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Smooth Lyapunov Functions for Hybrid
Systems—Part I: Existence Is

Equivalent to Robustness
Chaohong Cai, Student Member, IEEE, Andrew R. Teel, Fellow, IEEE, and Rafal Goebel

Abstract—Hybrid systems are dynamical systems where the
state is allowed to either evolve continuously (flow) on certain
subsets of the state space or evolve discontinuously (jump) from
other subsets of the state space. For a broad class of such systems,
characterized by mild regularity conditions on the data, we es-
tablish the equivalence between the robustness of stability with
respect to two measures and a characterization of such stability in
terms of a smooth Lyapunov function. This result unifies and gen-
eralizes previous results for differential and difference inclusions
with outer semicontinuous and locally bounded right-hand sides.
Furthermore, we give a description of forward completeness of a
hybrid system in terms of a smooth Lyapunov-like function.

Index Terms—Hybrid inclusions, hybrid systems, measures, ro-
bustness, smooth Lyapunov functions, stability.

I. INTRODUCTION

CONVERSE Lyapunov theorems relate a system’s asymp-
totic stability properties to the existence of a function that

decreases along the system’s solutions. The strongest converse
theorems assert the existence of smooth Lyapunov functions.
The growing appreciation for such results is apparent as the tran-
sition from “… the so-called converse theorems are mainly of
theoretical interest” [36, 1st edition, p. 165] to “… converse the-
orems are applied to four problems in control theory, and it is
shown that converse theorems lead to elegant solutions to each
of these problems” [36, 2nd edition, p. 235] displays. In this
paper, we establish a link between robustness of a very gen-
eral concept of stability and the existence of a smooth Lyapunov
function for a broad class of hybrid systems. We hope that, as
in the case of continuous-time and discrete-time systems, this
result will inspire solutions to a wide range of control problems
for hybrid systems.

When used for continuous-time or discrete-time systems,
Lyapunov functions have played a prominent role in nonlinear
control design over the last two decades, and they have been
used to establish robustness of the stability induced by control
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to various types of practical perturbations, like small time
delays, slowly varying parameters, fast unmodeled dynamics,
measurement errors and observer dynamics, etc. Smooth Lya-
punov functions have the potential to be just as relevant for
hybrid systems. Already, the types of results reported herein
have been used in [27] to develop the notion of a patchy,
smooth control Lyapunov function (clf) for systems that do not
admit a standard smooth clf. These patchy clf’s have been used
to generate new control algorithms with enhanced robustness
properties. Additionally, converse Lyapunov theorems for
hybrid systems have been used in [31] to establish robustness
of stability induced by hybrid control to sample-and-hold and
networked implementations.

A. Background

A classical problem in dynamical systems theory is to de-
termine what asymptotic stability properties guarantee the ex-
istence of a smooth Lyapunov function. Among the early re-
sults, Kurzweil’s contribution [17] for differential equations is
especially notable since the system’s solutions did not need to
be unique. The renaissance of interest in converse theorems
for continuous-time systems with nonunique solutions can be
traced to [20]. Subsequently, Clarke et al. [7] underlined the link
between robustness and smoothness of Lyapunov functions and
showed that, for differential inclusions, if the right-hand side
is an upper semicontinuous set-valued mapping then (strong)
asymptotic stability is equivalent to the existence of a smooth
Lyapunov function. The authors in [34] worked with the concept
of -stability with respect to two measures for differential in-
clusions, and they established the equivalence between robust

-stability and the existence of a smooth Lyapunov function.
(The introduction of [34] contains an extensive overview of the
literature on converse Lyapunov theorems for continuous-time
systems.) For discrete-time systems given by difference inclu-
sions, similar results were shown in [15] and [16]. We also men-
tion [1, Theorem 2] on the equivalence between forward com-
pleteness and the existence of a smooth Lyapunov-like function
(one that increases along solutions no faster than exponentially)
for a class of differential inclusions.

Hybrid systems are those whose state, which can contain
continuous and/or discrete variables, can evolve continuously
(flow) and/or discretely (jump). Hybrid systems are ubiquitous
in science and engineering [19], [35]. However, hybrid systems
theory is far from being well established. Various concepts of
solutions exist (see [3], [8], [12], [21], [23], [25], [33], [35])
and yield different properties of asymptotic stability. As for
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the Lyapunov characterization of asymptotic stability, many
sufficient conditions have been proposed (see [4], [6], [9], [19],
[22], [23], [29], [37]), and some necessary conditions (con-
verse Lyapunov theorems) have been established (see [37]).
However, to the best of the author’s knowledge, no results have
appeared on the existence of smooth Lyapunov functions for
general hybrid systems. Moreover, a systematic approach to the
robustness of stability for hybrid systems has been proposed
only recently in [11] and carried out to an extent in [12], even
though the capabilities of hybrid feedback have been realized
before; see [14] and [26].

