hybrid time domain for Newtons cradle.

With the new concept of a hybrid time domain,
there does exist a solution originating at the origin
for the Bouncing Ball. It is a purely “discrete”
solution – it keeps jumping from the origin to the
origin; the differential equation (3) does not come
into play. As we will see later, this is in fact the
previously missing “limiting” solution.

The question of existence of solutions to a hybrid
system now reduces to the separate questions for

(3) and (4). That is, there exists a solution to the
hybrid system originating at x0 if either

– x0 ∈ D and a jump is possible (i.e. g(x0) ∈
C ∪ D), or

– x0 ∈ C and a continuous flow is possible
(conditions for this involve viability theory,
see (Aubin et al., 2002)).

Previously, one also had to check whether the
jump occurs to a state from which a continuous
flow is possible.

The symmetric treatment of t and j yields a more
natural view of Zeno solutions. We say that a
solution x to the hybrid system is complete if its
hybrid time domain is unbounded. If x is complete
but the domain is bounded “in the j-direction”,
that is its projection onto IN 0 is bounded, then the
last interval in the domain is of the form [tj ,∞)×
{j}. On the other hand, complete solutions that
have the domain bounded “in the t-direction” are
exactly Zeno solutions.

Note though that changing the time domain does
not address all of the issues with “limiting” solu-
tions. Indeed, for the Rotate and Dissipate exam-
ple, solutions originating at (ε, 0) have the same
hybrid time domains which are unbounded in both
t and j directions (and so are not Zeno), and in
a sense, converge uniformly to a function that is
equal to zero. The latter is not a solution. It is also
the regularity of C, D, f , and g that plays a role in
a satisfactory “limiting” process. We pursue this
further in Section 6.



4. CONTINUITY OF SOLUTIONS: WHAT IS
DESIRED AND HOW IT MIGHT FAIL

A key reason for recognizing j as an independent
variable, equally important as t, is that the oth-
erwise cumbersome or limiting concepts of close-
ness and convergence of solutions can be treated
globally, in particular through the well-established
nonsmooth analysis concept of graphical conver-
gence. The classical, measured pointwise, distance
is not very well-suited for hybrid trajectories, as it
does not handle jumps well. Resulting concepts of
closeness often require that jumps occur at exactly
the same times. Hybrid time seemingly adds an-
other challenge, of having trajectories defined on
different sets. Focusing on graphs of trajectories,
and discussing their convergence as sets, clears the
way to overcoming these, and other obstacles.
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Fig. 6. Bouncing ball: heights of “close” solutions.

Given a hybrid trajectory x with domain dom x,
its graph is the set in [0,+∞)× IN 0×R

n given by

gph x := {(t, j, x(t, j)) | (t, j) ∈ dom x}.

A sequence of trajectories converges graphically if
the corresponding graphs converge as sets. The
corresponding concept of closeness is similar to
the one in the definition of continuous hybrid
systems in (Lygeros et al., 2003). Two hybrid
trajectories x, x′ with domains dom x, dom x′ are
ε-close on [0, T ] × {0, 1, . . . , J} if

• for all (t, j) ∈ dom x such that t ≤ T and j ≤
J , there exists s such that (s, j) ∈ dom x′,
|t − s| < ε, and

‖x(t, j) − x′(s, j)‖ < ε,

• for all (t, j) ∈ dom x′ such that t ≤ T and
j ≤ J there exists s such that (s, j) ∈ dom x,
|t − s| < ε, and

‖x′(t, j) − x(s, j)‖ < ε.

Similar conditions can be used to formalize graph-
ical convergence of hybrid trajectories.

Vaguely, conditions for ε-closeness require that
if no jumps occur near t for either trajectory,
then the same number of jumps occurred already
for each of them, and the trajectories should be
close in the classical pointwise sense. If there is
a jump at t for one trajectory, then there is a
jump for the other at a nearby time. Note however
that the jumps for x and x′ need not occur at
the same time. (This can be observed in Figure
6.) Furthermore, trajectories with continuous and
discrete evolution can be close to one with only
discrete behavior.

