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Smooth Lyapunov Functions for Hybrid Systems
Part II: (Pre)Asymptotically Stable Compact Sets

Chaohong Cai, Member, IEEE, Andrew R. Teel, Fellow, IEEE, and Rafal Goebel

Abstract—It is shown that (pre)asymptotic stability, which gen-
eralizes asymptotic stability, of a compact set for a hybrid system
satisfying mild regularity assumptions is equivalent to the exis-
tence of a smooth Lyapunov function. This result is achieved with
the intermediate result that asymptotic stability of a compact set
for a hybrid system is generically robust to small, state-dependent
perturbations. As a special case, we state a converse Lyapunov
theorem for systems with logic variables and use this result to
establish input-to-state stabilization using hybrid feedback con-
trol. The converse Lyapunov theorems are also used to establish
semiglobal practical robustness to slowly varying, weakly jumping
parameters, to temporal regularization, to the insertion of jumps
according to an “average dwell-time” rule, and to the insertion of
flow according to a “reverse average dwell-time” rule.

Index Terms—Asymptotic stability, hybrid systems, robustness,
smooth Lyapunov functions.

I. INTRODUCTION

A. Background

CONVERSE Lyapunov theorems identify classes of dy-
namical systems for which asymptotic stability is equiv-

alent to the existence of a smooth Lyapunov function, i.e., a
positive definite, radially unbounded function that decreases
along the solutions of the dynamical system. Such theorems
have proved to be very useful over the years for establishing
robustness of asymptotic stability to various types of perturba-
tions (see, for example, [13, Th. 56.4] or [17]), and for making
advances in the area of stabilizability for nonlinear control sys-
tems (see, for example, [8, Proposition 2], [27, Sec. 2], [32, Th.
1], or [34, Sec. 4].) This paper establishes converse Lyapunov
theorems in the setting of hybrid systems.

Hybrid systems are dynamical systems whose states can
evolve continuously and/or evolve discontinuously, and they
cover many useful and important systems such as hybrid au-
tomata, logic-based control systems, rigid mechanical systems
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with impact collisions, reset control systems, sampled-data con-
trol systems, and networked control systems, etc., (see [11, Sec.
2.2], [12], [16], [22], [28], [36], and Section IV-A of the current
paper). While various concepts of solutions were introduced for
hybrid systems to capture different properties of asymptotic sta-
bility and to establish many Lyapunov sufficient conditions for
asymptotic stability (see detailed discussions in [4, Sec. I-A],
[9, Sec. 1], and [11, Sec. 1]), smooth Lyapunov characteriza-
tions of asymptotic stability with emphasis on converse Lya-
punov theorems for hybrid systems, which are deeply related to
generating nominal robustness (to various types perturbations)
and achieving hybrid input-to-state stabilization, are missing in
the literature. Results on the existence of nonsmooth (typically
discontinuous) Lyapunov functions for hybrid systems have ap-
peared in [37].

B. Contribution

Inspired by the results on the existence of smooth Lyapunov
functions for asymptotically stable differential inclusions [6],
[23], [33] and difference inclusions [18], [20], in this paper,
we present converse Lyapunov theorems for hybrid systems in
the framework proposed and developed in [9] and [11]. Some
distinguishing features of this framework include allowing for
multiple jumps at a time instant (see also, for example, [24]),
allowing for (even instantaneous) Zeno solutions, and not in-
sisting on the uniqueness of solutions, but, on the other hand,
requiring some weak regularity and closedness properties from
the data (see also [7]) as motivated by the pursuit of robust-
ness of asymptotic stability. These regularity and closedness
properties, through the results of [11], make possible general
invariance principles (see [31]), and lead to results on the equiv-
alence of robust KLL stability and the existence of a smooth
Lyapunov function for KLL stability. (See [2] or [4] for precise
definitions and results.) The current paper, a continuation of [4],
uses this equivalence to show that smooth Lyapunov functions
always exist for hybrid systems with compact, preasymptoti-
cally stable sets, and, in particular, with compact and asymp-
totically stable sets. The concept of preasymptotic stability we
use is equivalent to asymptotic stability if local existence of
solutions can be guaranteed, but is more general and allows,
for example, for establishing converse Lyapunov theorems for
systems with attractive, but not necessarily stable, sets. Fi-
nally, we demonstrate some direct applications of converse Lya-
punov theorems in robustness analysis and robust stabilization
problems.

The paper is organized as follows. Section II reviews the
framework of hybrid systems that we use. Section III introduces
preasymptotic stability and states the main results. Section IV
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specializes the converse Lyapunov theorem to systems with
logic variables and uses it to establish an input-to-state sta-
bilization result. Section V illustrates how to use the converse
Lyapunov theorem to establish robustness of asymptotic sta-
bility in hybrid systems to various types of perturbations, in-
cluding slowly varying, weakly jumping parameters, temporal
regularization, jumps inserted according to an “average dwell-
time” rule, and flows inserted according to a “reverse average
dwell-time” rule. Section VI demonstrates by examples that the
converse Lyapunov theorem can fail if the weak assumptions on
the data are violated. Sections VII and Section VIII provide the
proofs. Section IX states a result on robustness and a converse
Lyapunov theorem for a special case of KLL stability, which
covers the temperature control system example reported in [4].
Section X gives some brief conclusions.

C. Preliminaries

1) R denotes the reals, Z the integers, R≥0 the nonnegative
reals, and Z≥0 the nonnegative integers.

2) B is the open unit ball in Euclidean space (of appropriate
dimension).

3) Given a vector v ∈ R
n , v� denotes its transpose.

4) The sets U and co U are, respectively, the closure and
closed convex hull of U ⊂ R

n .
5) Given two sets U1 and U2 in R

n , their sum U1 + U2 is
defined by {u1 + u2 : u1 ∈ U1 , u2 ∈ U2}.

6) Given a set U ⊂ R
n and a point x ∈ R

n , |x|U :=
infy∈U |x − y|.

7) Given an open set O ⊂ R
n , the set U is said to be bounded

with respect toO if it is contained in a compact subset ofO.
8) Given sets U1 ⊂ O ⊂ R

n ,U1 is said to be relatively closed
(respectively, relatively open) in O if there exists a closed
(respectively, an open) set U2 such that U1 = U2 ∩ O.

9) The domain of a set-valued map M : O→→R
n is the set

dom M := {x ∈ O : M(x) �= ∅}.
10) Given an open set O containing a compact set U , a contin-

uous function ω : O → R≥0 is proper onO if ω(xi) → ∞
when xi converges to the boundary ofO or |xi | → ∞, and
is a proper indicator for U on O} if it is proper on O and
satisfies {x ∈ O : ω(x) = 0} = U .

11) A set-valued map M : O→→R
n is outer semicontinuous

at x ∈ O if for all sequences xi → x and yi ∈ M(xi), if
limi→∞yi = y for some y, then y ∈ M(x). The map is said
to be outer semicontinuous if it is outer semicontinuous at
each x ∈ O. A set-valued map M is outer semicontinuous
on O if and only if the graph of M is relatively closed in
O × R

n (see [30, Th. 5.7]).
12) A set-valued map M : O→→R

n is locally bounded if for
any compact K ⊂ O, there exists a compact set K ′ ⊂ R

n

such that M(K) := {y : y ∈ M(x), x ∈ K} ⊂ K ′.
13) A function α : R≥0 → R≥0 is said to belong to class-

K (α ∈ K) if it is continuous, zero at zero, and strictly
increasing. It is said to belong to class-K∞ if, in addition,
it is unbounded.

14) A function β : R≥0 × R≥0 → R≥0 is said to belong
to class-KL} (β ∈ KL) if it satisfies: 1) for each

t ≥ 0, β(·, t) is nondecreasing and lims→0+ β(s, t) = 0
and 2) for each s ≥ 0, β(s, ·) is nonincreasing and
limt→∞β(s, t) = 0. Note that KL-functions here are
slightly weaker than usual; see [4, Sec. I-C] for details.

15) A function γ : R≥0 × R≥0 × R≥0 → R≥0 is said to be-
long to class-KLL (γ ∈ KLL) if, for each r ≥ 0,
γ(·, ·, r) ∈ KL and γ(·, r, ·) ∈ KL.

II. HYBRID SYSTEMS

The hybrid systems we consider can be informally described
by

H :=

{
ẋ ∈ F (x) for x ∈ C

x+ ∈ G(x) for x ∈ D
(1)

where the variable x evolves in the state spaceO, the sets C ⊂ O
and D ⊂ O describe where the flow can occur, respectively,
from where the jumps can occur, and the (set-valued) maps F
and G describe the flow, respectively, the jumps. The state x may
include both “continuous” and “discrete” variables, the latter
often consisting of logical modes that can be associated with
integer values (see Section IV-A). Hybrid automata, logic-based
or sampled-data control systems, and impulsive and switched
systems can all be modeled in the format of (1); see details in
[9, Sec. 2], [11, Sec. 2.2], and Section IV-A of the current paper.

We impose the following standing assumption on (1).
Standing assumption (hybrid basic conditions):
The state space O ⊂ R

n is open. The data (F,G,C,D) of
the system H satisfy:

SA 1) the sets C ⊂ O and D ⊂ O are relatively closed in O;
SA 2) the (set-valued) map F : O→→R

n is outer semicon-
tinuous and locally bounded, and F (x) is nonempty
and convex for all x ∈ C; and

SA 3) the (set-valued) map G : O→→R
n is outer semicontin-

uous and locally bounded, and for each x ∈ D, G(x)
is a nonempty subset of O.