B. Contribution

We work with hybrid systems in the framework proposed in
[11] (related to that concurrently suggested by [8]) and devel-
oped in [12]. As discussed in [11], the framework is deeply mo-
tivated by the study of the robustness of stability, and, among
other benefits, makes quite general invariance principles pos-
sible; see [29]. In this framework, the sets of solutions have good
sequential compactness properties and depend “uppersemicon-
tinuously” on initial conditions. The “nice” behavior of the sets
under perturbations of the system, as reported in [12], partly
enables the results of this paper. Since, in [11], the solutions
to hybrid systems are parameterized by both the elapsed time
and the number of jumps that have occurred, we work with the
concept of -stability with respect to two measures, rather
than -stability as in continuous-time or discrete-time sys-
tems. Details of the framework are in Section II; we refer the
reader to [34] for a discussion of stability with respect to two
measures.

Our main result shows the equivalence of the following.
• The existence of a smooth Lyapunov function for a hybrid

system.
• The robustness, to small measurement noise, actuator error,

and external disturbance, of the -stability of the hy-
brid system.

In Section III we make these concepts precise. In Section IV
we use a temperature control system to illustrate the utility of
the “ -stability with respect to two measures” concept, and
we indicate some practical consequences of our main result for
this example. The remaining sections are devoted to proving the
equivalence result. The simpler implication, from the existence
of a smooth Lyapunov function to robustness, is proved in Sec-
tion V by using a related but more straightforward technique
than the one used in continuous- and discrete-time systems. The
proof of the reverse implication is outlined in Section VI, with
Section VII providing the remaining technical details; we first
use a classical construction technique (see [7], [16], [34]) to de-
rive an upper semicontinuous Lyapunov function, and we then
follow the smoothing technique used in discrete-time systems
[16] to derive a smooth Lyapunov function1. The smoothing step

1For continuous-time systems (see [7] and [34]), the smoothing technique is
to first use the robustness assumption to embed the original upper semicontin-
uous differential inclusion into a larger, locally Lipschitz one, and then derive a
locally Lipschitz Lyapunov function, which finally is smoothed by the standard
technique. However, such an idea of using robustness to pass to a system with
Lipschitz continuous dependence on initial conditions does not seem to gener-
alize to hybrid systems.

directly relies on our result on robustness of solutions (i.e., a per-
turbation of a solution to a perturbed system is also a solution
to a more strongly perturbed system, see Section VII-B), which
is derived from the robust stability assumption. This is another
main contribution in this paper, since we have not seen such a
result on robustness of solutions in continuous-time or hybrid
systems, though it has been used for discrete-time systems (see
[16, Section 6.1.2]).

Space limitations do not allow us to give and prove sufficient
conditions for robustness of -stability here. Such results,
and the ensuing converse Lyapunov theorems, will be given in
[5]. More specifically, [5] will show that stability of compact
sets with respect to a single measure (in particular, asymptotic
stability of compact attractors) is always robust. That result,
combined with the main result of this paper (Theorem 3.2), will
then be applied to obtain smooth Lyapunov functions for var-
ious classes of systems (for example, for asymptotically stable
systems with logic variables). Some further applications of Lya-
punov functions, for example in verifying robustness of asymp-
totic stability to varying and jumping parameters, will also be
given in [5].

Finally, in part as a consequence of the techniques used in the
proof of the main result, in Section VIII we show that forward
completeness of a hybrid system can be equivalently character-
ized by a smooth Lyapunov-like function.

C. Preliminaries

• denotes the real numbers, denotes the integers, de-
notes the nonnegative real numbers, denotes the non-
negative integers.

• is the open unit ball in Euclidean space (of appropriate
dimension).

• The sets , , and denote, respectively, the closure,
closed convex hull, and boundary of a given set .

• Given two sets and in , their sum is
defined by . To save on
notation, we will use in place of .

• Given a set and a point ,
.

• Given sets , is said to be relatively closed
in if there exists a closed set such that .
One can show that is relatively closed in if and
only if . If is open then is relatively closed
in if and only if is open.
(In what follows, denotes an open set in .)

• The domain, range, and graph of a set-valued mapping
(or ) are, respectively, the

sets ,
and

.
• A set-valued mapping is outer semicontin-

uous at if for all sequences and ,
if for some , then . The map-
ping is said to be outer semicontinuous if it is outer semi-
continuous at each . A set-valued mapping is
outer semicontinuous on if and only if is rela-
tively closed in [28, Theorem 5.7].



1266 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 7, JULY 2007

• A set-valued mapping is called locally
bounded if for any compact there exists a compact
set such that

.
If a set-valued mapping is outer semicontinuous and lo-
cally bounded, the mapping values are compact. For locally
bounded set-valued mappings with closed values, outer
semicontinuity agrees with what is often referred to as
upper semicontinuity: for each and any
there exists such that for all with ,

.
• A function is said to belong to class-

( ) if it is continuous, zero at zero, and strictly in-
creasing. It is said to belong to class- if, in addition, it
is unbounded.

