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Abstract— Tools from convex analysis are used to show how
dissipativity properties, expressed in terms of convex storage
functions, translate when passing from a linear differential
inclusion (LDI) to its dual. As special cases, it is shown that
a convex, positive definite function is a Lyapunov function
for an LDI if and only if its convex conjugate is a Lyapunov
function for the LDI’s dual, and that passivity and finite L2-
gain are preserved when passing from an LDI with input and
output to its dual. Also established is the duality between
stabilizability and detectability, including stabilizable and
detectable dissipativity, for dual LDIs. Finally, with examples
we show how duality effectively doubles the number of tools
available for assessing stability of LDIs.

I. INTRODUCTION

Duality is a firmly established concept in linear systems
theory. For example, a matrix is Hurwitz if and only if its
transpose is Hurwitz. The pair (A,B) is stabilizable if and
only if (BT , AT ) is detectable. For the transfer function
C(sI −A)−1B+D and its dual BT (sI −A)−1CT +DT ,
the H∞ norms are equivalent. Similarly, one is positive real
(respectively, strictly positive real) if and only if the other
is positive real (respectively, strictly positive real).

There are various ways to establish this duality. One
way is to find an appropriate positive definite matrix P
so that 1

2
P establishes the first property and to show

that 1

2
P−1 establishes the second property. For exponential

stability, 1

2
(ATP + PA) < 0 if and only if 1

2
(AP−1 +

P−1AT ) < 0. Also, 1

2
(ATP + PA − 2PBBTP ) < 0,

which is equivalent to stabilizability of (A,B), if and only
if 1

2
(AP−1 + P−1AT ) < BBT , which is equivalent to

detectability of (BT , AT ). Furthermore, it can be shown
that 1

2
P satisfies the bounded real lemma (respectively, the

positive real lemma) for (A,B,C,D) if and only if 1

2
P−1

satisfies the bounded real lemma (respectively, the positive
real lemma) for (AT , CT , BT , DT ).

Not coincidentally, the function ξ 7→ 1

2
ξ · P−1ξ is the

convex conjugate (in the sense of convex analysis) of the
function of the function x 7→ 1

2
x · Px when P = P T > 0.

In this paper, we will explore this conjugate relationship
and duality for LDIs, at the same time allowing for the
possibility of working with nonquadratic functions and their
conjugates.
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Since the codification of the absolute stability problem
in the middle of the twentieth century (see, for example,
[1]), researchers have looked for Lyapunov functions to
guarantee exponential stability and/or input-output proper-
ties for systems that can be modeled as switching among
a (possibly infinite) family of linear systems. The classical
circle criterion gives necessary and sufficient condition for
the existence of a quadratic Lyapunov function that certifies
exponential stability in the absolute stability problem. How-
ever, it is well known that a system can be absolutely stable
without the existence of a quadratic Lyapunov function. For
example, see [9]. In [8] it is noted that convex, positively
homogeneous of degree two Lyapunov functions always
exist for exponentially stable switching linear systems. In
[4] it is shown that, moreover, these functions can always
be taken to be everywhere continuously differentiable and
smooth except at the origin.

In order to give computationally tractable methods to
search for Lyapunov functions, researchers have focused on
classes of functions over which to look. In the papers [13],
[7], and [3], the authors consider homogeneous polynomial
Lyapunov functions and provide linear matrix inequality
(LMI) conditions for exponential stability. In [2], a matrix
condition for a Lyapunov function that is the maximum of
positive semidefinite quadratics is outlined.

One of the contributions of this paper is showing that
the origin of an LDI is exponentially stable if and only if
the origin of the dual LDI is exponentially stable and that
Lyapunov functions for the dual systems are related through
the convex conjugacy. Thus, the tools for computation of
Lyapunov functions mentioned above can be applied to the
dual system to check stability of the original system. In a
sense, this observation doubles the number of tools available
for assessing stability of LDIs. In some cases, there is a
vast difference in the stability range that a certain class of
Lyapunov functions can certify for a system compared to
what it can certify for the system’s dual. We illustrate this
with an example at the end of the paper. Further benefits are
shown in our companion paper [6], where stability regions
of saturated systems are estimated.

In addition to results on exponential stability, we present
duality results for dissipativity when using convex, posi-
tively homogeneous storage functions and convex/concave
supply rates. These results are used to show, for example,
that passivity and finite L2 gain are preserved when passing
from an LDI with input and output to its dual. Duality of sta-
bilizability and detectability, and stabilizable and detectable
dissipativity, is established as well.



II. LDIS AND DISSIPATION INEQUALITIES

We are interested in dissipation properties, established via
convex storage functions, for a linear system
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as well as a linear differential inclusion
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Our most general Lyapunov inequalities will be of the form

∂V (x) · (Ax+B1u+B2d) ≤ −γV (x)

−k(Cx+D1u+D2d, u, d),
(5)

where the function k is convex in its first two arguments,
and concave in the third. For such functions, if (5) holds
for each vertex of the convex hull, we have

∂V (x) ·
m∑

i=1

λi(Aix+B1iu+B2id) + γV (x)

≤ −
m∑

i=1

λik ((Cix+D1iu+D2id), u, d)

≤ −k
(

m∑

i=1

λi(Cix+D1iu+D2id), u, d

)

for any λi ≥ 0 with
∑n

i=1
λi = 1. Thus, checking the

inequalities for the vertices of the LDI is sufficient for
verify the Lyapunov condition for all possible matrices in
the convex hull. For ease of notation, in what follows we
will usually suppress indices when considering LDIs. Our
assumptions applied to these systems should be understood
to hold for all matrix vertices.