These conditions were also used for the converse Lyapunov
theorems in [4] where, in addition, it was assumed that C ∪ D =
O, which guarantees existence of solutions from every initial
condition. We emphasize that we do not assume C ∪ D = O in
this paper. In other words, the union of the flow set and the jump
set does not need to cover the open state space O.

The solutions to (1) are defined on hybrid time domains, as
used in [7], [9], and [11]. A subset E ⊂ R≥0 × Z≥0 is a compact
hybrid time domain if E =

⋃J−1
j=0 ([tj , tj+1], j) for some finite

sequence of times 0 = t0 ≤ t1 ≤ t2 · · · ≤ tJ . It is a hybrid time
domain if for all (T, J) ∈ E, E ∩ ([0, T ] × {0, 1, . . . , J}) is
a compact hybrid time domain. A hybrid arc is a function φ
defined on a hybrid time domain, and such that φ(·, j) is locally
absolutely continuous for each j. A hybrid arc can be viewed as a
set-valued map from R≥0 × Z≥0 whose domain is a hybrid time
domain. A hybrid arc φ : dom φ → O is a solution (trajectory)
to H if φ(0, 0) ∈ C ∪ D and:

S 1) for all j∈Z≥0 and almost all t∈R≥0 s.t. (t, j) ∈ dom φ:
φ(t, j) ∈ C, φ̇(t, j) ∈ F (φ(t, j)) and
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S 2) for all (t, j) ∈ dom φ such that (t, j + 1) ∈ dom φ:
φ(t, j) ∈ D,φ(t, j + 1) ∈ G(φ(t, j)).

A solution to the hybrid system is called maximal if it cannot
be extended, and complete if its domain is unbounded. Complete
solutions are maximal. We denote byS(x) the set of all maximal
solutions to H starting from x. Note that S(x) is empty for each
x ∈ O\(C ∪ D). The hybrid system H is said to be forward
complete on O if for all x ∈ O, each φ ∈ S(x) is complete. The
hybrid systemH is said to be forward invariant on a setO1 ⊂ O
if, for all x ∈ O1 , each φ ∈ S(x) is such that φ(t, j) ∈ O1 for
all (t, j) ∈ dom φ. Note that forward invariance need not imply
the existence of trajectories from all points of O1 .

III. CONVERSE LYAPUNOV THEOREMS FOR PREASYMPTOTIC

STABILITY

A. Smooth Lyapunov Functions

In [4], we formalized the concept of a smooth Lyapunov
function with respect to two measures for a hybrid system.
Here, we specialize it to the case of a single measure.

Definition 3.1: Let O1 ⊂ O be open and ω : O1 → R≥0 be
continuous. A function V : O1 → R≥0 is said to be a smooth
Lyapunov function for (O1 , F,G,C,D, ω) if it is smooth and
there exist class-K∞ functions α1 , α2 such that

α1(ω(x)) ≤ V (x) ≤ α2(ω(x)) ∀x ∈ O1 (2)

max
f∈F (x)

〈∇V (x), f〉 ≤ −V (x) ∀x ∈ O1 ∩ C (3)

sup
g∈G(x)∩O1

V (g) ≤ e−1V (x) ∀x ∈ O1 ∩ D. (4)

We are interested in conditions guaranteeing that such a Lya-
punov function exists, for the case where ω is a proper indicator
for a compact set A on an open set O1 ⊂ O. Before presenting
such conditions, we give an example of a smooth “strict” Lya-
punov function for the hybrid system describing the motion of
the bouncing ball. (We note that the often used energy function
V (x) = x2

2/2 + ax1 for the bouncing ball requires the use of
LaSalle’s invariance principle to establish asymptotic stability
of the origin; see [31].)

Example 3.2: The bouncing ball system has the state x :=
(x1 , x2), the state spaceO :=R

2 , and the data (f, g, C,D) where

f(x) := (x2 ,−a)

g(x) := (0, −λx2)

C :=
{
x ∈ R

2 : x1 ≥ 0
}

D :=
{
x ∈ R

2 : x1 = 0, x2 ≤ 0
}

with parameters a > 0 and λ ∈ [0, 1). We take ω(x) = |x|,
which is a proper indicator for the origin on R

2 and, instead
of asking for (2)–(4), for simplicity, we just ask that

α1(|x|) ≤ V (x) ≤ α2(|x|) ∀x ∈ C ∪ D

〈∇V (x), f(x)〉 ≤ −ρ1(x) ∀x ∈ C

V (g(x)) − V (x) ≤ −ρ2(x) ∀x ∈ D

where ρ1 and ρ2 are continuous, positive definite functions and
α1 and α2 are class-K∞ functions. Such a function can be readily
converted into a function satisfying (2)–(4).

We choose V (x) := (1 + θ arctan x2)
(
x2

2/2 + ax1
)
, where

θ := (1 − λ2)/(π + πλ2). Then

〈∇V (x), f(x)〉 = − θa

1 + x2
2

(
1
2
x2

2 + ax1

)
∀x ∈ C

V (g(x)) − V (x)

=
1
2
x2

2
(
λ2 + θλ2 arctan(−λx2) − 1 − θ arctan x2

)
≤ 1

2
x2

2

(
λ2 − 1 +

θπ(λ2 + 1)
2

)
≤ −1 − λ2

4
x2

2 ∀x ∈ D .

Then, using the fact that x1 ≥ 0 for all x ∈ C and x1 = 0 for
all x ∈ D, we can take

ρ1(x) =
θa

1 + x2
2

(
1
2
x2

2 + a|x1 |
)

ρ2(x) =
1 − λ2

2

(
1
2
x2

2 + a|x1 |
)

.

B. Preasymptotic Stability

In this section, we provide a Lyapunov-based motivation for
the notion of preasymptotic stability. While this property is more
general than asymptotic stability, we are not using it merely for
the sake of generality. Working with preasymptotic stability also
allows us to weaken the assumptions used for the existence of
smooth Lyapunov functions. For example, in the conference
version of this work [2], we employed standard asymptotic sta-
bility and needed to assume that the basin of attraction was
open in order to develop theorems on the existence of smooth
Lyapunov functions. The use of preasymptotic stability permits
removing this “openness” assumption, which is fortunate since
the assumption is not very natural for some hybrid systems,
including systems with logic variables.

When G(D ∩ O1) ⊂ O1 and ω is a proper indicator for
a compact set A on an open set O1 ⊂ O, it is not difficult
to see that the existence of a smooth Lyapunov function for
(O1 , F,G,C,D, ω) implies that: 1) O1 is forward invariant; 2)
each trajectory that starts nearA remains nearA for all time in its
domain; and 3) each trajectory that starts in O1 is bounded with
respect to O over its domain, and if its domain is unbounded,
then the trajectory converges to A.

Except for the fact that completeness of trajectories is not
assumed,1 properties (2) and (3) mentioned before resemble
the standard notion of asymptotic stability for the set A with
basin of attraction containing O1 . Because completeness is not
assumed, we will call the properties, taken together, “preasymp-
totic stability” with “basin of preattraction” containing O1 . Our

1When all solutions are bounded with respect to O, completeness is guaran-
teed by local existence of solutions from C ∪ D. This happens, for example,
when C ∪ D = O, but much weaker conditions can be given; see [11, Propo-
sition 2.4].
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main result is that, when ω is a proper indicator for a com-
pact set A on an open set O1 ⊂ O, the existence of a smooth
Lyapunov function for (O1 , F,G,C,D, ω) and the assumption
G(D ∩ O1) ⊂ O1 is equivalent to forward invariance ofO1 and
preasymptotic stability of A with basin of preattraction contain-
ing O1 ∩ (C ∪ D). The latter property is formally defined as
follows. Let A ⊂ O be compact.

1) A is prestable for H if for each ε > 0, there exists δ > 0
such that any solution φ to H with |φ(0, 0)|A ≤ δ satisfies
|φ(t, j)|A ≤ ε for all (t, j) ∈ dom φ;

2) A is preattractive for H if there exists δ > 0 such that
any solution φ to H with |φ(0, 0)|A ≤ δ is bounded with
respect to O, and if it is complete, then φ(t, j) → A as
t + j → ∞2;

3) A is preasymptotically stable if it is both prestable and
preattractive; and

4) (A is asymptotically stable if it is preasymptotically stable
and there exists δ > 0 such that any maximal solution φ
to H with |φ(0, 0)|A ≤ δ is complete.)

The set of all x ∈ O from which all solutions are bounded
with respect to O and the complete ones converge to A is called
the basin of preattraction of A, denoted Op

A.
The subsequent facts about preasymptotic stability can be

combined with later results to generate novel converse Lyapunov
theorems.

Proposition 3.3: Let A ⊂ O be compact and suppose that
C ∪ D is disjoint from A. For the system (F,G,C,D), suppose
that the set O0 ⊂ O is such that each solution starting in O0 is
bounded with respect to O but not complete. Then, for the
system (F,G,C,D), the set A is preasymptotically stable with
basin of preattraction containing O0 .

Proof: Prestability and preattractivity of A follow from the
fact thatA is disjoint from C ∪ D. That the basin of preattraction
contains O0 follows by definition. �

The next four corollaries follow from Proposition 3.3.
Corollary 3.4: Let A and C be disjoint, compact subsets of

O. Suppose that the set-valued maps F and G are such that
G is arbitrary, and there does not exist a complete solution
to ẋ ∈ F (x), x ∈ C. Then, for the “continuous-time” system
(F,G,C, ∅), the set A is preasymptotically stable with basin of
preattraction equal to O.