• A function is said to belong to
class- ( ) if it satisfies: (i) for each ,
is nondecreasing and , and (ii) for each

, is nonincreasing and .
We are abusing notation here since does not neces-
sarily imply that is class- in its first argument or class-
(see [13, p. 7]) in its second argument. In particular, neither
continuity nor strict monotonicity are imposed. Our abuse
of notation is justified by the fact that any function of the
type we have defined can be upper bounded by a “true”

-function. See [32, Proposition 7].
• A function is said to

belong to class- ( ) if, for each ,
and .

II. HYBRID SYSTEMS

We consider a hybrid system, with an open state space
, given by

for
for

(1)

where the set-valued mapping describes the flow,
which can occur in the set , and the set-valued mapping

describes the jumps, which can occur from the set
. The state may include both continuous and discrete

variables, the latter often representing logic modes that can be
identified with integers2. The treatment of (1) will be based on
the tools developed in [12].

We do not consider and to be set-valued simply for the
sake of generality. Our primary motivation for using set-valued
mappings is to address the situation, which is common in hybrid
control systems, where the system has single-valued maps
and that are discontinuous. In such systems, accounting for
measurement noise leads to set-valued “closures” of and ,
and those fit exactly in the framework we work in here; see [30],
or [11] for a general discussion. A similar motivation was given
in the work [7] and [34] for continuous-time systems, and [15]
and [16] for discrete-time systems. Hybrid systems with set-
valued mappings and have also been addressed in [3], [8],
[18].

2In the companion paper [5] we will show, among other things, how the cur-
rent results can be applied to systems with logic variables. Also, see the example
in Section IV.

Solutions to the hybrid inclusion (1) are functions defined
on hybrid time domains, as defined in [11], [12] and [8]. As
noted in these references, a hybrid time domain is essentially
equivalent to the “hybrid time trajectory” in [3], [21], and [22],
but gives a more prominent role to the “discrete-time variable”

for counting the number of jumps. (cf. [23] and [35].) We call
a subset a compact hybrid time domain
if for some finite sequence of times

. We say is a hybrid time domain
if for all , is a compact
hybrid time domain. The supremum of a hybrid time domain ,
denoted , is defined as .

A hybrid arc is a function defined on a hybrid time domain,
and such that is locally absolutely continuous for each
. A hybrid arc can be viewed as a set-valued mapping from

whose domain is a hybrid time domain.
A hybrid arc is a solution to if

(S1) For all and almost all such that

(S2) For all such that ,

A solution to the hybrid system is called maximal if it cannot
be extended, and complete if its domain is unbounded. Com-
plete solutions are maximal. We denote by the set of all
maximal solutions to starting from . The hybrid system
is said to be forward complete on if, for all , each

is complete.
Throughout the paper, we impose the following conditions on

the hybrid system we study.
Standing Assumption 2.1: (Hybrid Basic Conditions)
The open state space and the data of

the system satisfy:
(SA1) the sets and are relatively closed in

;
(SA2) the (set-valued) mapping is
outer semicontinuous and locally bounded, and
is nonempty and convex for all ; (equivalently, is
upper semicontinuous with compact values that, on , are
nonempty and convex);
(SA3) the (set-valued) mapping is outer
semicontinuous and locally bounded, is nonempty
and for all ; (equivalently, is upper
semicontinuous with compact values that, on , are
nonempty and contained in ).

General statements about the existence and structural prop-
erties of the solutions under the hybrid basic conditions can be
found in [3], [8], [11], [12]. We will use the following result:

Proposition 2.2: The following statements are equivalent.
1) For each , the set is nonempty and, for each

, either is unbounded (i.e., the solution is
complete) or, as , either
or .

2) .



CAI et al.: SMOOTH LYAPUNOV FUNCTIONS FOR HYBRID SYSTEMS—PART I 1267

III. MAIN RESULTS

In this paper, we are interested in the existence of smooth
Lyapunov functions. In particular, given the state-space , the
hybrid system data , and two continuous functions

, , we are interested in whether there exist
a smooth function and two class- functions

, , 2 such that

(2)

(3)

(4)

Such a function will be called a smooth Lyapunov function
for .

We will show that the existence of such a function is guar-
anteed when (appropriately small) perturbations of the hybrid
system retain stability properties of the original system. For a
function we define the -perturbation of , de-
noted , as

(5)

(6)

(7)

(8)

for

for .
(9)

The perturbation (5) resembles that in [7] and [34] while (6) re-
sembles that in [16], considered in the analysis of robustness of
stability for, respectively, differential and difference inclusions.

In what follows, admissible perturbation radius will denote
any continuous such that for all

. The proposition below implies that several properties of
sets of solutions to the hybrid systems, guaranteed by the hybrid
basic conditions as described in [12], are present not just for
but also for . The proof is in Appendix A.

Proposition 3.1: If is an admissible perturbation radius,
then the system satisfies the hybrid basic conditions.

The existence of a smooth Lyapunov function for
will be guaranteed by the existence of

an admissible perturbation radius with the properties listed
below. (We write for the set of maximal solutions to
starting at .)