Convergence of sets in general, and convergence of
graphs in particular, is a concept well-developed
and often used in set-valued and nonsmooth anal-
ysis; see (Rockafellar and Wets, 1998), or (Aubin
and Cellina, 1984) for applications in differential
inclusion theory. One of the general results on
set convergence implies that for essentially any
sequence of solutions to a hybrid system, there
exists a subsequence that converges graphically.
Whether the limit is a solution to the hybrid
system – a property fundamental in analyzing
robustness – hinges upon the properties of the
system data f , g, C, and D.

When discussing robustness of asymptotic stabil-
ity, we will need to consider perturbed hybrid
systems. For a hybrid system with initial condi-
tions in a set K that has flow equation ẋ = f(x),
which applies when x ∈ C, and a jump equation
x+ = g(x) which applies when x ∈ D, and for
δ > 0, a δ-perturbed solution will be a solution
for the hybrid system that has initial conditions
in a δ-neighborhood of K, has flow equation

ẋ = f(x + d1) + d2

which applies when x+d3 ∈ C and that has jump
equation

x+ = g(x + d4) + d5

which applies when x + d6 ∈ D, where the
disturbances di are possibly time-varying and are
bounded in norm by δ on their domain.

The closeness we are after is that for each com-
pact set of initial points, each ε > 0 and each
T > 0 and J > 0, there exists δ > 0 such that
each δ-perturbed solution is ε-close on [0, T ] ×
{0, 1, . . . , J} to some solution of the original sys-
tem. At times, we will only ask for this property
for disturbance signals that keep the hybrid sys-
tem within its original state space. This is mainly
an issue for systems that do not have an open
state space.

We now discuss some of the previous exam-
ples with respect to the desired δ-perturbed ε-
closeness.



Bouncing Ball, revisited. Recall that the
bouncing ball system did not have a solution in
the sense of Section 3.1 originating at x = 0.
In the sense of Section 3.2, a solution does ex-
ist. It is given by x(0, j) = 0, with the domain
dom x = {0} × IN0.

Considering such a solution is essentially dictated
by the goal of obtaining a successful convergence
concept. Indeed, consider the ball being dropped
from lower and lower height. A sample of resulting
solutions is shown in Figure 7. The decreasing
Zeno times are indicated as tzi in the figure.
The graphical limit of such solutions is exactly
x(0, j) = 0 for all j ∈ IN0. In other words, the
solutions originating from (δ, 0) are close to the
limiting one.

Sampled-data stabilization of an integrator
to the integers, revisited. Suppose that ρ
starts at one and z starts at zero. Consider the
solution with x starting at 1/2 compared to x
starting at 1/2+δ with δ ∈ (0, 1/2]. In either case,
a jump occurs immediately, and after the jump z
equals −1/2 in the first case and 1/2 − δ in the
second case. The next jump does not occur until
t = T . In the first case, after T seconds x = 0.
In the second case, no matter how small δ > 0 is,
after T seconds x = 1. The perturbed solution is
not close to the unperturbed solution.

Rotate and dissipate, revisited. First consider
the solution concept of Section 3.1, and the unique
solution originating from (1, 0). As previously
outlined, it tends to the origin. However, the (also
unique) solution from (1 + δ, 0) is periodic, and
have constant norm. They are not close to that
from (1, 0). Note that discarding the endpoints
(0,±1) from the jump set D is not a remedy –
then, the solutions from (1− δ, 0) are not close to
the periodic one from (1, 0).

Considering the solution concept of Section 3.2
does not alter the situation just described.

So far we only varied the initial condition. Similar
issues arise under other perturbations. For exam-
ple, arbitrarily small d3 and d6 can cause the solu-
tions from (α, 0) with α ∈ (−1, 1) to be periodic.
This happens since the jump set D is too “thin”.

Because of some of the issues that come up
in these examples, like nonexistence and/or lack
of continuity with respect to initial conditions
and/or perturbations, we wish to explore general-

ized notions of solutions that don’t suffer these dif-
ficulties. Such generalized notions of solutions will
parallel what has been done in (Filippov, 1960)
and (Krasovskii, 1970) for discontinuous differ-
ential equations. Similar generalized notions of
solution have also been used for discontinuous
discrete-time systems in (Kellett and Teel, 2004).
As we point out in the next section, the advantage
of these generalized notions of solution is that they
have nice structural properties. The disadvantage,
especially in continuous time, is that they pre-
clude certain behaviors. We will argue later that a
generalized notion of solution for hybrid systems
can be given that has nice structural properties
and does not preclude the behaviors that hybrid
controllers have been relied upon to produce in
certain control systems.