Our main results show that inequalities of the form (5)
can be equivalently restated in terms of inequalities like

∂V ∗(ξ) · (AT ξ + CTw) ≤ γV ∗(ξ)

+k∗(w,−BT
1 ξ −DT

1 w,−BT
2 ξ −DT

2 w)
(6)

which involve a function V ∗ conjugate (in the sense of
convex analysis) to V and a k∗, a convex-concave conjugate
of k. In many cases of practical interest, which we discuss
here as corollaries and examples, verifying this inequality
for vertices of the LDI is also sufficient.

III. CONVEX ANALYSIS PRELIMINARIES

The standard reference for the objects and concepts of
convex analysis we summarize here is [10]. Given any
function f : R

n 7→ R, its conjugate function is defined,
for ξ ∈ R

n by

f∗(ξ) = sup
x∈Rn

{ξ · x− f(x)} .

Basic examples are:

� For a positive definite matrix P ,

f(x) =
1

2
x · Px ⇐⇒ f∗(ξ) =

1

2
ξ · P−1ξ. (7)

� For any p > 1, q > 1, with 1

p + 1

q = 1,

f(x) =
1

p
‖x‖p ⇐⇒ f∗(ξ) =

1

q
‖ξ‖q. (8)

More elaborate examples are presented in Section IV.
As in this paper we are mostly interested in functions f

that are convex, positive definite, and positively homoge-
neous of degree p > 1, from now on assume that f has
these properties. Then:

(i) f∗(ξ) is finite for every ξ ∈ R
n.

(ii) f∗ is a convex, positive definite, and positively homo-
geneous of degree q > 1 where 1/p+ 1/q = 1.

(iii) If
α

p
‖x‖p ≤ f(x) ≤ β

p
‖x‖p

for some α > 0, β > 0 (such constants exist for any
continuous, positively homogeneous of degree p and
positive definite function), then

β1−q

q
‖ξ‖q ≤ f∗(ξ) ≤ α1−q

q
‖ξ‖q.

For example, positive homogeneity of f ∗ can be verified
directly from the definition:

f∗(λξ) = supx {(λξ) · x− f(x)}
= λq supx

{
ξ · (x/λq−1) − f(x)/λq

}

= λq supx

{
ξ · (x/λq−1) − f(x/λq/p)

}

= λq supx {ξ · x− f(x)} = λqf∗(ξ).

since q − 1 = q/p. Bounds on f∗(ξ) follow from (8) and
the fact that conjugacy reverses inequalities.

A fundamental property of convex functions, key to many
results involving duality, is that the conjugate of f ∗ is the
function f . That is,

(f∗)∗(x) = sup
ξ

{x · ξ − f∗(y)} = f(x).

So, for example, the property of f∗ described in (ii) above
is equivalent to the same property of f . Similarly, bounds
on f in (iii) are equivalent to those on f∗.

A subgradient of a convex function f at x is a vector
v ∈ R

n such that

f(x′) ≥ f(x) + v · (x′ − x) ∀x′ ∈ R
n.



If f is differentiable, then ∇f(x) is the unique subgradient
at x. At points of nondifferentiability, the subdifferential
∂f(x), being the set of all subgradients, has more than 1
element.

A fundamental relationship between ∂f and ∂f ∗ is:

ξ ∈ ∂f(x) ⇐⇒ x ∈ ∂f∗(ξ).

This immediately leads to the following observation (the
inequality ∂f(x) ·Ax < 0 should be understood as ξ ·Ax <
0 for all ξ ∈ ∂f(x)). When the convex function f and its
conjugate f∗ are positive definite, we have

∂f(x) ·Ax < 0 ∀x 6= 0 ⇐⇒ ∂f∗(ξ) ·AT ξ < 0 ∀ξ 6= 0.

Indeed, suppose the condition on the left holds. Pick any
ξ 6= 0, and any x ∈ ∂f∗(x). Then x 6= 0, since 0 ∈ ∂f∗(x)
would imply x minimizes f∗. Thus x · AT ξ = ξ · Ax < 0,
since x ∈ ∂f∗(ξ) is equivalent to ξ ∈ ∂f(x).

A more precise relationship exists for positively homo-
geneous functions.

Lemma 3.1: f(x) = 1/p and ξ ∈ ∂f(x) if and only if
f∗(ξ) = 1/q and x ∈ ∂f∗(ξ).

Proof: The subdifferential inclusions are equivalent,
thus we only need to show that f(x) = 1/p and y ∈ ∂f(x)
implies f∗(y) = 1/q. As y ∈ ∂f(x), then x maximizes
y · x− ∂f(x), and so f∗(y) = y · x− f(x) = y · x− 1/p.
Furthermore, λ = 1 maximizes the function y·λx−f(λx) =
y · λx− λp/p over λ ≥ 0. The derivative being 0 at λ = 1
yields y · x = 1. Thus f∗(y) = 1 − 1/p.