1) is forward complete on and there exists
such that, for each and each , we have

(10)

2) , where

(11)

and

(12)

3) for all .
When such an admissible perturbation radius exists, we

will say that the hybrid system is robustly -stable with
respect to on .

We note that it is possible for the sets and to be
empty in the characterization of robust -stability. Also,
in the special case when , item 2 above is
guaranteed by item 1, and item 3 reduces to for all

.
We now come to the main result of this paper:
Theorem 3.2: Let , , 2, be continuous.

The following statements are equivalent:
(A) The hybrid system is forward complete on

and there exists a smooth Lyapunov function for
that satisfies

.
(B) and is robustly -stable with respect

to on .
The somewhat simpler implication from (A) to (B) is shown

in Section V. The outline of the reverse implication is in Sec-
tion VI, and Section VII provides the missing details.

IV. EXAMPLE: TEMPERATURE CONTROL SYSTEM

In this section, we discuss an example of a hybrid tempera-
ture control system. We establish the type of robust- sta-
bility considered in this paper and then use our main result
(the existence of a smooth Lyapunov function) to indicate how
additional robustness properties accrue. These include robust-
ness to perturbations that are often encountered in temperature
control systems, perturbations like small measurement noise,
slowly-varying parameters, small time-delays, etc.

Consider a control system that uses a heater to maintain
the temperature of a plant in a desired temperature band. The
heater has its own internal temperature and is required to shut
off when its internal temperature is too high, in order to avoid
overheating. Because of this, the desired temperature band for
the plant is not a forward invariant set: if the plant temperature
is at the lower end of the desired band and the heater is too
hot to operate, the temperature in the plant will drop below the
lower limit of the desired band. On the other hand, eventually
the heater will cool down, and in its normal mode of operation
it will be able to maintain the temperature of the plant in the
desired band. Because of these scenarios, it is not the case
that the system is -stable with respect to a single measure
that is zero if the plant temperature is in the desired band
and positive otherwise. On the other hand, the system will be

-stable with respect to two measures, the first one of the
type just described and the second one chosen appropriately.
We will explain briefly why this -stability with respect to
two measures is robust and thus the system admits a smooth
Lyapunov function. Then we will touch upon how the exis-
tence of such a Lyapunov function can be used to generate
semiglobal practical robustness to persistent perturbations that
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Fig. 1. The temperature control system with p = 100 (The arrows represent vector field for flow dynamics. The sets A andA are contoured with dash lines.
The filled areas represent the added flow/jump sets under perturbation (note that the size of perturbation decreases to 0 as the state approaches A ).

cover small measurement noise, slowly varying parameters,
small time delays, and “average dwell-time” perturbations.

A. The Hybrid Model

The hybrid model is based on the one given in [24]. The state
of the closed-loop temperature control system consists of the
plant temperature , the heater’s internal temperature , a logic
variable used to indicate the off/on mode of the heater, and a
parameter that characterizes the effectiveness of the heater. We
take the state-space to be , although takes values in the
set , corresponding to “off” and “on” respectively,

takes values in the compact interval [80, 120], and the heater
temperature is constrained to the temperature range .

The desired temperature band for the plant is chosen as the
interval [20, 25]. To keep the plant temperature in the desired
band and avoid overheating, the heater is governed by the rules:

• The heater must turn off when or ; it may
turn off when or .

• The heater must turn on when and ; it may
turn on when and .

We observe that the behavior of the heater may not be unique
and that there is some hysteresis to keep the heater from chat-
tering between the on and off modes.

Define the state , and define the flow map
as follows

where denotes the vector transpose. Flows are enabled
(meaning that the logic variable does not need to change) when
either

• and either or (this set is indicated as
in Fig. 1), or

• and both and (this set is indicated as
in Fig. 1).

The closure of this set, intersected with the heater temperature
constraint interval , is the flow set .

The jump map simply toggles the logic variable. Jumps are
enabled (the logic variable is allowed to change) when either

• and both and (this set is indicated as
in Fig. 1), or

• and either or (this set is indicated as
in Fig. 1).

The closure of this set, intersected with the heater temperature
constraint set , is called . The jump set will be ex-
panded later, for the purposes of analysis, to make the union of
the jump set and the flow set covers .
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B. (Robust) -Stability With Respect to Two Measures

While the plant temperature band [20, 25] is not forward in-
variant for the system described above, it is the case that the tra-
jectories with initial conditions in eventually reach and
remain in this band for all time. In fact, the convergence rate to
this temperature band is uniform over each compact set of initial
conditions. For this reason, it can be shown that the set

is forward invariant and uniformly attractive, where the sets
and can be computed analytically and are plotted and

contoured by dashed lines in Fig. 1. Hence, taking
(which denotes the distance of the plant temperature to

the band [20, 25]) and , it can be shown that the
system is -stable with respect to , where the
estimate is defined by

Now, the obstruction to applying our main theorem is that
we have not yet established robustness, and we do not yet have

. The latter problem is easily remedied by taking
and the jump map to be set-valued, with the values in

being the union the previous jump map and any compact subset
of , while the values being that same subset when outside
of . This augmentation preserves the hybrid basic conditions,
and while it will certainly introduce extra solutions (consisting
of jumps to ), the extra solutions will still obey the previous

-stability with respect to two measures property. To verify
robustness of the -stability, one can graphically argue the
existence of an admissible perturbation radius (see Fig. 1 the
filled area representing the added flow/jump sets under pertur-
bation) and then follow similar stability arguments to the ones
we used above for the original system, or one can treat as an
asymptotically stable set and then use the result that asymptotic
stability of compact sets is robust in [5].