Corollary 3.5: Let A and D be disjoint, compact subsets of
O. Suppose that the set-valued maps F and G are such that
F is arbitrary, and there does not exist a complete solution
to x+ ∈ G(x), x ∈ D. Then, for the “discrete-time” system
(F,G, ∅,D), the set A is preasymptotically stable with basin of
preattraction equal to O.

Corollary 3.6: For the system (F,G,C,D), suppose that for
each x ∈ O0 ⊂ O, each corresponding solution φ ∈ S(x) is
bounded with respect to O, and if complete, then there exists
(t, j) ∈ dom φ such that φ(t, j) ∈ K ⊂ O. Then, for each open
setG ⊂ O containing the union of K and a compact setA and for
each system (F,G,C\G,D\G), the set A is preasymptotically
stable with basin of preattraction containing the set O0 .

2Complete solutions that converge to A are automatically bounded with
respect to O.

Corollary 3.7: Suppose, for the system (F,G,C,D), that the
compact set A is preattractive with basin of preattraction Op

A.
Then, for each ε > 0 such that A + εB ⊂ O and each system
(F,G,C\(A + εB),D\(A + εB)), the set A is preasymptoti-
cally stable with basin of preattraction containing Op

A.
The next proposition asserts that a forward invariant, uni-

formly preattractive set is preasymptotically stable; the proof
relies on [11, Proposition 6.1] and is given in Section VIII.

Proposition 3.8: Let the compact set A ⊂ O be forward in-
variant and uniformly preattractive, i.e., there exists δ > 0, and
for each ε > 0, there exists T > 0 such that any solution φ
to H with |φ(0, 0)|A ≤ δ is bounded with respect to O and
|φ(t, j)|A ≤ ε for all (t, j) ∈ dom φ satisfying t + j ≥ T (the
set of (t, j) ∈ dom φ such that t + j ≥ T may be empty). Under
these conditions, the set A is preasymptotically stable.

The next proposition shows how to construct a forward invari-
ant, uniformly preattractive set from a reachable set; the proof
relies on [11, Corollary 4.7] and is provided in Section VIII.
First, we set some notation. For a compact set K ⊂ O and a
real number T > 0, we define the reachable set from K in finite
hybrid time T for the hybrid system H as follows

R≤T (K) := {ξ ∈ O : ξ = φ(t, j), (t, j) ∈ dom φ

t + j ≤ T , φ ∈ S(x), x ∈ K} .

We also define the “infinite horizon” reachable set asR∞(K) :=⋃
T ≥0R≤T (K).
Proposition 3.9: Let K and K0 be compact subsets of O

and suppose there exists δ > 0 such that R∞(K) + δB ⊂ K0
and there exists T > 0 such that, for each x ∈ K0 and each
φ ∈ S(x), either t + j < T for all (t, j) ∈ dom φ and φ is
bounded with respect to O, or else, there exists (t, j) ∈ dom φ
such that φ(t, j) ∈ K and t + j ≤ T . Then, the set R∞(K) is
compact and preasymptotically stable with basin of preattrac-
tion containing K0 .

We note that Proposition 3.9 is similar to [33,
Proposition 4]. The assumptions for [33, Proposition 4] are
stronger. There is no Lipschitz condition on F here, and no as-
sumption that solutions remain in K after time T . On the other
hand, the set that is identified as being asymptotically stable is
smaller in [33, Proposition 4]. There it is a subset of K, whereas
here it is a superset of K. We also point out that an attractor
that is similar to but typically smaller than R∞(K) in Proposi-
tion 3.9 can be expressed in terms of the omega-limit set: for a
discussions of this notion for hybrid systems, see [1].

The next proposition is a consequence of the definition of
solutions to hybrid systems.

Proposition 3.10: If the compact set A is preasymptoti-
cally stable for H := (F,G,C,D), then A is also preasymp-
totically stable for both the “continuous-time” system Hc :=
(F,G,C, ∅) and the “discrete-time” systemHd := (F,G, ∅,D).

The converse of Proposition 3.10 is not true, as the next two
examples show. The second example also illustrates the differ-
ence between preasymptotic stability and asymptotic stability.
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Fig. 1 Possible trajectories for the hybrid system in Example 3.11.

Example 3.11: Let x = (x1 , x2), O=R
2 , C =D =O,

F (x)=Acx, and G(x)=Adx, where

Ac =
[
−θ 100
−1 − θ

]
, Ad =

[
0 −λ

λ 0

]
θ = 1, and λ = 0.9. The eigenvalues of Ac and Ad are−θ ± 10i
and ±λi, respectively. Hence the origin is asymptotically stable
for both Hc = (F,G,C, ∅) and Hd = (F,G, ∅,D). However,
for H, the origin is not asymptotically stable: solutions starting
from {x1 =0, x2 >0} may remain in the first quadrant (by flow-
ing to {x1 >0, x2 =0} and then jumping to {x1 =0, x2 >0},
and so on) and go unbounded. See Fig. 1. The switching be-
tween flow and jump in this example is similar to examples of
destabilization by arbitrary switching between stable systems,
which have appeared in the switched systems literature.

Example 3.12: In Example 3.11, redefine C := {x2 ≥
0}, D := {x2 ≤ 0}, θ := −1, and λ := −2. For both Hc =
(F,G,C, ∅) and Hd = (F,G, ∅,D), the origin is preasymptoti-
cally stable with Op

A = R
2 , since the solutions of these systems

are incomplete and bounded. The origin is not preasymptotically
stable for H, since there are complete, unbounded solutions.

C. Main Results: Converse Lyapunov Theorems for
Preasymptotic Stability

We now state our main result about the existence of smooth
Lyapunov functions for preasymptotically stable compact sets
in a hybrid system framework. This result will be used in later
sections to establish various forms of robustness for hybrid con-
trol systems, and to establish input-to-state stabilization with
respect to additive disturbances at the control input when using
hybrid feedback (cf. [32]).

Theorem 3.13: Let A be compact and O1 be open, with A ⊂
O1 ⊂ O, and let ω be a proper indicator for A on O1 . The
following statements are equivalent.

1) There exists a smooth Lyapunov function for
(O1 , F,G,C,D, ω) and G(D ∩ O1) ⊂ O1 .

2) The set A is preasymptotically stable for H, its basin of
preattraction Op

A contains O1 , and O1 is forward invariant
for H.

To see the implication 1⇒2 in Theorem 3.13, let φ be
any solution to H such that φ(0, 0) ∈ O1 . Then, φ(t, j) ∈
O1 for all (t, j) ∈ dom φ; otherwise, due to the assumption
G(D ∩ O1) ⊂ O1 , the solution φ must flow outside O1 , which
immediately contradicts (3) and the property of ω. Thus, we
deduce from the existence of a smooth Lyapunov function for
(O1 , F,G,C,D, ω) that

ω(φ(t, j)) ≤ α−1
1

(
α2(ω(φ(0, 0)))e−t−j

)
∀(t, j) ∈ dom φ.

This implies the remaining conclusions of statement (1) in
Theorem 3.13. We add that, in order to conclude standard
asymptotic stability in statement (2), one must add to (1) con-
ditions that guarantee local existence of solutions from C ∪ D.
See, for example, [11, Proposition 2.4].

The implication 2⇒1 will be proved in Section VII by the
following steps: 1) restrict the hybrid system H to the set O1 ;
2) augment this restricted system to get a hybrid system (even
if the original system was not hybrid by virtue of C = ∅ or
D = ∅) with set A that is globally asymptotically stable, i.e.,
its basin of attraction is equal to O1 ; 3) establish that global
asymptotic stability is robust; and 4) invoke results from [4] that
link robustness to the existence of the desired smooth Lyapunov
function. In Section VI, we show that the implication may fail
if we relax the hybrid basic conditions.

Note that Theorem 3.13 implies that the converse direction in
Proposition 3.10 holds if and only if Hc and Hd share a com-
mon smooth Lyapunov function, that is, there exists a smooth
Lyapunov function for H.

The next result, proved in Section VIII, not only asserts useful
properties on basins of preattraction (cf. [11, Proposition 6.4]),
but also gives a converse Lyapunov theorem for preasymptoti-
cally stable hybrid systems (cf. [2, Theorem 1]).

Theorem 3.14: For the hybrid system H, if the compact set
A ⊂ O is preasymptotically stable, then its basin of preattrac-
tion Op

A is open and forward invariant. Furthermore, for each
ω as a proper indicator for A on Op

A, there exists a smooth
Lyapunov function for (Op

A, F,G,C,D, ω).
As we already noted, when C ∪ D = O, preasymptotic sta-

bility agrees with asymptotic stability and the basin of preat-
traction becomes the basin of attraction in Theorem 3.14. Thus,
by setting C = O and D = ∅, Theorem 3.14 captures converse
Lyapunov theorems for local asymptotic stability in differential
inclusions; see [6, Th. 1.2] and [33, Sec. 3.3]. By setting D = O
and C = ∅, Theorem 3.14 captures converse Lyapunov theo-
rems for local asymptotic stability in difference inclusions; see
[6, Ch. 7]. In fact, Theorem 3.14 is also applicable to differential
(respectively, difference) inclusions or equations even when C
(respectively, D) is a strict subset of O; for example, the corol-
lary applies to the systems Hc and Hd in Example 3.12, even
though the origin is unstable for both H̃c = (F,G, R2 , ∅) and
H̃d = (F,G, ∅, R2). It also applies, for example, to differential
equations defined on the positive orthant with an asymptoti-
cally stable origin, which is on the boundary of the positive
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orthant. Converse Lyapunov theorems for attractivity, respec-
tively “practical” convergence, without stability can be derived
easily from combining Theorem 3.14 with Corollary 3.7, re-
spectively Corollary 3.6, or Proposition 3.9. We do not do this
explicitly here due to space limitations.