5. GENERALIZED SOLUTIONS FOR
DIFFERENTIAL AND DIFFERENCE

EQUATIONS

We start by considering the relation between so-
lution concepts and robust asymptotic stability
for differential and difference equations. This topic
has received significant attention recently, for ex-
ample in the papers (Clarke et al., 1997), (Ledyaev
and Sontag, 1999), (Sontag, 1999), (Ancona and
Bressan, 1999), (Clarke et al., 2000), (Ceragioli,
2002), (Ancona and Bressan, 2003), (Clarke and
Stern, 2003), (Kellett et al., 2004), (Kellett and
Teel, 2004), (Grimm et al., 2004).

5.1 Differential equations

Consider steering the state of an integrator ẋ = u
to the set of integers using the feedback

u = −sgn(x − int(x)) =: σ(x)

where “int” was defined earlier when using sampled-
data feedback for this problem, and sgn(0) = 0.

5.1.1. Global asymptotic stability w/o robustness
First, by solution to the closed-loop system we will
mean any function x(·) satisfying ẋ(t) = σ(x(t)).
A similar definition will be used for the corre-
sponding system with measurement noise ẋ(t) =
σ(x(t) + e(t)). With this definition, the solutions
starting halfway in between neighboring integers
are not unique. However, the solutions are such
that the set of integers is globally asymptotically
stable for the system without measurement noise.
In particular, the distance to the set of integers
is never bigger than the initial distance and the
trajectories converge to the integers in no more
than one half of a second.

Unfortunately, this global asymptotic stability is
not robust to measurements errors, no matter how
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Fig. 7. Bouncing ball: “converging” solutions.

small they are. In particular, for initial conditions
halfway between integers, the solution

x(0) + ε · tri(t/ε) ,

where “tri” denotes the triangle wave given by

tri(s) = (−1)i(s−2i) ∀s ∈ [2i−1, 2i+1] , i ∈ IN 0

is induced by the measurement noise

e(t) = −ε · tri(t/ε) + ε · tri(1 + t/ε)

where ε > 0 can be arbitrarily small. Therefore,
in the presence of arbitrarily small measurement
noise, the trajectories may not get close to the
set of integers. The global asymptotic stability
property for the unperturbed system provides no
indication of the potential problems with mea-
surement noise near the points halfway between
integers.

5.1.2. Robustness w/o global asymptotic stability
Now by a solution we mean any function x(·)

satisfying ẋ ∈ S(x(t)) where S(x) is the inter-
val [−1, 1] at the integers and also at the points
halfway between integers, and S(x) = σ(x) at
all other points. This is the generalized solution
concept for discontinuous differential equations,
due to Filippov (and Krasovskii). See, for ex-
ample, (Filippov, 1988). Due to the change in
the solution definition, the set of integers is no
longer globally asymptotically stable. Instead it
is locally asymptotically stable with basin of at-
traction equal to all points on the real line except
those halfway between neighboring integers. This

is the downside of the generalized solution con-
cept. The upside is that this stability property is
robust. The boundary of the basin of attraction
indicates exactly where the possibility of problems
with measurement noise exists. Away from these
points, small measurement noise cannot keep the
trajectories very far from the integers.

At this point, it is worth noting that the set of
integers is made globally asymptotically stable in
a manner that is robust to measurement noise
when using sampled-data feedback as discussed
earlier. This can be seen directly, but also follows
from general results coming in later sections.

5.2 Difference equations

A similar phenomenon can occur for discrete-time
systems. Consider the control system

x+ = g(x, u) :=

[

x1(1 − u)
|x|u

]

(5)

and the choice of state feedback

u = κ(x) :=

{

1 if x1 6= 0
0 if x1 = 0 .

This control law actually results from applying
model predictive control to (5) using the origin as
a terminal constraint and a horizon of length two.
See (Grimm et al., 2004) for details.