With robustness, it follows from Theorem 3.2 that there ex-
ists a smooth Lyapunov function for .
Moreover, we can use this to show that, given

, there exists such that the inequalities in (13)
hold (for example, by using similar arguments as those in the
proof of Claim 5.1), where , , , and are defined as
in (5)–(8), respectively, by letting . The key here is
the smoothness of , which, thanks to compactness of the set

for any , yields uniform con-

tinuity of and on and on the
other sets appearing in (13) shown at the bottom of the page.

Finally, using terminology from parameterized differential
equations, we can combine (2) and (13) to conclude that the tem-
perature control system is semiglobally practically -stable
with respect to two measures in the parameter , i.e., for each
compact set and each , there exists
such that, for each , there exists a class- func-
tion such that, each solution to
with satisfies

for all . Furthermore, we can use these ideas to
establish extra robustness properties that are different from the
robustness used to get the existence of , such as robustness to

1) small measurement noise;
2) small time delays at the measurements of the plant temper-

ature;
3) slow time variations and small jumps in the parameter ;

and
4) insertion of jumps according to an “average dwell-time”

rule;
since the effects caused by these perturbations will always be
overcome by (13) if the magnitudes of the perturbations are rea-
sonably small. Space constraints preclude us from going into
details (cf. [5, Section V]).

V. FROM (A) TO (B) IN THEOREM 3.2

Throughout this section, we assume that is forward com-
plete and is a smooth Lyapunov function as described in (A)
of Theorem 3.2. We will show that is robustly -stable.

A. Overview of the Proof

First, note that the forward completeness of entails
. Indeed, for any there exist (maximal and not

complete) trivial solutions with . The
rest of the proof, broken into three steps, will do the following.

1) Show that, because is forward complete on , there is
an admissible perturbation radius that is positive every-
where on such that is forward complete on .

2) Show that, because is a smooth Lyapunov function for
, there is an admissible perturba-

tion radius that is positive where is positive

(13)
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and

(14)

3) Show that, because is forward complete (since
is bounded by , each solution of is a solution
of which is forward complete), (14) holds, and

, it follows that the system is
robustly -stable with respect to on , as
certified by using the admissible perturbation radius .

B. Details

For the first step, note that in light of Propositions 2.2 and 3.1,
given any admissible perturbation radius , forward complete-
ness of fails only if there exists a maximal but not complete
solution to with either or
as . This is only possible if there exists a
(maximal but not complete) solution to the differential inclu-
sion subject to . Hence, we only
need to show the existence of for which the existence of such

is excluded. For the case of , this has been done in [34,
Lemma 7]. However, the proof carries over essentially without
change for the case of a nontrivial . The prerequisites – results
that, for the constrained differential inclusion ,

, reachable sets from compact subsets of are com-
pact and that for small perturbations , reachable sets for the
perturbed inclusion are close to those for the unperturbed one –
follow from the more general results for hybrid systems in [12,
Corollaries 4.7 and 5.5] but can be easily shown directly.

For the second step, assume that is an admissible pertur-
bation radius that is positive everywhere on . In particular

for all , and also for each , the
function is also an admissible perturbation radius.

Claim 5.1: For each compact there exists
such that

(15)

Proof: Suppose the claim is false. Then, for each
, either there exist and

such that

(16)

or there exist and such that

(17)

Since , converge as sets to and , while the
(locally bounded, uniformly in ) mappings , con-
verge graphically to and as (see [12, Lemma 5.4]),
and by compactness of , without loss of generality we can as-
sume that either converge to and converge to

, or converge to and converge to

. In the former case, using the continuity of and
, and (15) and (16) we have

which is impossible since , i.e., . In the
latter case, using the continuity of and (15) and (17), we have

which again is impossible since .
Since is continuous and , the set

is open. Let be a locally finite open cover of
with a compact subset of and let be

a smooth partition of unity on subordinate to the cover.
To each associate the number using Claim 5.1
applied to . Then define

for

for .

The function is continuous since is continuous, the
are continuous, and as . The function

is positive on since for all and is
positive everywhere. The function is bounded by since

for each . Finally, to see that (14) holds, note that
since for , when the conditions
(14) follow from the fact that is a smooth Lyapunov func-
tion for . Let . Then note that

for some index satisfying . By the
construction of and the result of Claim 5.1 it follows that
(14) holds.