IV. APPLICATIONS: SYSTEMS WITH LOGIC VARIABLES

AND INPUT-TO-STATE STABILIZATION

A. Converse Lyapunov Theorem for Systems with
Logic Variables

Let Q ⊂ Z
m be a set of logic modes. In this section, we

consider systems with logic variables

H :=


ξ̇ ∈ Fq (ξ) for ξ ∈ Cq[

ξ+

q+

]
∈ Gq (ξ) for ξ ∈ Dq

(5)

under the following assumption, which parallels the hybrid basic
conditions.

Assumption 4.1: For each q ∈ Q
1) Oq ⊂ R

n is open, and Cq ⊂ Oq , Dq ⊂ Oq are relatively
closed in Oq ;

2) Fq : Oq
→→R

n is outer semicontinuous and locally
bounded, and Fq (ξ) is nonempty and convex for all
ξ ∈ Cq ; and

3) Gq : Oq
→→R

n+m is outer semicontinuous and locally
bounded, and for each ξ ∈ Dq , Gq (ξ) is a nonempty subset
of

⋃
q̂∈Q Oq̂ × {q̂}.

The rocking block model in [25, Sec. II.E] is an example of
a system fitting the form considered in this section. This sec-
tion also addresses the canonical model of a closed-loop hybrid
control system. A common special case is when Fq and Gq

are single-valued continuous maps for each q, and the first n
components of Gq equal ξ so that only the variable q jumps.

We take the composite state space to be the open set
O :=

⋃
q∈Q Oq × {q + εB} for some ε ∈ (0, 1/2), and we de-

fine C :=
⋃

q∈Q Cq × {q} and D :=
⋃

q∈Q Dq × {q}.
Theorem 4.2: For (5), let Assumption 4.1 hold and assume

that the nonempty and compact set A ⊂ O is preasymptotically
stable with basin of preattraction Op

A. Then:
1) for each q ∈ Q, there exists a compact (possibly empty)

set Aq and a (possibly empty) set Xq open in Oq such that
Aq ⊂ Xq , A =

⋃
q∈Q Aq × {q},3 and Op

A =
⋃

q∈Q Xq ×
{q + εB} and

2) for each q ∈ Q, let ωq : Xq → R≥0 be a proper indicator
forAq onXq . Then, there exist class-K∞ functions α1 , α2 ,
and, for each q ∈ Q, a smooth function Vq : Gq → R≥0 ,
such that

α1(ωq (ξ)) ≤ Vq (ξ) ≤ α2(ωq (ξ)) ∀ξ ∈ Xq

max
f∈Fq (ξ)

〈∇Vq (ξ), f〉 ≤ −Vq (ξ) ∀ξ ∈ Xq ∩ Cq

max[
g 1
g 2

]
∈Gq (ξ)

Vg2 (g1) ≤ e−1Vq (ξ) ∀ξ ∈ Xq ∩ Dq . (6)

3The structure of A is similar to that of the global compact attractor in
[5, Th. 2]

Proof : Define the state x := (ξ, q), the setO0 :=
⋃

q∈Q Oq ×
{q}, and the set-valued maps F̃ , G̃ : O→→R

n+m as F̃ (x) :=

Fq (ξ) × {0} and G̃(x) := Gq (ξ) for all x ∈ O0 , and F̃ (x) =
G̃(x) := ∅ for all x ∈ O \ O0 . Consider a new hybrid system
H̃ := (F̃ , G̃, C,D) on O. Due to Assumption 4.1, the data of
H̃ satisfy the hybrid basic conditions on O; furthermore, the
sets of (nontrivial) maximal solutions for (5) on O0 and for
H̃ on O are equal, which implies that, for H̃, the set A is
preasymptotically stable with basin of preattraction Op

A. Thus,
the first statement follows from the compactness of A and the
fact that Op

A is open for H = (F,G,C,D) (see Theorem 3.14).
The application of Theorem 3.14 also gives the second
statement. �

B. Logic-Based Continuous Stabilization ⇒ Logic-Based
Continuous Input-to-State Stabilization

In this section, we show how one of the main results of [32]
that smooth stabilization implies smooth input-to-state stabi-
lization with respect to input additive disturbances generalizes
to hybrid control systems. Our result can be combined with the
hybrid feedback results of [10], [29] to establish logic-based
smooth input-to-state stabilization with respect to input addi-
tive disturbances for systems like the nonholonomic integrator
or Artstein’s circles. This application is related to the results
of [26] where input-to-state stabilization was established us-
ing discontinuous, continuous-time feedback, and nonsmooth
Lyapunov functions.

Consider the hybrid control system

{
ξ̇ = fq (ξ) + ηq (ξ)(uq + vqd) for ξ ∈ Cq[

ξ+

q+

]
∈ Gq (ξ) for ξ ∈ Dq

(7)

where fq , ηq : Oq → R
n are continuous functions, Oq , Cq ,

Dq , and Gq satisfy Assumption 4.1, uq is the control, and
d is the disturbance and the constant vectors vq are uni-
formly bounded over Q. Suppose H is stabilizable by logic-
based continuous feedback; that is, for the case where d =
0, there exist continuous functions kq defined on Cq such
that, with uq := kq (ξ), the nonempty and compact set A =⋃

q∈Q Aq × {q} is asymptotically stable with basin of attraction
Op

A =
⋃

q∈Q Xq × {q + εB}, where ε ∈ (0, 1/2) comes from
Theorem 4.2. According to Theorem 4.2, the sets Xq are open
in Oq . For each q ∈ Q, let ωq : Xq → R≥0 be a proper indicator
for Aq on Xq .

Proposition 4.3: Under the assumptions of the preceding
paragraph, there exists a logic-based continuous feedback that
renders the system input-to-state stable with respect to d as
measured through the function (ξ, q) → ωq (ξ). More specifi-
cally, there exist α1 , α2 ∈ K∞, and for each ε > 0 and q ∈ Q,
there exists a continuous function κq,ε defined on Cq such
that, with uq = κq,ε(ξ), the following property holds for the
system (7): For each initial condition (ξ(0, 0), q(0, 0)) ∈
Op

A, each corresponding solution, and each (t, j)
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in its hybrid time domain

ωq(t,j )(ξ(t, j)) ≤max
{

α−1
1

(
supq∈Q |vq |2

2ε
||d||2∞

)
α−1

1

(
2 exp(−t − j)α2(ωq(0,0)(ξ(0, 0)))

) }
where ||d||∞ = ess. sup.(t,j )∈domφ |d(t, j)|. In particular, one
can take

κq,ε(ξ) = kq (ξ) − εη�
q (ξ)∇Vq (ξ)

where the smooth functions Vq come from Theorem 4.2.
Proof: (Sketch) By construction

α1(ωq (ξ)) ≤ Vq (ξ) ≤ α2(ωq (ξ)) ∀ξ ∈ Xq (8)

and

〈∇Vq (ξ), fq (ξ) + ηq (ξ)kq (ξ)〉 ≤ −Vq (ξ) ∀ξ ∈ Xq ∩ Cq

max[
g 1
g 2

]
∈Gq (ξ)

Vg2 (g1) ≤ e−1Vq (ξ) ∀ξ ∈ Xq ∩ Dq .

(9)

It follows from the first inequality in (9) that, for all ξ ∈ Xq ∩ Cq〈
∇Vq (ξ), fq (ξ) + ηq (ξ)

(
kq (ξ) − εη�

q (ξ)∇Vq (ξ) + vqd
)〉

≤− Vq (ξ) +
supq∈Q |vq |2

4ε
|d|2 .

It then follows that, for each solution starting in Op
A

Vq(t,j )(ξ(t, j))

≤ exp(−t − j)Vq(0,0)(ξ(0, 0)) +
supq∈Q |vq |2

4ε
||d||2∞.

The result then follows using (8) and the fact that α−1
1 (a + b) ≤

max
{
α−1

1 (2a), α−1
1 (2b)

}
. �

V. APPLICATIONS: (SEMIGLOBAL PRACTICAL) ROBUSTNESS

OF STABILITY

A. General Observations

In the companion paper [4], the existence of smooth Lyapunov
functions was shown to be equivalent to robustness of stability.
In this section, we wish to elaborate on how converse Lyapunov
theorems for preasymptotic stability of compact sets can be used
to understand robustness. Let V be a smooth Lyapunov function
for (O1 , F,G,C,D, ω), where ω is a proper indicator for a
compact set A on the open set O1 . Since there exist α1 , α2 ∈
K∞, such that

α1(ω(x)) ≤ V (x) ≤ α2(ω(x)) ∀x ∈ O1 (10)

it follows that for each pair (�1 , �2) with 0 < �1 < �2 < ∞, the
set {x ∈ O1 : �1 ≤ V (x) ≤ �2} is a compact subset of O1\A.
Then, the result of [4, Claim 5.1] can be used to conclude readily

that, given 0 < �1 < �2 < ∞, there exists ρ > 0, such that

max
f∈Fρ (x)

〈∇V (x), f〉 ≤ −1
2
V (x)

∀x ∈ Cρ ∩ {x ∈ O1 : �1 ≤ V (x) ≤ �2}

max
g∈Gρ (x)

V (g) ≤ e−1/2V (x)

∀x ∈ Dρ ∩ {x ∈ O1 : �1 ≤ V (x) ≤ �2}
(11)

where [cf. (22)–(25)]

Fρ(x) := coF ((x + ρB) ∩ C) + ρB, ∀x ∈ O (12)

Gρ(x) := {v ∈ O : v ∈ g + ρB, g ∈ G((x + ρB) ∩ D)}
∀x ∈ O (13)

Cρ := {x ∈ O : (x + ρB) ∩ C �= ∅} (14)

Dρ := {x ∈ O : (x + ρB) ∩ D �= ∅}. (15)

Using the same arguments as in the proof of [14, Claim 5.1], we
can assume, without loss of generality, that ρ > 0 also satisfies

max
g∈Gρ (x)

V (g) ≤ �1 ∀x ∈ Dρ ∩ {x ∈ O1 : V (x) ≤ �1} .