Given any function g : R
n 7→ R, its convex hull co g

is the greatest convex function bounded above by g. Under
mild assumptions, for example when g∗ is finite everywhere
(this always holds if g is positively homogeneous of degree
p > 1 and positive definite) we have

co g(x) = min

{
n+1∑

i=1

λig(xi) |
n+1∑

i=1

λixi = x

}
(9)

where the minimum is taken over xi’s and λi’s such that∑n+1

i=1
λi = 1, λi ≥ 0 (we denote such set as ∆n). If

co g(x) =
∑n+1

i=1
λig(xi) then co g(xi) = g(xi) at each

xi with nonzero λi. Furthermore, if g is differentiable at
each such xi, then ∇ co g(x) = ∇g(xi) for each such i (in
particular, co g is differentiable at x).

Now consider convex functions fi : R
n 7→ R, i = 1, 2, ..l,

and define
f(x) = max

i=1,2,...l
fi(x). (10)

The conjugate function f∗ is the convex hull of the function
g(ξ) = mini=1,2,...l f

∗

i (ξ). A similar relationship holds for
level sets – level sets of f are intersections of level sets of
all fi’s while level sets of f∗ are convex hulls of (smallest
convex sets containing) level sets of all f ∗

i ’s.

Lemma 3.2: Consider a positive definite function f given
by (10) and any function h. The following are equivalent:
(a) for all i = 1, 2, ...k and x such that f(x) = fi(x),

∂fi(x) · (Ax+Bu) ≤ −γfi(x) + h(x, u),

(b) for all x, ∂f(x) · (Ax+Bu) ≤ −γf(x) + h(x, u).

Proof: Fix x̄ and let i1, i2, ...is be the set of all indices
for which fik

(x̄) = x̄. Then (a) implies that

∂fik
(x̄) · (Ax̄+Bu) ≤ −γf(x̄) + h(x̄, u)

for k = 1, 2, ...s. The subdifferential ∂f(x̄) is the convex
hull of the union of ∂fik

(x̄). More precisely, for r =
min{n+1, s}, given any ξ̄ ∈ ∂f(x̄), there exist ξ1, ξ2, ...ξr
with ξk ∈ ∂fik

(x̄) and (λ1, λ2, ...λr) ∈ ∆r such that∑r
k=1

λkξik
= ȳ. As ξk ·(Ax̄+Bu) ≤ −γf(x̄)+h(x̄, u) for

each k, multiplying these inequalities by λk and summing
them yields ξ̄ · (Ax̄ + Bu) ≤ −γf(x̄) + h(x̄, u). Thus (b)
holds. The reverse implication is simple.

IV. COMPOSITE QUADRATIC FUNCTION

For positive definite symmetric Qi, i = 1, 2, ..l, consider

q(x) = max
j=1,2,...l

1

2
x ·Qix. (11)

It turns out that the conjugate of q, which is the convex hull
of functions ξ 7→ 1

2
ξ ·Q−1

i ξ, is the same as the composite
quadratic function used in [5] for stability analysis. Indeed,

max
λ∈∆l

l∑

i=1

λi
1

2
x ·Qix = max

λ∈∆l

1

2
x ·
(

l∑

i=1

λiQi

)
x

since the maximum of a linear function of λ over a simplex
is attained on one of the vertices. Consequently,

q∗(ξ) = sup
x∈Rn

{
ξ · x− max

λ∈∆l

1

2
x ·
(

l∑

i=1

λiQi

)
x

}

= sup
x∈Rn

min
λ∈∆l

{
ξ · x− 1

2
x ·
(

l∑

i=1

λiQi

)
x

}

= min
λ∈∆l

sup
x∈Rn

{
ξ · x− 1

2
x ·
(

l∑

i=1

λiQl

)
x

}
.

Switching sup and min is possible, as the function in
the brackets above is concave in x, convex in γ, and the
minimum is taken over a compact set, see for example
Corollary 37.3.2 in [10]. Now, calculating the conjugate of
a quadratic function yields

q∗(ξ) = min
λ∈∆k

1

2
ξ ·
(

l∑

i=1

λiQi

)−1

ξ. (12)

The function (12) is exactly the composite quadratic func-
tion of [5].

The dual description of (12) leads to an alternate way
to analyze its properties. For example, the function q is
strongly convex with constant ρ, where ρ > 0 is smaller
than every eigenvalue of Qi, i = 1, 2, ..l. (Strong convexity
means that q(x)− 1

2
ρ‖x‖2 is convex.) This is equivalent to

q∗ being differentiable and ∇q∗ being Lipschitz continuous
with constant 1/ρ.

Numerical examples in Section VIII illustrate the use of
both q and q∗ in stability and L2-gain analysis.



V. LYAPUNOV INEQUALITIES

The subdifferential mappings of a pair of conjugate con-
vex functions are inverses of one another. Lemma 3.1 stated
this more exactly for positively homogeneous functions. A
key consequence of such symmetry is that a conjugate of
a Lyapunov function for a linear system is a Lyapunov
function for the dual system.