5.2.1. Global asymptotic stability w/o robustness
The first notion of solution that we consider

is seemingly the most natural one. Namely, any



sequence xk that satisfies xk+1 = g(xk, κ(xk)) is
a solution. With this definition, the solutions are
unique and the origin is globally asymptotically
stable. Indeed, each solution’s distance from the
origin is never bigger than the initial distance and
each solution converges to the origin in two steps.
However, this asymptotic stability is not robust
to measurement noise. In particular, the feedback
u = κ(x + e) where e is an arbitrarily small but
nonzero constant, yields the solution

[

x10

x20

]

,

[

0
‖x0‖

]

,

[

0
‖x0‖

]

, . . . .

Again, global asymptotic stability for the unper-
turbed system provides no indication of poten-
tial problems with arbitrarily small measurement
noise, this time along the positive x2 axis.

5.2.2. Robustness w/o global asymptotic stability
Now a generalized definition of solution is con-
sidered. It may not seem as natural, but it is
effective at revealing the possibility of problems
due to measurement noise and other types of
perturbations. For more details see (Kellett and
Teel, 2004). This time by solution we mean any
sequence xk that satisfies xk+1 ∈ G(xk) where
G(x) = g(x, κ(x)) at all points except those on the
positive x2 axis where G(x) is the two point set
containing x and the origin. This is the set of all
limiting vectors obtained by considering g(y, κ(y))
at points y arbitrarily close to x. (The construc-
tion of G is Filippov- and Krasovskii-like but G
doesn’t need to be convex in the discrete-time
case.) Solutions in this new sense are not unique.
Indeed, each solution moves to the positive x2

axis in one step, if it wasn’t there already, then
can remain stationary on the x2 for an arbitrary
number of steps (or forever), and then may jump
to the origin. The downside of using this general-
ized solution concept is that the origin is no longer
asymptotically stable. It is only stable. The upside
is that it accurately reflects what can occur with
arbitrarily small measurement noise.

6. GENERALIZED SOLUTIONS FOR
HYBRID SYSTEMS

Motivated by the desire for a solution concept that
ensures asymptotic stability is robust, we consider
solutions in a generalized sense for a hybrid sys-
tem described by functions f , g and sets C, D.
These solutions will be defined through hybrid
time domains, and through regularizations of the
system data f , g, C and D. Various regulariza-
tions are possible. The simplest regularization for
the sets C and D comes by taking their closures C
and D. For f and g, we will work with set-valued
extensions as hinted at in Section 5.

For a function f on C, its Krasovskii extension is a
(possibly set-valued) mapping FK on C such that
FK(x) is the smallest closed convex set containing
all limits of f(x′) as x′ → x. The Krasovskii exten-
sion of g on D to GK on D is defined similarly, but
without requiring convexity of GK(x). Filippov
extensions are slightly more technical; vaguely,
for piecewise continuous functions, the limits are
taken only over points x′ where f is continuous. In
several cases, the Filippov and Krasovskii exten-
sions are equal. This occurs for example when C
is the union of finitely many regions Ci such that
each Ci is a subset of the closure of its interior, and
f |Ci

is continuous. In general, Filippov extensions
are smaller than Krasovskii extensions.

Letting F and G be the extensions of f and g
in the Filippov or Krasovskii sense, when f and
g are locally bounded, and for Filippov exten-
sions also measurable, then the regularized data
(F,G,C,D) satisfy the following basic conditions:

– sets C and D are closed,
– the mapping F has convex values, is locally

bounded and has a closed graph,
– the mapping G is locally bounded and has a

closed graph.

In general, we can consider set-valued hybrid sys-
tems with data that satisfies these basic condi-
tions and make the following solution definition:

Recall that a hybrid time domain was a union of
finitely or infinitely many intervals [tj , tj+1]×{j}
in [0,+∞) × {0, 1, 2, ...}, with the last interval
possibly open and unbounded. A (generalized)
solution is a function x defined on a hybrid time
domain dom x and such that

(S1) on each interval [tj , tj+1] × {j} ⊂ dom x of
positive length (so that tj < tj+1) we have

x(t, j) ∈ C, and ẋ(t, j) ∈ F (x(t, j)),

(S2) for each (t, j) ∈ dom x such that (t, j + 1) ∈
dom x, we have

x(t, j) ∈ D, and x(t, j + 1) ∈ G(x(t, j)).