(16)
It follows from (11) and (16) that, for the system

Hρ :=
{

ẋ ∈ Fρ(x) for x ∈ Cρ

x+ ∈ Gρ(x) for x ∈ Dρ

(17)

the compact set {x ∈ O1 : V (x) ≤ �1} is preasymptotically sta-
ble with basin of preattraction containing the forward invari-
ant open set {x ∈ O1 : V (x) < �2}. It also follows from (10)
that the set {x ∈ O1 : V (x) ≤ �1} converges to A as �1 → 0,
and the set {x ∈ O1 : V (x) < �2} fills out O1 as �2 → ∞. Us-
ing terminology from parameterized differential equations, we
say that the set A is semiglobally (with respect to O1) prac-
tically preasymptotically stable in the parameter ρ. Now, we
apply these ideas to robustness with respect to slowly varying,
weakly jumping parameters, to temporal regularization and to
“average dwell-time” perturbations.

B. Slowly Varying, Weakly Jumping Parameters

Consider a parameterized hybrid system

H :=


[

ξ̇
ṗ

]
∈

[
F (ξ, p)

0

]
for

[
ξ
p

]
∈ C[

ξ+

p+

]
∈

[
G(ξ, p)

p

]
for

[
ξ
p

]
∈ D

(18)

where the state is taken to be (ξ, p) belonging to the open state
spaceO under the hybrid basic conditions. Suppose that this sys-
tem has the compact set A preasymptotically stable with basin
of preattraction Op

A. Also, assume that for each (ξ, p) ∈ D and
each η ∈ G(ξ, p), we have (η, p) ∈ C ∪ D. Since A is asymp-
totically stable and p does not change along solutions, the pa-
rameter vector p is restricted to a compact set. One could easily
write down a converse theorem for preasymptotic stability for
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the system (18) and use the resulting Lyapunov function to es-
tablish robustness to slow variations in the parameter during
flows and small jumps in the parameter during jumps of the
hybrid system. In fact, robustness can also be established for
small jumps in the parameter that are not synchronized with
jumps of the hybrid system. This observation is relevant, for
example, for parameter jumps in differential equations. We es-
tablish this extra robustness as follows.

Let δ ≥ 0 and τ ∗ > 0 and consider the related system
Hδ,τ ∗ := (F̃ , G̃, C̃, D̃) with the state x = (ξ, p, τ) and the
state space O × R, where C̃ := C × R≥0 , D̃ := (D × R≥0) ∪
((C ∪ D) × R≥τ ∗)

F̃ (x) :=

 cF (ξ, p)
δB

1 − τ + τ ∗



G̃(x) :=


G̃1(x) for x ∈ D × [0, τ ∗)

G̃1(x)
⋃

G̃2(x) for x ∈ D × R≥τ ∗

G̃2(x) for x ∈ (C\D) × R≥τ ∗

where

G̃1(x) =

G(ξ, p)
p + δB

τ

 , G̃2(x) =

 ξ

p + δB

0

 .

When δ = 0, the parameter p is constant along solutions, and
all of the solutions of (18) are enabled as the (ξ, p) component
of the solution. The new enabled solutions are those containing
“jumps” via G̃2(·), but these jumps are separated by a flow with
at least ln ((1 + τ ∗)/τ ∗) seconds, since that is the amount of
time required for τ̇ = 1 − τ + τ ∗ to increase from 0 to τ ∗. So,
H0,τ ∗ has the set Ã := A× [0, 1 + τ ∗] preasymptotically stable
with basin of preattraction Õp

A := Op
A × R.

When δ > 0, the parameter p is allowed to change slowly
during flows, it is allowed to make small jumps when the hybrid
system would be jumping anyway, and it is also allowed to make
additional jumps when the timer τ reaches or exceeds the value
τ ∗. Nevertheless, the set Ã is semiglobally (with respect to Õp

A)
practically preasymptotically stable with respect to δ.

C. Temporal Regularization

Zeno behavior is a frequently encountered phenomenon in
hybrid or switched control systems (for example, see a simpli-
fied version of the hybrid controller for nonholonomic integrator
in [9, Sec. 2]). To eliminate Zeno behavior in applications, tem-
poral regularization (i.e., to force the interval between jumps
to be at least some amount of time) is an effective recipe. In
this section, we show how to recover the result on semiglobal
practical robustness under temporal regularization, reported in
[11, Example 6.8], via converse Lyapunov theorems.

Suppose one is given a hybrid system H := (F,G,C,D) on
the open state space O, where F (ξ) is nonempty and convex for
all ξ ∈ O, and suppose that the compact set A is preasymptoti-
cally stable with basin of preattraction Op

A. Now let δ ≥ 0 and
consider a related system Hδ := (F̃ , G̃, Cδ ,Dδ ) with the state

x := (ξ, τ) and the state space Õ := O × R, where

F̃ (x) := F (ξ) × {1 − τ}

G̃(x) := G(ξ) × {0}
Cδ := (C × R≥0) ∪ (O × [0, δ])

Dδ := D × [δ,∞) .

When δ = 0, flowing is possible only if ξ ∈ C, since τ̇ = 1 − τ
and the flow set for τ when ξ /∈ C is the point τ = 0. Thus, the ξ
component of the solution with δ = 0 matches the solution ofH,
and the τ component converges to the interval [0, 1]. So, the sys-
tem H0 has the compact set Ã := A× [0, 1] preasymptotically
stable with basin of preattraction Õp

A := Op
A × R.

When δ > 0, in each hybrid time domain of each solution,
each time interval is at least δ seconds long, since τ̇ ≤ 1 for
all τ ∈ [0, δ]. In particular, Zeno solutions, if there were some,
have been eliminated. Nevertheless, the set Ã is semiglobally
(with respect to Õp

A) practically preasymptotically stable with
respect to δ. This fact follows from the discussion of the previous
section and the fact that the sets Cδ and Dδ are contained in the
sets Cρ and Dρ , respectively, that were defined in (14) and
(15), respectively, when we set ρ = δ. It also uses the fact that
G̃(D0) ⊂ O × {0} ⊂ C0 .

D. Average Dwell Time

Consider the differential inclusion ξ̇ ∈ F (ξ) for ξ ∈ C, with
open state space O where the state ξ may contain logical
modes that remain constant. Suppose that the compact set A is
preasymptotically stable with basin of preattraction Op

A and that
we are interested in injecting jumps, on occasion, through a jump
inclusion ξ+ ∈ G(ξ) for ξ ∈ D while maintaining (semiglobal
practical) preasymptotic stability. In order to achieve this goal,
we suppose

G(A ∩ D) ⊂ A, G(Op
A ∩ D) ⊂ Op

A . (19)

Let δ ≥ 0 and let N be a positive integer and consider a related
system Hδ,N := (F̃ , G̃, C̃, D̃) with the state x = (ξ, τ) and the
state space Õ := Õ × R, where

F̃ (x) := F (ξ) × ηδ (τ), C̃ := C × [0, N ]

G̃(x) := G(ξ) × {τ − 1}, D̃ := D × [1, N ]

where

ηδ (τ) :=
{

δ for τ ∈ [0, N)

[0, δ] for τ = N .

In the special case where δ = 0, at most N jumps are allowed
in the time domain of a solution. Using (19), these jumps do
not destroy preasymptotic stability of A or that its basin of
preattraction is Op

A for the ξ component of the solution. For
the composite system, we have that the set Ã := A× [0, N ]
is preasymptotically stable with basin of preattraction Õp

A :=
Op

A × R.
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When δ>0, the number of jumps may be infinite, but each
solution’s time domain must satisfy

j − i ≤δ(t − s) + N

∀(t, j),(s, i) ∈ dom φ with t + j > s + i . (20)

(In fact, it can be shown that every hybrid time domain
that satisfies this constraint can be generated with the system
mentioned earlier using the appropriate initial condition for τ .
See Proposition 1.1 in Appendix.) The condition (20) corre-
sponds to the notion of “average dwell time,” as introduced
in [15]. We conclude that the system Hδ,N has the set Ã
semiglobally (with respect to Õp

A) practically preasymptotically
stable with respect to δ. In other words, preasymptotic stabil-
ity in differential inclusions is robust, in a semiglobal practical
sense, to “average dwell-time” jump perturbations.