Theorem 5.1: Let V : R
n 7→ R be a convex, positive

definite, positively homogeneous of degree p > 1 function;
let A be any matrix. Then, the condition

∂V (x) ·Ax ≤ −γpV (x) for all x ∈ R
n (13)

is equivalent to

∂V ∗(ξ) ·AT ξ ≤ −γqV ∗(ξ) for all ξ ∈ R
n. (14)

Proof: By positive homogeneity of V , inequality (13)
is equivalent to

∂V (x̄) ·Ax̄ ≤ −γ for all x̄ s.t. V (x̄) = 1/p. (15)

Indeed, given any x 6= 0 (so that V (x) 6= 0), consider
x̄ = x/s, where s = (pV (x))1/p. Then V (x̄) = 1/p, while

∂V (x̄) =
1

sp−1
∂V (x).

Thus (15) becomes
1

sp−1
∂V (x) ·Ax

s
≤ γ which is exactly

(19). Similarly, (14) is equivalent to

∂V ∗(ξ̄) ·Aξ̄ ≤ −γ for all ξ̄ s.t. V (ξ̄) = 1/q. (16)

Now, (15) means that ξ̄ · Ax̄ ≤ −γ for any element ξ̄ of
∂V (x̄) with V (x̄) = 1/p. Such x̄ and ξ̄ can be equivalently
characterized by x̄ ∈ ∂V ∗(ξ̄), V ∗(ξ̄) = 1/q, see Lemma
3.1. Thus (15) is equivalent to (16).

For V (and automatically V ∗) positively homogeneous
of degree 2, the decay rates in (13) and (14) are the same.
Such functions naturally appear in linear systems and LDIs

ẋ ∈ co {Ai}m
i=1

x (17)

and their duals

ξ̇ ∈ co
{
AT

i

}m

i=1
ξ . (18)

Below, we write L for the set of all convex, positive definite,
and positively homogeneous of degree 2 functions.

Theorem 5.2: The origin of (17) is asymptotically stable
if and only if there exist γ > 0 and a function V ∈ L such
that

∂V (x) ·Ax ≤ −γV (x) for all x ∈ R
n (19)

for all A ∈ {Ai}m
i=1

.

This result can be found in [8], here in Example 5.4 we
write down one possible Lyapunov function.

Corollary 5.3: The origin of (17) is exponentially stable
(with decay rate γ) if and only if (18) is exponentially stable
(with decay rate γ).

An immediate practical consequence of this is that to ver-
ify exponential stability of (17) with a particular computa-
tion, one can also carry out that computation with transpose
matrices. This can dramatically improve the results, as we
illustrate in Example 8.2.

Example 5.4: Suppose that (17) is exponentially stable
with decay rate γ. One way to construct a Lyapunov
function verifying this is to consider

V (x) =
1

2
sup ‖φ(τ, x)‖2e2γτ , (20)

where the supremum is taken over all solutions φ(·, x) and
all τ ≥ 0. We have V ∈ L and in particular, it is a convex
function. The conjugate function V ∗ turns out to be

V ∗(ξ) =
1

2
co inf e−2γτ‖ψ(τ, ξ)‖2

with the infimum taken over all τ and all solutions ψ(·, ξ)
to ξ̇(t) ∈ co

{
−AT

i

}m

i=1
ξ. Theorem 5.1 states that this is a

Lyapunov function for the system (18).
Lemma 3.2 and its dual interpretation lead to practical

conditions for stability of LDIs, with Lyapunov functions
given by (11) or (12).

Corollary 5.5: Suppose that there exist positive definite
and symmetric matrices Q1, Q2, ...Ql and numbers λijk ≥
0 for i, k = 1, 2, ...l, j = 1, 2, ...m such that

AT
j Qk +QkAj ≤

l∑

i=1

λijk(Qi −Qk) − γQk (21)

for all j = 1, 2, ...m, k = 1, 2, ..l. Then

∂V (x) ·Ax ≤ −γV (x) ∀x ∈ R
n, A ∈ co Ω, (22)

where V is the maximum of quadratic functions x 7→ 1

2
x ·

Qix (recall (11)).
Proof: Since λijk ≥ 0, the inequality (21) implies

that for any x with x ·Qix ≤ x ·Qkx for all i = 1, 2, ...l,
it holds that

x · (AT
j Qk +QkAj)x ≤ −γx ·Qkx.

Invoking Lemma 3.2 with gi = 1

2
x ·Qix finishes the proof.

Corollary 5.6: Suppose that there exist positive definite
and symmetric matrices R1, R2, ...Rl and numbers λijk ≥ 0
for i, k = 1, 2, ...m, j = 1, 2, ...l such that

R−1

k AT
i +AiR

−1

k ≤
l∑

j=1

λijk(R−1
j −R−1

k ) − γR−1

k (23)

for all i = 1, 2, ...m, k = 1, 2, ..l. Then

∂V (x) ·Ay ≤ −γV (x) ∀x ∈ R
n, A ∈ coΩ, (24)

where V is the convex hull of quadratic functions x 7→
1

2
x ·Rjx.