Finally, for the last step, assume is forward complete on
and let . By (14), each solution of satisfies

(18)

For all , since , it
follows that each satisfies

So with , item 1 of the ro-
bust -stability assumption holds.

To see that , we first note that since
the solutions of are also solutions of . On the other hand,
if then, by assumption, . Then, by (18),

for all and all .
Then, by the bound for all , it follows
that for all and all .
Thus . Therefore, item 2 of the robust -stability
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assumption holds. Finally, item 3 of the robust -stability
assumption holds since is positive where is positive.

VI. FROM (B) TO (A) IN THEOREM 3.2; OUTLINE OF THE

CONSTRUCTION

Throughout this section we assume that and that
the system is robustly -stable with respect to on

and we let be any function coming from (10). First,
note that as , forward completeness of , with
coming from the robust -stability of , implies that is
also forward complete.

The three subsections below describe the three main steps in
the construction of the (smooth) Lyapunov function. Some of
the important intermediate results are included in the subsec-
tions, while remaining technical details are filled in Section VII.

A. A Preliminary Lyapunov Function: (Possibly) Nonsmooth

We first state the following lemma, whose proof is provided
in Appendix B.

Lemma 6.1: For any and there exist ,
such that for all

(19)

Let be any functions satisfying (19) with
and . Define the preliminary Lyapunov function

by

(20)

The function is upper semicontinuous – we will show this in
Section VII-A – while its basic properties related to inequalities
(2)–(4) are established below.

Lemma 6.2: The function defined in (20)
satisfies

(21)

and, for each , and

(22)

Proof: The lower bound in (21) comes from the definition
of in (20)

while the upper bound in (21) comes from the combination of
(20), (10) and (19)

To see (22) we first note that if then there
exists such that implies

and . Then note
that, for each , , and

Finally, we note that

(23)

which comes directly from the definitions of in (20) and
in (12) and the fact that (see item 2 of the robust

-stability definition).

B. Initial Smoothing of Lyapunov Function: From to

Let be a smooth function vanishing outside
of satisfying where the integration (here and
in what follows) is over . We will now find a smooth and
sufficiently small function and define the
new Lyapunov function candidate by

for
for .

(24)
With the right choice of , we will accomplish that

a) is well-defined, continuous on , smooth and positive
on ;

b) as much as possible, the conditions (21), (22), and (23)
hold with in place of ;

c)

(25)

(26)

Regarding (a), the desired properties follow from [16, The-
orem 3.1], due to the following facts: is upper semicontin-
uous (see Proposition 7.1), (23) holds, is open (we show
this in Section VII-C), and is smooth and sufficiently small
(we establish this in Section VII-D).

Regarding (b), we first note that given such that

(27)

the function can be chosen sufficiently small so that (see
Lemma 7.7)

(28)
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Thus, the bound (21) will degrade an arbitrarily small amount,
as quantified through the functions and . We will pick

so that (22) holds, with in place of , but with the fol-
lowing degradation: the bound doesn’t hold for all solutions
of but rather for all solutions of a “smaller” perturbation

characterized by a continuous function that is positive
on but that satisfies for all . To
this end, we will construct functions and such that for
each , for each , for each and

such that , the function defined
on given by

can be extended to a complete solution of . (See Lemma 7.2.)
In other words, certain perturbations of the solutions to are
solutions to the perturbed system . To conclude the com-
ments on (b), we note that (23) for comes from the definition
of , the condition (23) for , the openness of , and the
upper semicontinuity of .

Regarding (c), first note that from (22), for each ,
each and each such that

, we have

(29)

Claim 6.3: Suppose is continuous, satisfies
for all and if and only if

. For any and , there exists a
solution such that, for sufficiently small , we
have and .

Proof: Since , we have, from items 2 and 3 of
the robust -stability assumption, that and thus

. Then, since and is continuous, there exists
such that, for all , we have

. Then, from the definitions of and like in (5) and (7)
but with in place of , it follows that and
for all . These facts imply the claim.

As a result of Claim 6.3 and (29), for all and
and small , we have .

This condition gives (25) as is open and is smooth
on . Finally, for each and there exists

such that and . If
then (29) implies . If

then . Therefore, (26) holds.

C. Final Smoothing of Lyapunov Function: From to

We now take a smooth function such that ,
for all , and such that the final Lyapunov

function defined by

(30)

is smooth. Existence of such is guaranteed by [34, Lemma 17]
(cf. [20, Lemma 4.3]), which is applicable as is continuous
on and smooth and positive on .

It remains to establish that is indeed a Lyapunov function.
From (28), we get

for all , i.e., we get (2) with

From (25) it follows that, for all

Then, using the fact that, for each , we have
and , we get

Also by construction, , i.e., is convex. In particular
for all . It then follows from (26) that,

for all :

VII. FROM (B) TO (A) IN THEOREM 3.2; THE REMAINING

TECHNICAL DETAILS

We now provide the missing technical details. In Sec-
tion VII-A we show that the function defined in (20) is upper
semicontinuous. In Section VII-B we obtain some preliminary
results that will allow us to show, in Section VII-C, that the set

is open and, in Section VII-D, that the function can be
chosen so that defined in (24) is continuous on , smooth
and positive on , and the bound (28) holds.