E. Reverse Average Dwell Time

Consider a jump inclusion ξ+ ∈ G(ξ) for ξ ∈ D with open
state space O. Suppose that the compact set A is preasymp-
totically stable with basin of preattraction Op

A, and that we are
interested in injecting flows, on occasion, through a flow inclu-
sion ξ̇ ∈ F (ξ) for ξ ∈ C while maintaining (semiglobal prac-
tical) preasymptotic stability. In order to achieve this goal, we
suppose, for the flow inclusion, that the sets A ∩ C and Op

A ∩ C
are forward invariant and that trajectories are bounded with re-
spect to Op

A on compact time intervals. Let δ ≥ 0, λ > 0, and
consider a related system Hδ,λ := (F̃ , G̃, C̃, D̃) with the state

x = (ξ, τ) and the state space Õ := Õ × R, where

F̃ (x) := F (ξ) × {1} , C̃ := C × [0, λ]

G̃(x) := G(ξ) × {max{0, τ − δ}}, D̃ := D × [0, λ] .

In the special case where δ = 0, at most, λ seconds of flow are
allowed in the time domain of a solution. Due to the assumptions
on the flow, this does not destroy preasymptotic stability of A
or that its basin of preattraction is Op

A for the ξ component
of the solution. For the composite system, we have that the
set Ã := A× [0, λ] is preasymptotically stable with basin of
preattraction given by Õp

A := Op
A × R.

When δ>0, the flow time may be infinite, but each solution’s
time domain must satisfy

t − s ≤ δ(j − i) + λ

∀(t, j), (s, i) ∈ dom φ with t + j > s + i. (21)

(In fact, it can be shown that every hybrid time domain that satis-
fies this constraint can be generated with the system mentioned
before using the appropriate initial condition for τ . See Propo-
sition 1.2 in Appendix.) The condition (21) corresponds to the
notion of “reverse average dwell time,” introduced in [14]. We
conclude that the system Hδ,λ has the set Ã semiglobally (with
respect to Õp

A) practically preasymptotically stable with respect
to δ. In other words, preasymptotic stability in jump inclusions
is robust, in a semiglobal practical sense, to “reverse average
dwell-time” flow perturbations.

Fig. 2. Flow and jump sets for Example 6.1.

VI. CAN THE HYBRID BASIC CONDITIONS BE RELAXED?

Results for purely continuous-time systems (corresponding
to C = O and D = ∅) and purely discrete-time systems (C = ∅
and D = O) show that existence of smooth Lyapunov functions
requires F and G being outer semicontinuous; see, for exam-
ple, [21] for continuous-time systems, and [20] and also [35]
for discrete-time systems. Here, in Example 6.1, respectively,
6.2, we illustrate that, in general, (relative) closedness of C, re-
spectively, D, cannot be omitted. For continuous-time systems,
under a stronger continuity assumption—that F is a locally
Lipschitz set-valued map—convexity of the values of F need
not be present in order to guarantee the existence of smooth
Lyapunov functions (see [33, Th. 2]). The key behind this is a
classical relaxation theorem for differential inclusions. For hy-
brid systems, this is no longer the case—Example 6.3 shows that
F needs to have convex values, unless other quite strong struc-
tural assumptions on the data are placed to enable relaxation
theorems for hybrid systems (see [3]).

Example 6.1: (Flow set not closed) Define D1 :={
x ∈ R

2 : x2
1 + x2

2 = 1
}

and the jump set

D :=D1 ∪
{
x ∈ R

2 : x1 ≥ 0, |x1 − 1| ≥ |x2 |
}

∪
{
x ∈ R

2 : x1 ≤ 0, |x1 + 1| ≥ |x2 |
}
.

Consider the following hybrid system with the state x =
(x1 , x2)� ∈ R

2 ẋ =
[

x2
−x1

]
=: F (x) for x ∈

(
R2\D

)
\D1 =: C

x+ = 0 =: G(x) for x ∈ D .

The flow set and jump set are depicted in Fig. 2. One can
verify that, for each initial condition, each solution is com-
plete and satisfies4 the bound |x(t, j)| ≤ e2π |x(0, 0)|e−t−j for
all (t, j) ∈ dom x. This is because flowing in D1 is not possible,
while flowing outside of D1 is possible until hitting the set D,

4We have chosen an example that does not admit a smooth Lyapunov function,
and yet, is asymptotically stable even when using the phrase “almost all t" in the
condition (S1) of a solution to a hybrid system. It would be simpler to construct
an example if “almost all t” were replaced by “all t.” Indeed, the distinction
is significant when the flow set is not closed, as in this example, whereas the
distinction does not affect solutions when the flow set is closed.
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which happens in no more than 2π seconds. Trajectories must
jump to the origin when hitting D since it is not possible to flow
through D. On the other hand, the hybrid system does not admit
a smooth Lyapunov function. Indeed, suppose there is one for
(R2 , F,G,C,D, | · |). Then, using (3) and continuity of∇V and
F , we infer that 〈∇V (x), F (x)〉 ≤ V (x) for all x ∈ C. Thus,
V is a smooth Lyapunov function for (R2 , F,G,C,D, | · |),
which, according to the implication 1⇒2 in Theorem 3.13, im-
plies that the origin of the hybrid system H̃ := (F,G,C,D) is
(pre)asymptotically stable. However, since C contains D1 , there
exists a complete solution that starts and remains in D1 on its
hybrid time domain R≥0 × {0}, which gives a contradiction.

Example 6.2: (Jump set not closed) Define C := (−∞, 1] and
consider the hybrid system{

ẋ = −x =: F (x) for x ∈ C

x+ = min {|x|1} =: G(x) for x ∈ R\C =: D .

One can verify that, for each initial condition, each solution is
complete and satisfies |x(t, j)| ≤ e|x(0, 0)|e−t−j for all (t, j) ∈
dom x. On the other hand, the hybrid system does not admit a
smooth Lyapunov function. To see this, suppose there is one for
(R, F,G,C,D, | · |). Then, using (4) and the continuity of V and
G, we infer that V (G(x)) ≤ e−1V (x) for all x ∈ D. Thus, V
is also a smooth Lyapunov function for (R, F,G,C,D, | · |),
which implies that the origin is asymptotically stable for
H̃ := (F,G,C,D) according to the implication 1⇒2 in
Theorem 3.13. However, since x+ = min {|x|, 1}, there exists a
complete solution that starts and remains at the value one on its
hybrid time domain {0} × Z≥0 , which gives a contradiction.

Example 6.3: (Nonconvex set-valued flow map) Let C :=
{(x1 , x2) ∈ R

2 : x1 = x2} and consider the hybrid system{
ẋ ∈

{[ 1
0

]
,

[ 0
1

]}
=: F (x) for x ∈ C

x+ = 0 =: G(x) for x ∈ R
2 =: D .

Solutions can only jump, and so, satisfy |x(t, j)| ≤ |x(0, 0)| ·
max {0, 1 − j} for all (t, j) ∈ dom x. On the other hand, the hy-
brid system does not admit a smooth Lyapunov function. To see
this, suppose there is one for (R2 , F,G,C,D, | · |). Then, using
Carathéodory’s Theorem [30, Th. 2.29] and (3), we infer that
maxf∈coF (x) 〈∇V (x), f〉 ≤ −V (x) for all x ∈ C. Therefore, V
is also a smooth Lyapunov function for (R2 , coF,G,C,D, | · |),
which implies that the origin is asymptotically stable for the new
hybrid system H̃ := (coF,G,C,D) according to the implica-
tion 1⇒2 in Theorem 3.13. However, we have

[ 0.5
0.5

]
∈ coF (x)

for all x ∈ C, which implies the existence of a complete so-
lution that starts and remains in C on its hybrid time domain
[0,∞) × {0}, but blows up, and hence, gives a contradiction.

We note that the asymptotic stability in the previous three
counterexamples is not robust (see the definition of robust sta-
bility in Section VII; also see [2] for detailed explanations).

VII. PROOF OF 2⇒1 IN THEOREM 3.13

We now prove the implication 2⇒1 in Theorem 3.13. First,
using generic robustness properties of global asymptotic stabil-
ity of compact sets and the results of [4], we establish a con-
verse Lyapunov theorem for globally asymptotically stable sets.

Second, we give some useful results on truncating hybrid sys-
tems. Third, we show how by augmenting a hybrid system, one
can pass from preasymptotic to asymptotic stability. Fourth, we
put all this together to complete the proof of Theorem 3.13.

A. Converse Lyapunov Result for Global Asymptotic Stability

Using some results of [11] and [4], we will now relate global
asymptotic stability with an open basin of attraction to the ex-
istence of smooth Lyapunov functions. Statements 1′) and 2′)
given after are counterparts of statements 1) and 2) of our main
result, Theorem 3.13.

Theorem 7.1: Suppose C ∪ D = O and A ⊂ O is compact.
Let ω be any proper indicator of A with respect to O. Then, the
following statements are equivalent:

1′) there exists a smooth Lyapunov function for
(O, F,G,C,D, ω) and

2′) the set A is globally asymptotically stable for H.
In particular, if C ∪ D = O = R

n , then A is globally asymp-
totically stable for H if and only if there exists a smooth Lya-
punov function for (Rn , F,G,C,D, | · |A).

The goal of this section is to prove that statement 2′) implies
1′) in the previous result.

Definition 7.2: Let ω : O → R≥0 be continuous. The hybrid
system H is said to be KLL-stable with respect to ω on O if H
is forward complete on O, and there exists γ ∈ KLL such that,
for each x ∈ O, all solutions φ ∈ S(x) satisfy

ω(φ(t, j)) ≤ γ(ω(x), t, j) ∀(t, j) ∈ dom φ.