Proof: Corollary 5.5 implies that

∂V ∗(ξ) ·AT ξ ≤ −γV ∗(ξ) ∀ξ ∈ R
n, A ∈ co Ω,



with V ∗ being the maximum of quadratic functions ξ 7→
1

2
ξ ·R−1

i ξ. This is equivalent to the desired conclusion.

When a maximum (respectively, a convex hull) of two
quadratic functions is considered in corollaries above, con-
ditions (21) (respectively, (23)) are also necessary, see [2],
page 73.

Now consider a control system

ẋ ∈ co
{[

A B
]
i

}m

i=1

[
x
u

]
(25)

and its dual system with output
[
ξ̇
z

]
∈ co

{[
AT

BT

]

i

}m

i=1

ξ . (26)

We say the system (25) is stabilizable by linear feedback
(switched linear feedback) if there exists K (m matrices
Ki) such that the origin of the system

ẋ ∈ co {Ai +BiK}m
i=1

x

(respectively the origin of the system

ẋ ∈ co {Ai +BiKi}m
i=1

x )

is exponentially stable. The system (26) is stabilizable by
linear output injection (switched linear output injection) if
there exists L (m matrices Li) such that the origin for

ξ̇ ∈ co
{
AT

i + LBT
i

}m

i=1
ξ

(the origin for

ξ̇ ∈ co
{
AT

i + LiB
T
i

}m

i=1
ξ )

is exponentially stable.

Corollary 5.7: The system (25) is stabilizable by linear
feedback (respectively, switched linear feedback) if and only
if the system (26) is stabilizable by linear (respectively,
switched linear) output injection.

Additional relationships between stabilizability and “de-
tectability”, which is strongly related to stabilization by
output injection, will be given in a later section.

Finally, note that restricting our attention to convex
Lyapunov functions does not limit the breadth of LDIs for
which stability can be guaranteed: any Lyapunov function
for such system can be ”convexified”.

Lemma 5.8: Let W be a function satisfying (19) and
define V = coW . Suppose that W is differentiable at
every point x with W (x) = V (x), and that V ∗ is finite
everywhere. Then V satisfies (19).

Proof: Finiteness of V ∗ guarantees that V can be
described through (9). Thus, given any x and any rep-
resentation V (x) =

∑n+1

i=1
λiW (xi), we have ∇V (x) =

∇W (xi) for any i with nonzero λi. As W satisfies (19),
we have (with the sum taken over i’s with nonzero λi):

∇V (x) ·Ax = ∇V (x) ·A (Σλixi) = Σλi∇V (x) ·Axi

= Σλi∇W (xi) ·Axi ≤ Σλi (−γW (xi))
= −γV (x)

Thus V satisfies (19).

VI. DISSIPATIVITY

In this section we consider LDIs with external distur-
bance

[
ẋ
y

]
= co

{[
A B
C D

]

i

}m

i=1

[
x
d

]
(27)

and its dual
[
ξ̇
z

]
= co

{[
AT CT

BT DT

]

i

}m

i=1

[
ξ
w

]
. (28)

We consider infinitesimal dissipation inequalities of the
form

∂V (x) · (Ax+Bd)

≤ −γpV (x) − h(Cx+Dd, d) .
(29)

The function V is called a storage function and the function
−h is called a supply rate [11]. We will relate dissipativity
with storage function V (x) and supply rate −h(y, d) for
the system (27) to dissipativity with storage function V ∗(ξ)
and supply rate h∗(w,−z) for the system (28). While a
more general result covering storage functions positively
homogeneous of degree p > 1 is valid, we restrict our
attention to V ∈ L. Supply rates are as follows:

Assumption 6.1: Supply rate h and dual supply rate h∗

are positively homogeneous of degree 2 and such that

h(c, d) = sup
w

{c · w − f(w, d)} , (30)

h∗(w, z) = inf
d
{−z · d+ f(w, d)} , (31)

for some function f . No conditions on f are needed, in
particular it can take on values of ±∞.

This assumption is quite mild. Consider h such that
h(c, d) is convex in c for a fixed d, concave in d for a
fixed c, and finite everywhere. Let h∗ be given by

h∗(w, z) = inf
d

sup
c

{w · c+ z · d− h(c, d)} . (32)

Such a pair satisfies Assumption 6.1, with

f(w, d) = sup
c

{w · c− h(c, d)} .

The same conclusion holds if h is convex/concave as before,
and for some closed convex cones K1, K2, we have h(c, d)
is finite if c ∈ K1, d ∈ K2, h(c, d) = +∞ if c 6∈ K1,
d ∈ K2, and h(c, d) = −∞ if d 6∈ K2. In both cases, a
formula symmetric to (32) holds:

h(c, d) = sup
w

inf
z
{c · w + d · z − h∗(w, z)} . (33)

Example 6.2: (Quadratic h and h∗). Suppose

h(c, d) =
1

2
c ·Qc− 1

2
d ·Rd+ c · Sd.