A. The Upper Semicontinuity of

Proposition 7.1: The function defined in (20)
is upper semicontinuous.

Proof: First, we claim that for any such that
, the supremum in the definition of can be taken

over , , and (note
the compact hybrid time interval) where

(31)

Indeed, according to (10) and (19), for each and
we have for all
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and, thus, see the equation at the bottom of the
page. Since this verifies the claim.

Now pick any and with such that
as . Without loss of generality, assume that

exists. We want to show that
. Now either or else, by

the definition of in (31), we have . In
the latter case, for each there exist and

with such that

(32)

By [12, Theorems 4.4, 4.6] there exists a subsequence
of ’s graphically convergent to some . As

, one can pick a further subsequence of
’s along with corresponding ’s (we do not change

the indices) so that and
. Now, it follows from (32) and the

continuity of and that

(33)

B. Solution Perturbations are Perturbed Solutions

Lemma 7.2: Let the open set satisfy
and let be bounded away

from zero on compact subsets of . There exist a continuous
function that is positive at points where is
positive and a smooth function , both bounded
above by and such that, for each , each ,
each such that and each ,
the function defined on by

can be extended to a complete solution of .
We start with two claims.
Claim 7.3: For each admissible perturbation radius

, there exists an admissible perturbation radius
that is positive where is positive and such that

(34)

where .

Proof: Let

and define a (continuous) function by

Then and if and only if
. Furthermore, for all , we have, from the

definition of , that and

(35)

To see the first inclusion in (35), note that
and then use . For the second inclusion

in (35), note that if , then
and the inclusion follows from

. If then
and, thus, . Therefore

.
Suppose that and recall that this means that

. For any , by the first
inclusion in (35), we have , which in
turn means that . This shows the first inclusion in (34).
The second inclusion is shown in the same fashion. To show
the third inclusion in (34), note that

Now the very definition of , the first inclusion in (35), and
the fact that when finish
the argument. To see the last inclusion in (34), note that, by the
definition of , the set equals

which, by the second inclusion in (35) with and ,
is a subset of

The last inclusion in (34) then follows from the definition of
and the first inclusion in (35).

Claim 7.4: Let be open. For each function
that is bounded away from zero on compact subsets of

there exists a smooth such that for all ,
.
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Proof: Let be a locally finite open cover of
with a compact subset of and let be a smooth
partition of unity on subordinate to the cover. The function

has the requested properties.
We are now ready to prove Lemma 7.2.

Proof: Let be open and satisfy
. Apply Claim 7.3 with to get the

continuous function that is positive where is
positive and satisfies (34). Apply Claim 7.4 with given by

. This
gives a smooth function satisfying

(36)

Now define and . Let and
, and . Since

and the set is forward invariant, it follows that
for all with . For

each , consider the function defined on
by

Suppose and . By the definition of a solu-
tion, we have

Then, using and
, (34), and the first part of (36) to get
, we have and

Next suppose there exist such that
. Then, by the definition of a solution,

for almost all , we have

Then, using and
, (34), and the second part of (36), we have for

almost all , and

This establishes the lemma.

C. The First Implication: The Set is Open

Lemma 7.5: For each there exist and
such that for all . In particular, because
of (23), the set is open.

Proof: Use Lemma 7.2 with and
defined by for all to get

and . By the definition of , there exists a solution
and such that . Since
is continuous at , there exists such that, for all

,

(37)

By the definition of solutions, we immediately have that
implies . Let be arbitrary and, for each

with , , define

(38)

Since , it follows from Lemma 7.2 that can be
extended to an element of . It follows from
the definition of and (37)–(38) that

Taking and establishes the lemma.

D. The Second Implication: Can be Chosen as Desired

We will apply Lemma 7.2 with , which is a
subset of because of items 2 and 3 in the
definition of robust -stability, and constructed below in
order to get the properties for indicated in (28) and (29), as
well as continuity of .

Let satisfy (27).
Claim 7.6: The functions and

, defined by

are bounded away from zero on compact subsets of .
Proof: Pick any compact and let

be any compact neighborhood of . For all ,
and, thus, . By the compactness of

and the continuity of and , there exists such that
implies for all . Thus,

for all .
To deal with , pick as above. By Lemma 7.5, there

exists such that for all . We have two
cases to consider. On the set , pick

such that , and hence implies
. On the compact set

we have ; by the
compactness of and the continuity of and , there exists

such that, for all such that and all
with , we have and,
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hence, . These imply that
for all .

We then define, for each

(39)

It follows from the claim above, the continuity of and ,
and items 2 and 3 of the robust -stability assumption, that

is bounded away from zero on compact subsets of .
We now apply Lemma 7.2 with and to get

and . We define and . According to
Lemma 7.2, for all . In particular, for
each and , if and
then . Also, since
is an admissible perturbation radius, so is . Hence, we verify
[16, Assumption 1]. Note that the upper semicontinuity of
and the openness of verify [16, Assumption 2], and that
[16, Assumptions 1 and 2] are the required conditions for [16,
Theorem 3.1].