The following result is a consequence of [11, Th. 6.5]. It paral-
lels with known results for differential and difference inclusions
that satisfy the analogous basic conditions (for example, see
[33, Proposition 3] and [19, Proposition 7.2]), where basins of
attraction are automatically open.

Proposition 7.3: Let the compact set A ⊂ O be asymptoti-
cally stable for the system H with the basin of attraction equal
O. Then, for each proper indicator ω of A with respect to O,
the system H is KLL-stable with respect to ω on O.

We now describe different robustness properties of KLL-
stability. In what follows, by an admissible perturbation radius
on O}, we mean any continuous σ : O → R≥0 such that x +
σ(x)B ⊂ O for all x ∈ O. For each such function σ, we define
the σ-perturbation of H, denoted by Hσ , as the hybrid system
on O with the data

Fσ (x) := coF ((x + σ(x)B) ∩ C) + σ(x)B ∀x ∈ O (22)

Gσ (x) := {v ∈ O : v ∈ g + σ(g)B

g ∈ G((x + σ(x)B) ∩ D)} ∀x ∈ O (23)

Cσ := {x ∈ O : (x + σ(x)B) ∩ C �= ∅} (24)

Dσ := {x ∈ O : (x + σ(x)B) ∩ D �= ∅} (25)

Hσ :=
{

ẋ ∈ Fσ (x) for x ∈ Cσ

x+ ∈ Gσ (x) for x ∈ Dσ .
(26)

We write Sσ (x) for the set of maximal solutions to Hσ starting
at x.
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Definition 7.4: Let A ⊂ O be compact and ω be a proper
indicator for A on O. The system H is said to be robustly KLL-
stable with respect to ω on O if there exists an admissible
perturbation radius σ : O → R≥0 that is positive on O \ A and
such that Hσ is KLL-stable with respect to ω on O.

Such robustness was shown to be equivalent to the existence
of a desired smooth Lyapunov function in [4]. More precisely,
the main result of [4], specialized to the case of a single measure
which is a proper indicator, says the following.

Theorem 7.5: Assume C ∪ D = O. Let A ⊂ O be compact
and let ω be a proper indicator of A with respect to O. Then,
the following are equivalent:

1) there exists a smooth Lyapunov function for
(O, F,G,C,D, ω) and

2) H is robustly KLL-stable with respect to ω on O.
Hence, to prove that there exists the desired smooth Lyapunov

function, we are going to show that the KLL-stability is auto-
matically robust for the hybrid systems under consideration. A
partial result in this direction was given in [11, Th. 6.6], we state
it here as Proposition 7.7. First, we need another definition.

Definition 7.6: Let A ⊂ O be compact and ω be a proper
indicator for A on O. The system H is said to be semiglobally
practically robustly KLL- stable with respect to ω on O, if for
any admissible perturbation radius σ, there exists γ ∈ KLL such
that the following holds: for each ε > 0 and each compact set
K ⊂ O, there exists δ ∈ (0, 1) such that, for each x ∈ K, each
φ ∈ Sδσ (x) [we write Sδσ (x) for the set of maximal solutions to
the δσ-perturbed hybrid system Hδσ starting at x] is complete
and satisfies

ω(φ(t, j)) ≤ γ(ω(x), t, j) + ε ∀(t, j) ∈ dom φ . (27)

Proposition 7.7: Suppose the compact set A ⊂ O is asymp-
totically stable with the basin of attraction equal to O for H,
and the measure ω is a proper indicator for A on O. Then, H is
semiglobally practically robustly KLL-stable with respect to ω
on O.

A key step to establishing the main result of this paper is the
following lemma, which shows that semiglobal practical robust
KLL-stability implies robust KLL-stability.

Lemma 7.8: Let A ⊂ O be compact and ω be a proper in-
dicator for A on O. If H is semiglobally practically robustly
KLL-stable with respect to ω on O, then H is robustly KLL-
stable with respect to ω on O.

Proof: Let σ be any admissible perturbation radius and γ be
the KLL function coming from Definition 7.6. Pick any family
of positive numbers {rn}n∈Z such that rn+1 ≥ 4γ(rn , 0, 0),
so, in particular, rn+1 ≥ 4rn , limn→−∞ rn = 0, limn→∞ rn =
∞. For each n ∈ Z, semiglobal practical robustness of KLL
stability implies that there exists δn ∈ (0, 1) such that each φ ∈
Sδn σ with ω(φ(0, 0)) ≤ rn satisfies

ω(φ(t, j)) ≤ γ(ω(φ(0, 0)), t, j) +
rn−1

2
∀(t, j) ∈ dom φ.

(28)
From (28), we infer that, for each n ∈ Z, each φ ∈ Sδn σ with
ω(φ(0, 0)) ≤ rn satisfies

ω(φ(t, j)) ≤ rn+1

2
∀(t, j) ∈ dom φ (29)

and that there exists τn > 0 such that, each φ ∈ Sδn σ with
ω(φ(0, 0)) ≤ rn satisfies

ω(φ(t, j)) ≤ rn−1 ∀(t, j) ∈ dom φ with t + j ≥ τn .
(30)

Now, find any continuous function δ : O → [0,∞) that is posi-
tive on O \ A and such that

δ(x) ≤ min{δn−1 , δn}σ(x) when rn−1 ≤ ω(x) ≤ rn . (31)

Note that δ has to be an admissible perturbation radius. There-
fore, for each n ∈ Z, each φ ∈ Sδ with ω(φ(0, 0)) ≤ rn satisfies

ω(φ(t, j)) ≤ rn+1

2
∀(t, j) ∈ dom φ (32)

which implies that A is stable for Hδ . To see (32), let φ be a
solution to Hδ with ω(φ(0, 0)) ≤ rn . If rn−1 ≤ ω(φ(t, j)) for
all (t, j) ∈ dom φ ∩ [0, T ] × {0, 1, . . . , J}, then by the choice
of δ, φ is a solution to Hδn σ and ω(φ(T, J)) ≤ rn+1/2 by (29).
If ω(φ(T, J)) < rn−1 for some (T, J) ∈ dom φ, then one can
consider φ′(t, j) := φ(T + t, J + j), which is also a solution to
Hδ , and for which ω(φ′(0, 0)) ≤ rn−1 .

Also then, for each n ∈ Z, for any φ ∈ Sδσ with ω(φ(0, 0)) ≤
rn , there exists (t, j) ∈ dom φ, t + j ≤ τn so that ω(φ(t, j)) ≤
rn−1 . Indeed, either rn−1 ≤ ω(φ(t, j)) for all (t, j) ∈ dom φ,
t + j ≤ τn , in which case, by (30), ω(φ(T, J)) = rn−1 for
(T, J) ∈ dom φ with T + J = τn , or ω(φ(t, j)) < rn−1 for
some (t, j) ∈ dom φ with t + j < τn . The convergence prop-
erty just shown, in light of stability, implies that each solution
to Hδ converges to A (in fact uniformly).

Since C ∪ D = O, we also have Cδ ∪ Dδ = O, and hence,
each maximal solution to Hδ is either complete or eventually
leaves any compact subset of O; see [11, Proposition 2.4]. The
latter option is impossible in light of (32), and thus, Hδ is for-
ward complete. We have shown earlier that A is asymptotically
stable for Hδ , with the basin of attraction equal to O. Now,
Proposition 7.3 implies that Hδ is KLL-stable with respect to
ω. �

An immediate consequence of the result just proved is that
stability of compact attractors with open basins of attraction is
automatically robust.

Theorem 7.9: Suppose that the compact set A ⊂ O is asymp-
totically stable with the basin of attraction OA = O for H, and
the measure ω is a proper indicator for A on O. Then, H is
robustly KLL-stable with respect to ω on O.

Now, combining Theorems 7.5 and 7.9 gives the implication
(2′)⇒(1′) in Theorem 7.1.

B. Truncations of Hybrid Systems

To pass from global results and Lyapunov functions on the
open OA to local results on invariant subsets of OA, we will
need to consider truncations of hybrid systems. Suppose that
O1 ⊂ C ∪ D is open andH is forward invariant onO1 . Consider
the system H|O1 , which is a “truncation” of H to O1 , with the
data (F1 , G1 , C1 ,D1) defined as

F1 := F |O1 , C1 := C ∩ O1 ,

G1 : = G|O1 , D1 := D ∩ O1 . (33)
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Since O1 ⊂ C ∪ D, we have (C ∩ O1) ∪ (D ∩ O1) = O1 . For-
ward invariance implies that G(x) ⊂ O1 for all x ∈ D ∩ O1 .
This guarantees that the basic hybrid conditions hold for H|O1 .

Proposition 7.10: Let O1 ⊂ O be open and assume that
G(x) ⊂ O1 for all x ∈ D ∩ O1 . Then, the system H|O1 with
state space O1 and data in (33) satisfies the hybrid basic
conditions.

Proof: For (SA1), note that C = C ∩ O, and hence, C1 =
C ∩ O1 , which shows that C1 is relatively closed in O1 . Simi-
larly, for D1 , (SA2) is obvious, and so is (SA3) in light of the
assumption that G(x) ⊂ O1 for x ∈ O1 . �

We add that ifA is locally asymptotically stable for the system
H, then it is locally asymptotically stable for H|O1 , and forward
invariance of O1 for H implies that the basin of attraction of A
forH|O1 equalsO1 . In other words,A is globally asymptotically
stable for H|O1 . Preasymptotic stability carries over in the same
manner, as we show later.