Then h is convex-concave if and only if Q and R
are positive semidefinite. If (and only if) the matrix

M =

[
Q S
ST −R

]
describing the gradient of h, that is



∇h(c, d) = M

[
c
d

]
, is invertible, the dual supply rate

h∗ defined by (32) is finite everywhere. Then, h∗ is also

quadratic and ∇h∗(w, z) = M−1

[
w
z

]
.

Theorem 6.3: Let h and h∗ be as in Assumption 6.1. The
following conditions are equivalent:

(a) for all x, d,

∂V (x) · (Ax+Bd)

≤ −γV (x) − h(Cx+Dd, d)
(34)

(b) for all ξ, w,

∂V ∗(ξ) · (AT ξ + CTw)

≤ −γV ∗(ξ) + h∗(w,−BT ξ −DTw).
(35)

Proof: (Outline.) Using homogeneity of V and h,
similarly as in the proof of Theorem 5.1, one obtains that
(a) is equivalent to: for all x with V (x) = 1/2, for all d,

∂V (x) · (Ax+Bd) ≤ −γ − h(Cx+Dd, d).

Thus, (a) is equivalent to: for all x with V (x) = 1/2 and
any ξ ∈ ∂V (x), we have

ξ ·Ax+ γ ≤ inf
d
{−ξ ·Bd− h(Cx+Dd, d)} .

Similarly, (b) is equivalent to: for all ξ with V ∗(ξ) = 1/2
and any x ∈ ∂V ∗(ξ), we have

x ·AT ξ + γ ≤ inf
w

{
−w · Cx+ h∗(w,−BT ξ −DTw)

}
.

Using (30) and (31) in the two formulas displayed above
shows that they are the same. Lemma 3.1 finishes the proof.

Example 6.4: Consider a quadratic convex-concave h
with a quadratic conjugate h∗, that is, for an invertible

matrix M =

[
Q S
ST −R

]
with symmetric and positive

semidefinite Q, R, let

h(c, d) =
1

2

[
c
d

]
·M
[
c
d

]
, h∗(w, z) =

1

2

[
w
z

]
·M−1

[
w
z

]
.

Throughout this example, we will say that a system is M -
dissipative if it has a storage function in L supporting some
γ ≥ 0 and the supply rate −h(y, d) with h defined above.
According to Theorem 6.3, the system (27) is M -dissipative
if and only if its dual (28) is M̂ -dissipative, with

M̂ =

[
0 I
−I 0

]
M−1

[
0 I
−I 0

]
.

Special cases include

� Passivity. By passivity, we mean M -dissipativity with

M =

[
0 −I
−I 0

]
. See, e.g., [12]. In this case M̂ =

M . Thus, passivity for an LDI is equivalent to passivity
for its dual.

� Passivity with extra feedforward. By passivity with
extra feedforward, we mean M -dissipativity with M =

[
0 −I
−I −R

]
for some R = RT ≥ 0. In this case,

we have M−1 =

[
R −I
−I 0

]
and then M̂ = M .

Thus, passivity with extra feedforward for an LDI is
equivalent to this property for its dual.

� Finite L2-gain. By L2-stable with gain γ > 0 we mean

M -dissipative with M =

[
I 0
0 −γ2I

]
. In this case we

get M̂ = γ−2M . Since M -dissipativity is not affected
by positive scaling, L2-stability with gain γ for an LDI
is equivalent to this property for its dual.

� Weighted L2-gain. For M =

[
Q 0
0 −R

]
one obtains

M̂ =

[
R−1 0

0 −Q−1

]
. So, in passing from a system

to its dual, the weights on the inputs in the supply rate
become inverted weights on the outputs and vice-versa.

The next example shows that the results on Lyapunov
inequalities can be derived from the dissipation results by
judicious use of positive infinity.

Example 6.5: Consider two convex, proper and lower
semicontinuous functions f and g, such that one of f , g
and one of f∗, g∗ is finite everywhere (as usual, f and
g are positively homogeneous of degree p). Then consider
h(c, d) = f(c) − g(d), which is equivalent to h∗(w, z) =
f∗(w) − g∗(z) (relations (32), (33) are true). Below, we
will use the indicator function of 0:

δ0(ξ) = 0 if ξ = 0, δ0(ξ) = +∞ if ξ 6= 0. (36)

It is a convex, proper, and lower semicontinuous function,
positively homogeneous of any degree. Its conjugate equals
0 everywhere.

Through careful use of the indicator function, Theorem
5.1 can be be derived from Theorem 6.3. In (34), consider
C = 0, D = 0, and h(c, d) = δ0(c) − g(d). Then h(Cx +
Dd, d) = δ0(0) − g(d), and (34) becomes

∂V (x) · (Ax+Bd) ≤ −γpV (x) + g(d).

We also get h∗(w, z) = −g∗(z), and the equivalent inequal-
ity (35) turns to

∂V ∗(ξ) ·AT ξ ≤ −γqV ∗(ξ) − g∗(−BT y).

Setting B = 0, g(d) = 0 for all d (and so g∗(−BT ξ) =
δ0(0) = 0) yields Theorem 5.1.