The hybrid basic conditions on (F,G,C,D) lead
to the desired convergence and ε-closeness for δ-
perturbation results for the solutions.

We now discuss generalized solutions for some of
the examples presented earlier.

Oscillator using hysteresis re-revisited. Here,
the only change from the original data is

C = {q = −1 & x ≥ −1, or q = 1 & x ≤ 1}.

Unique generalized trajectories exist from every
initial point in C ∪ D = R × {−1, 1}, and the
x-coordinate tends to [−1, 1].



Bouncing ball re-revisited. Here, C = {x | x1 ≥
0}, and the other data does not change, that is
F = f , G = g, D = D. This by itself does not
change the behavior of the system; rather, it is
passing to a hybrid time domain that allows for
the important “limiting” solution originating from
the origin, as noted in Section 4.

Sampled-data stabilization of an integrator
to the integers, revisited. Here C = C, D = D,
F = f and

G(x, z, ρ) =

[

−x + INT(x)
0

]

where INT(x) = int(x) except at points halfway
between integers where INT(x) contains both
closest integers to x. Since the discontinuous func-
tion is in the jump equation rather than the flow
equation, it is not necessary to take the convex
hull. Generalized solutions starting from ρ = 1,
and x halfway between integers are not unique.
Still, they all tend to the set where x is an integer,
z = 0 and ρ ∈ [0, 1].

Rotate and dissipate re-revisited. Here, the
only change is C =

{

x | x2
1 + x2

2 ≤ 1
}

. The solu-
tions to this system are no longer unique, and do
not tend to 0, as noted in Section 4. This can
be related to lack of robustness in the original
formulation. However, the issue of convergence of
solutions from (1 + δ, 0) to a solution from (1, 0)
is resolved.

We did not discuss continuity with respect to
perturbations of the system data directly for these
examples. This property is addressed indirectly
through the results of the next section, at least for
those systems that have an asymptotically stable
compact set. This is the case for each example
except the rotate and dissipate system.

7. CONSEQUENCE: ROBUST STABILITY

Our motivation for revisiting the solution concept
for hybrid systems was to find a solution notion
that provided robustness of asymptotic stability
for free, without destroying the unique features of
hybrid systems in the process. For this purpose,
we introduced generalized hybrid solutions.

This solution notion enables establishing several
interesting results related to asymptotic stability
for hybrid systems, even those that are set-valued

from the beginning. The results parallel what
is known to hold for differential and difference
equations and inclusions. See, for example, (Teel
and Praly, 2000) in continuous time and (Kellett
and Teel, 2004), (Kellett, 2002) in discrete time.
The details of the results mentioned below will be
given elsewhere.

Throughout this section, we assume that the data
of the hybrid system, (F,G,C,D), satisfies the
basic conditions given in the previous section.
Now we define asymptotic stability and robust
asymptotic stability for such systems.

For a hybrid system (F,G,C,D), a compact set A
is said to be locally asymptotically stable (LAS)
relative to a set X ⊇ A if

• (Stability) for each ε > 0 there exists δ > 0
such that for each initial condition in X that
is in a δ-neighborhood of A, each (general-
ized) solution has an unbounded domain and
throughout its domain the solution stays in
X and in an ε-neighborhood of A,

• (Attractivity) the set of points in X such
that:

each (generalized) solution has an
unbounded domain, is contained
in X , and converges to A

contains a neighborhood of A intersected
with X .

We use R to denote the set of points in X
attracted to A and call this set the basin of
attraction for A.

When the state-space domain X is open, X can
be omitted completely from the characterization
above. When it is omitted, we implicitly mean
that X is open. When X is not open, it is often
possible to extend the hybrid system to one de-
fined on an open set containing X without chang-
ing the solutions that start in X and preserving
stability and attractivity. This is useful to know
for the characterization of robustness given below.