We now continue toward establishing (28) and (29) for the
function defined in (24).

Lemma 7.7: For all ,
, i.e., (28) holds.

Proof: If then and . Thus

Thus the bounds hold for . For , since
, we have

Thus the upper bound holds for all . Also, since
, we have

Thus the lower bound holds for all .
Finally, given any and , if

, then by Lemma 7.2 and (22), (29) holds.

VIII. LYAPUNOV FUNCTION FOR FORWARD COMPLETENESS

Below, we show that forward completeness of a hybrid
system can be equivalently characterized via a smooth Lya-
punov function for forward completeness of .
This generalizes [1, Theorem 2] and can be used to derive a
Lyapunov characterization of “unboundedness observability”
for hybrid systems as for continuous-time systems (see [1,
Theorem 1]). Unboundedness observability is a weaker prop-
erty than forward completeness and has proved to be a useful
concept in nonlinear control systems; see [1] and references
therein. For example, Lyapunov characterization of unbound-
edness observability has been used to establish a dynamic norm
estimator and hence prove that unboundedness observability

is necessary for constructing an asymptotic observer for some
class of continuous-time systems (see [2, Section 6]).

A function is called proper with respect to
if for any sequence of points with

or . We note that the ex-
istence of a smooth function as in (2)–(4)
with being proper with respect to , does imply forward
completeness of on , if . Indeed, (2) implies
that is proper with respect to , the inequalities (3), (4) give
that , and this excludes finite time
“blow-up” of solutions. It turns out that far weaker inequalities
than (3), (4) also imply forward completeness, and furthermore,
they allow for a converse result.

Theorem 8.1: Let be a continuous function
which is proper with respect to . The following statements are
equivalent

( ) The hybrid system is forward complete.
( ) and there exist and a
smooth function such that

(40)

(41)

(42)

Proof: First, assume ( ). By (40) and properness of ,
is proper with respect to , and in particular,

is compact for all . By (41), (42), we have
for all , , . In light of

Proposition 2.2, all maximal solutions to are complete, and
hence ( ) holds.

Now assume ( ). As we already have shown (see the first
step of the proof in Section V), there exists an admissible per-
turbation radius that is positive on and such that is
forward complete. Let , and define

by

This function is well defined as satisfies the hybrid basic
conditions (see Proposition 3.1) and for such a hybrid system,
reachable sets from compact sets are compact (see [12, Corol-
lary 4.7]). By the very definition, is nondecreasing in each
argument.

Claim 8.2: There exist , such that

Proof: Let be given by
for each . Clearly, is nonde-

creasing. Pick to satisfy for
each and to satisfy
for each and . Then and
have the requested properties: if , then
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, and if
, then .

Define the (nonsmooth) Lyapunov function candidate
by

Then is well-defined, upper semicontinuous, satisfies
for all , and fi-

nally, for each , , and ,
. These facts can be verified similarly

to those in Proposition 7.1 and Lemma 6.2.
Now, construct and as in Section VII-D, by considering

and . (Note that (39) makes sense with
empty , as then for all .) Then, define

by for all . By [16,
Theorem 3.1], is smooth on . As in the proof of Lemma 7.7,
one can verify that

Note that , satisfy (27). Defining the functions
and establishes (40). As in Sec-

tion VI-B, one can verify that, for each , , and
, , and hence establish

(41) and (42).

APPENDIX A
PROOF OF PROPOSITION 3.1

Let and be outer semicontin-
uous (osc) mappings. Then is osc if is
locally bounded, and locally bounded if both and are lo-
cally bounded. (See [28, Proposition 5.52] for a global version.
The extensions to mappings from and to are immediate.)

Let be given by . Then
is osc (in fact continuous) and locally bounded on , and

consequently, so are given by
, .

Now note that is osc and locally bounded, and by [10,
Lemma 16, p. 66], so is . Now note that

, the mapping is continuous (and
locally bounded) at each point of , and thus by [28, Exercise
5.24, Proposition 5.51(a)], is osc and locally bounded. By
[28, Proposition 2.23], it is also convex-valued, and finally, by
its definition and nonemptiness of for , is nonempty
on .

Arguments similar to those above show that
is osc and locally bounded on . Now note that

, and thus osc and locally bounded. Nonemptiness
of on comes out directly from the definitions.

Finally, extend to by setting outside ; such a
mapping is osc. Note that . The set
is closed by [28, Theorem 5.25 (b)], and thus is relatively
closed in . Similar arguments show that so is .

APPENDIX B
PROOF OF LEMMA 6.1

The result will follow from [34, Lemma 3] (which is based
on [32, Proposition 7] but uses the definition of -functions

used here) after we establish the existence of such that
for all . Define

. The required monotonicity prop-
erties of follow from the analogous properties for . More-
over, and

This establishes that and thus gives the result.
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