VII. STABILIZABLE AND DETECTABLE DISSIPATIVITY

Theorem 7.1: Suppose that positive definite of degree 2
functions k, k∗ satisfy

k(z, u, d) = sup
w

{z · w − f(w, u, d)} ,

k∗(w, a, b) = inf
d

sup
u

{a · u− b · d+ f(w, u, d)} ,

for some function f such that, for all α, β, and d, the
supu infv and infv supu of α · u + β · v − f(w, u, d) are
equal. Then, the following are equivalent:



(a) for all x, d, there exists u such that

∂V (x) · (Ax+B1u+B2d) ≤ −γV (x)

− k(Cx+D1u+D2d, u, d),
(37)

(b) for all ξ, w

∂V ∗(ξ) · (AT ξ + CTw) ≤ −γV ∗(ξ)

+ k∗(w,−BT
1 ξ −DT

1 w,−BT
2 ξ −DT

2 w)
(38)

The proof is similar to that of Theorem 6.3. The
technical assumption on k and k∗ holds for example
when k(z, u, d) = g1(z) + g2(u) − g3(d) with gi being
proper, lower semicontinuous, and convex functions, and
k∗(w, a, b) = g∗1(w)+g∗2(a)−g∗3(b). This is the case in the
examples of this section. We add that in several cases, (a)
can be equivalently restated as

(a’) for all x, there exists u such that, for all d the inequality
(37) holds.

This amounts to switching supd infu to infu supd of

ξ ·B1u+ ξ ·B2d+ k(Cx+D1u+D2d, u, d)

for all ξ ∈ ∂V (x) and all x. For a quadratic k, this is
possible when k(Cx+D1u+D2d, u, d) is positive definite
in u for a fixed d and negative definite in d for a fixed u.

Corollary 7.2: Let g be a convex function and g∗ its
conjugate in the convex sense. The following conditions
are equivalent:

(a) for all x, there exists u such that

∂V (x) · (Ax+Bu)

≤ −γV (x) − g(Cx+Du, u),
(39)

(b) for all ξ, for all w,

∂V ∗(ξ) · (AT ξ + CTw)

≤ −γV ∗(ξ) + g∗(w,−BT ξ −DTw).

(40)
Proof: In Theorem 7.1, consider k(z, u, d) = g(z, u),

B1 = B, B2 = 0, D1 = D, and D2 = 0. Then (37) reduces
to (39). We also have k∗(w, a, b) = g∗(w, a) + δ0(b).
(Recall (36).) Then h∗(w,−BT

1 ξ−DT
1 w,−BT

2 ξ−DT
2 w) =

g∗(w,−BT ξ−DTw)+δ0(0), and thus (38) reduces to (40).

Example 7.3: In (37), consider D = 0, γ = 0, and for
a closed convex cone (say, the nonnegative orthant), let
g(z, u) = 1

2
‖z‖2 + 1

2
‖u‖2 if u ∈ K, g(z, u) = +∞ if

u 6∈ K. Then (a) states that for all x,

H(x,−∂V (x)) ≥ 0 (41)

where H is the (maximized) Hamiltonian for an optimal
control problem with dynamics ẋ(t) = Ax(t) +Bu(t) and
cost g(Cx, u) (this problem is a linear-quadratic regulator
with input constraint). Precisely, we have

H(x, p) = p ·Ax− 1

2
‖Cx‖2+ sup

u∈K

{
(BT p) · u− 1

2
‖u‖2

}
.

Condition (b) translates to: for all ξ,

H(−∂V ∗(ξ), ξ) ≥ 0. (42)

Of course, equivalence of (41), (42) can be deduced from
the fact that ∂V ∗ is the inverse of ∂V .

Example 7.4: Stabilizability: for all x there exists u such
that

∂V (x) · (Ax+Bu) ≤ −γV (x) (43)

can be written as (39). It suffices to take C = 0, D = 0,
and g(z, u) = δ0(z). Then also g∗(w, a) = δ0(a) and (40)
is equivalent to detectability: for all ξ,

BT ξ = 0 ⇒ ∂V ∗(ξ) ·AT ξ ≤ −γV ∗(ξ) (44)

Indeed, (40) trivially holds when BT ξ 6= 0, while when
BT ξ = 0, it reduces to the inequality above.

VIII. NUMERICAL EXAMPLES

Example 8.1: In [4], an LDI given by co{A1, A2} with

A1 =

[
−1 −1
1 −1

]
, A2 =

[
−1 −a

−1/a −1

]

and a > 1, was used to show that existence of a common
quadratic Lyapunov function is not necessary for exponen-
tial stability. The maximal a ensuring existence of such
function was found to be aq = 3 +

√
8 = 5.8284, while

the LDI was shown, via analytical methods not leading to
a Lyapunov function, to be stable for all a ∈ [1, 10].

Here we show using Corollaries 5.5 and 5.6 that the
composite quadratic function q∗ (12) and the maximum of
quadratics q (11) can lead to good estimates of largest a
guaranteeing stability.

With q∗ formed by two quadratics (l = 2), the maximal
a is 8.14. With l = 3, the maximal a is 8.95. The three
matrices Qi determined under a = 8.95 are as follows:

Q1 =

[
26.1802 −0.0273
−0.0273 2.9146

]
, Q2 =

[
16.5961 3.0303
3.0303 3.6388

]

Q3 =

[
32.5579 −3.0335
−3.0335 1.8518

]
.