For a hybrid system (F,G,C,D) a compact set A
that is locally asymptotically stable with (open;
see below) basin of attraction R is said to be
robustly asymptotically stable if there exists a
continuous function δ : R → R≥0, positive definite
with respect to A, such that for the hybrid system
(Fδ, Gδ, Cδ, Dδ) the set A is locally asymptoti-
cally stable with basin of attraction R, where the
hybrid system (Fδ, Gδ, Cδ, Dδ) is defined as:

Fδ(x) := coF (x + δ(x)B) + δ(x)B ,

Gδ(x) := G(x + δ(x)B) + δ(x)B ,

Cδ :=
{

x : x ∈ C + δ(x)B
}

,

Dδ :=
{

x : x ∈ D + δ(x)B
}

.

The notation “co” denotes the closed convex hull.



The following facts can be established:

The basin of attraction is (relatively) open.
This means that the basin of attraction R has the
form O

⋂

X where O is open in R
n.

LAS is equivalent to a KLL estimate. In
particular, if A is LAS with basin of attraction
R = O

⋂

X , then for each continuous function
ω : O → R≥0 that is positive definite with respect
to A and proper with respect to O, there exists
β ∈ KLL 3 such that for each solution with
x(0, 0) ∈ R, we have

ω(x(t, j)) ≤ β(ω(x(0, 0)), t, j) ∀(t, j) ∈ dom x .

LAS with open basin of attraction R implies
robust LAS with basin of attraction R. The
meaning here should be clear from the definitions
above. This result can be used as another route to
the robustness results established in (Prieur and
Astolfi, 2003) for a hybrid control system applied
to a class of nonholonomic systems.

LAS with open basin of attraction R implies
a smooth Lyapunov function on R. A smooth
function V : R → R≥0 is a Lyapunov function
relative to a function ω : R → R≥0 if there exist
functions α1, α2 ∈ K∞

4 and λ ∈ (0, 1) such that,
for all x ∈ R,

α1(ω(x)) ≤ V (x) ≤ α2(ω(x))

and

〈∇V (x), w〉 ≤ −V (x) ∀x ∈ C,w ∈ F (x) ,

V (w) ≤ λV (x) ∀x ∈ D,w ∈ G(x) .

For any continuous function ω satisfying a KLL
estimate of the form given above, there exists such
a Lyapunov function.

These conditions for a Lyapunov function are
restrictive as sufficient conditions. As necessary
conditions, they provide a very strong conclusion
which should be compared with the statements in
(Michel and Hu, 1999).

Additional facts can be mentioned quickly: for-
ward invariance plus uniform convergence implies
stability; zero-input LAS implies local input-to-
state stability; LAS is robust to slowly varying
parameters, etc.

Moreover, LaSalle’s invariance principle can be
readily extended to hybrid systems, even those
that do not have unique solutions. The results
here are modeled after those in (Ryan, 1998) for

3 β : R≥0 × R≥0 × IN0 → R≥0 belongs to class-
KLL if β(·, t, j) is nondecreasing, β(s, ·, j) is nonincreas-

ing, β(s, t, ·) is nonincreasing and lims→0+ β(s, t, j) =
limt→∞ β(s, t, j) = limj→∞ β(s, t, j) = 0.
4 α : R≥0 → R≥0 belongs to class-K∞ if α is continuous,

zero at zero, strictly increasing and unbounded.

differential inclusions. They generalize those given
in (Lygeros et al., 2003) for hybrid systems.

8. CONCLUSION

In this paper, we have discussed the solutions of
hybrid systems from the point of view of guar-
anteeing that asymptotic stability is robust. We
described a notion of a hybrid time domain that
treats both ordinary time t and the number of
jumps j as independent variables over which the
state of the hybrid system solution is defined. We
mentioned how this approach allows an efficient
characterization of the convergence of a sequence
of solutions through results on graphical conver-
gence from set-valued analysis. Then, we showed
how to regularize hybrid systems so that every
sequence of (possibly perturbed) solutions has a
subsequence converging to a some solution of the
hybrid system. This result enables showing var-
ious properties that follow from asymptotic sta-
bility. For instance, for an asymptotically stable
compact set for a hybrid system: the basin of
attraction is (relatively) open, stability plus con-
vergence equals uniform convergence, the asymp-
totic stability is robust, and smooth Lyapunov
functions exist. These results parallel known facts
for differential equations that are used extensively
in nonlinear control. Hopefully, they will have sig-
nificant ramifications for hybrid control systems
research as well.
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