Corresponding ellipsoids (points x with x ·Q−1
i x = 1) and

their convex hull (points x with q∗(x) = 1) are in the upper
two plots of Fig. 1. Also plotted there are directions of
ẋ = A1x (left) and that of ẋ = A2x (right) along the
boundary of the convex hull. Lower plots of Fig. 1 are the
ellipsoids x ·Qix = 1 and their intersection, along with the
direction of ẏ = AT

1 y and ẏ = AT
2 y along the boundary of

the intersection.
Example 8.2: The following third-order LDI that was

discussed in [3]. For matrices

A1 =




0 1 0
0 0 1
−1 −2 −4


 , M =



−2 0 −1
1 −10 3
3 −4 2


 ,

let A2 = A1 + aM with a > 0, and consider the LDI with
the state matrix belonging to the set co{A1, A2(a)}. The
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Fig. 1. Vector fields and invariant sets

maximal a that ensures the existence of a common quadratic
function is aq = 1.9042. The maximal a that ensures the
existence of a common forth-order homogeneous Lyapunov
function was found to be ah = 75.1071 by [3].

By Corollary 5.3, exponential stability of the LDI
is equivalent to that of the dual LDI described by
co{AT

1 , A2(a)
T }. For this dual system, we used the method

from [3] to determine a parameter range of a over which
a common fourth-order homogeneous Lyapunov function
exists. It turns out that there is no upper bound for a.
Let Am1 be the augmented matrix for A1 and Am2(a) be
the augmented matrix for A2(a). Let L(α) be the matrix
containing auxiliary parameters (see, page 1032 of [3]).
Then for each a > 0, there exist a symmetric positive
definite matrix Q = R

6×6 and parameters α, β ∈ R
6 such

that
QAm1 +AT

m1Q+ L(α) ≤ −0.0606Q,

QAm2(a) +AT
m2(a)Q+ L(β) ≤ −0.0606Q.

No numerical problem arises even for a = 1020.
We also performed stability analysis on these dual sys-

tems using the composite quadratic Lyapunov function (12)
with l = 2. Stability can be verified with such function for
a up to 430. For a = 430, it can be verified that there exist
Q1 > 0 and Q2 > 0 satisfying

Q1A
T
1 +A1Q1 < 5.1(Q2 −Q1)

Q2A
T
1 +A1Q2 < 0

Q1A
T
2 +A2Q1 < 0

Q2A
T
2 +A2Q2 < 2654.7(Q1 −Q2)

The same algorithm used for the dual LDI shows that there
is no upper bound for a. Actually, for each a > 0, there
exist Q1, Q2 > 0 and kij ≥ 0 such that

QkA
T
i +AiQk < kjk(Qj −Qk) − 0.0530Qk

for i, j, k = 1, 2, j 6= k. We tested a up to 1020 and no
numerical issues occur. For a = 108, k1 = 3.5473, k2 = 0,
k3 = 87614, k4 = 7.4699 ∗ 108.

Example 8.3: We next use the max function q (11) and
the composite quadratic function q∗ (12) to bound the L2-
gain of an LDI with input and output. With A1, A2 as in

Example 8.2, for S = [1 1 1] let B1 = B2 = ST ,
C1 = C2 = S, D1 = D2 = 0.

Lemma 3.2 and Corollary 5.5 suggest that γ is a upper
bound for the L2-gain, verified through q (with two quadrat-
ics), if there exist Q1, Q2 > 0 with kijk > 0, i, j, k = 1, 2,
j 6= k such that
[
AT

i Qk +QkAi + CT
i Ci + kijk(Qk −Qj) QkBi

BT
i Qk −γ2I

]
< 0

Invoking Theorem 6.3 and Example 6.4 shows that γ is a
upper bound for the L2-gain, verified through q∗ (with two
quadratics), if the above inequality holds with Bi’s switched
to CT

i ’s and vice versa, and Ai’s to AT
i ’s.

Case 1: a = 1. The system is quadratically stable. With
the quadratic Lyapunov function, the gain is estimated as
γ2 = 14.7475. With q, the gain is estimated as γ = 8.4213,
the parameters are k1 = 3.9800, k2 = k3 = 0, k4 =
12.4726. With q∗, the gain is estimated as γ∗ = 9.3988.
k1 = k4 = 0, k2 = 9.7841, k3 = 18.6882.

Case 2: a = 100. The system is not quadratically stable.
With q, the gain is estimated as γ = 34.8763, the parameters
are k1 = 3.3615, k2 = k3 = 0, k4 = 756.3307. With q∗,
the gain is estimated as γ∗ = 85.1115. The parameters are
k1 = 5.1000, k2 = k3 = 0, k4 = 652.3610.

Case 3: a = 105. The stability is not confirmed with q∗.
With q, the gain is estimated as γ = 57.6956, the parameters
are k1 = 3.5587, k2 = k3 = 0, k4 = 7.4682 × 105.

Case 4: a = 108, γ = 57.7388.
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