Lemma 7.11: Suppose that a compact setA ⊂ O is preasymp-
totically stable for H. Let O1 ⊂ O be an open set that contains
A and is forward invariant for H. Then, A is preasymptotically
stable for the truncation of H to O1 , that is, for the system H|O1 ,
given on the state spaceO1 by the data (F1 , G1 , C1 ,D1) defined
in (33).

Proof: The only thing to verify is whether a maximal solution
φ to H|O1 that is not complete is bounded with respect to O1 .
As in Proposition 7.10, one can check that H|O1 satisfies the
basic conditions. Thus, the maximal and not complete solution
φ has a closed, hence compact, domain dom φ. This solution is
also a solution to H, and so, φ(t, j) ∈ O1 for all (t, j) ∈ dom φ,
by the invariance of O1 for H. But, since dom φ is compact, its
range is compact too, and a subset of O1 . Thus, φ is bounded
with respect to O1 .

C. From Preasymptotic to Asymptotic Stability

The key idea behind passing from preasymptotic stability,
and also, from a relatively open to an open basin of attraction is
captured in the following lemma.

Lemma 7.12: Suppose that A is preasymptotically stable for
H with basin of preattraction Op

A. Consider an augmented sys-
tem H∗ = (F,G∗, C,D∗) where

D∗ = O, G∗(x) =
{

G(x) ∪ A for x ∈ D

A for x ∈ O \ D.

Then, A is asymptotically stable for H∗ with basin of attraction
OA = Op

A. Furthermore, the set Op
A is open in O for H.

Proof: Since H = (F,G,C,D) satisfies hybrid basic con-
ditions, so does its augmented system H∗ = (F,G∗, C,D∗).
Next, we show the stability of A for H∗. Pick any ε > 0 and
take δ > 0 from the prestability of A for H. Take any solution
ψ to H∗ with ψ(0, 0) ∈ A + δB. If (T, J) ∈ dom ψ is such that
for all (t, j) ∈ dom ψ with t + j ≤ T + J , we have φ(t, j) �∈ A,
then ψ is a solution to H on dom ψ ∩ ([0, T ] × {0, 1, . . . , J}),
and as such, it must satisfy ψ(t, j) ∈ A + εB for all (t, j) ∈
dom ψ ∩ ([0, T ] × {0, 1, . . . , J}) by stability of A for H. If
(T, J) ∈ dom ψ is such that ψ(T, J) ∈ A, then ψ(t, j) ∈ A for
all (t, j) ∈ dom ψ with T + J ≤ t + j.

Now, we show the attractivity of A for H∗. Pick ε > 0 so
that A + εB ⊂ O and take δ1 > 0 from prestability of A for
H∗. Pick δ > 0 from preattractivity of A for H and such that
δ < δ1 . Any maximal solution ψ to H∗ with ψ(0, 0) ∈ A + δB

is then bounded with respect to O (by stability and the choice of
ε), and thus, is complete. This comes from C ∪ D∗ = O and [11,
Proposition 2.4]. If ψ is a solution to H, then by preattractivity
of A for H, ψ(t, j) → A as t + j → ∞. If ψ is not a solution to
H, then for some (T, J) ∈ dom ψ, we have ψ(T, J) ∈ A, and
then, ψ(t, j) ∈ A for all (t, j) ∈ dom ψ with T + J ≤ t + j,
and hence, ψ(t, j) → A as t + j → ∞.

Therefore, A is asymptotically stable for H∗. Let OA be the
basin of attraction for H∗. Next, we show that Op

A = OA. If
x ∈ OA, then any solution to H∗ from x is bounded (since any
of its completions converges to A), and, if it is complete, then
it converges to A. Since any solution to H is also a solution
to H∗, any solution to H from x is bounded, and converges
to A if it is also complete. Therefore, OA ⊂ Op

A. To see that
Op

A ⊂ OA, take any x ∈ Op
A, and any maximal solution ψ to

H∗ with ψ(0, 0) = x. As C ∪ D∗ = O, ψ is either complete
or “blows-up,” and so, is unbounded and not complete. If ψ
is also a solution to H, then it must be a maximal solution to
H. Now, it cannot be unbounded, and thus, must be complete.
As such, it converges to A. If ψ is not a solution to H, then
for some (T, J) ∈ dom ψ, ψ(T, J) ∈ A, and then, ψ(t, j) ∈ A
for all (t, j) ∈ dom ψ with T + J ≤ t + j. Either way, ψ is
complete and converges to A. Therefore, Op

A ⊂ OA.
Finally, since C ∪ D∗ = O, the set OA is open in O by [11,

Proposition 6.4]. Thus, sinceOp
A = OA, the setOp

A is open inO.
Corollary 7.13: Under the assumptions of Lemma 7.12, if

additionally Op
A = O, then OA, the basin of attraction of A for

H∗, equals O.

D. Proof of (B)⇒(A) in Theorem 3.13

Proof: By Lemma 7.11, A is preasymptotically stable for
H|O1 , given on O1 by (F1 ,G1 ,C1 ,D1) as in (33). By invari-
ance of O1 for H and Proposition 7.10, H|O1 satisfies the
basic conditions. Since the basin of preattraction of A for H
contains O1 , the basin of preattraction of A for H|O1 is O1 .
Now, consider the extension H|∗O1

of H|O1 , as described in
Lemma 7.12. By Lemma 7.12, A is asymptotically stable for
H|∗O1

, and its basin of attraction, by Corollary 7.13, is O1 . In
other words, A is globally asymptotically stable for H|∗O1

. Now,
Theorem 7.1 implies the existence of a Lyapunov function for
(O1 , F1 , G

∗
1 , C1 ,D

∗
1 , ω). Such a function is also the desired

Lyapunov function for (O1 , F,G,C,D, ω). �

VIII. REMAINING TECHNICAL DETAILS

We now prove Propositions 3.8, 3.9, and Theorem 3.14.
For the first two proofs, the augmented system as used in
Lemma 7.12 again proves very useful.

Proof: (Proposition 3.8) Consider H∗ as in Lemma 7.12.
By assumptions, the set A is forward invariant for H∗. It is
also uniformly attractive, in fact, given δ > 0, any ε > 0, and
T > 0 as in the assumptions, each maximal solution φ to H∗

with φ(0, 0) ∈ A + δB satisfies φ(t, j) ∈ A + εB for all (t, j) ∈



746 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 3, APRIL 2008

dom φ with t + j ≥ T + 1. Then, [11, Proposition 6.1] gives
asymptotic stability of A for H∗. This guarantees that A is
preasymptotically stable for H. �

Proof: (Proposition 3.9) From the properties of K and T ,
we obtain that R∞(K)=R≤T (K). Now, consider H∗ as in
Lemma 7.12 with K in place of A, and denote by R∗

≤T (K) the
reachable set from K in finite time T for H∗. Directly from
the definitions, R∗

≤T (K) = R≤T (K). Since K0 is compact and
containsR∞(K) + δB, all solutions toH∗ from K are bounded.
Thus, since for H∗, the union of the flow set and the jump set
equals O, the maximal solutions from K are complete; see [11,
Proposition 2.4]. So, H∗ is forward complete at each x ∈ K,
and then, [11, Corollary 4.7] says that R∗

≤T (K) is compact.
Thus, R∞(K) is compact. By definition, it is forward invariant.
Also, by construction, it is uniformly preattractive. The result
now follows from Proposition 3.8. �

Proof: (Theorem 3.14) That Op
A is open in O is shown in

Lemma 7.12. Let φ be any solution to H with φ(0, 0) ∈ Op
A.

For each (t, j) ∈ dom φ, there does not exist an unbounded or
a complete but not convergent to A solution to H starting at
φ(t, j), i.e., φ(t, j) ∈ Op

A; otherwise, concatenation of such a
solution and φ would contradict φ(0, 0) ∈ Op

A. Therefore, the
set Op

A is forward invariant for H. Finally, the implication 2⇒1
in Theorem 3.13 gives the existence of a smooth Lyapunov
function for (Op

A, F,G,C,D, ω). �

IX. ROBUST KLL STABILITY WITH RESPECT TO TWO

MEASURES: A SPECIAL CASE

In the paper [4], the notion of KLL stability with respect
to two measures was used, and it was shown that robustness
of KLL stability was equivalent to the existence of a smooth
Lyapunov function that could be used to establish KLL stability
with respect to the two measures. In general, it is not known
when KLL stability with respect to two measures is robust.
This paper has shown that it is robust when the two measures
are the same and correspond to a proper indicator for a compact
set. We can use this result to give some other related cases where
KLL stability with respect to two measures is robust, including
a case that covers the temperature control example reported
in [4]. The following definition is a slight generalization of the
corresponding definition in [4]. In particular, it incorporates the
notion of “pre” stability.

Definition 9.1: Let the hybrid systemH = (F,G,C,D), with
open state-spaceO, and two continuous functions ω1 , ω2 : O →
R≥0 be given. The system H is said to be KLL prestable with
respect to (ω1 , ω2) if there exists γ ∈ KLL such that, for each
x ∈ O and each φ ∈ S(x)

ω1(φ(t, j)) ≤ γ(ω2(x), t, j) ∀(t, j) ∈ dom φ (34)

and if φ is not complete, then φ is bounded with respect to O.
We now make our assumptions explicit.
Assumption 9.2: The system H is KLL prestable with respect

to (ω1 , ω2), and the set

A :=
{

x ∈ O : sup
φ∈S(x),(t,j )∈domφ

ω1(φ(t, j)) = 0
}

is compact and preasymptotically stable with basin of preattrac-
tion O.

In Assumption 9.2, we observe from the forward invariance
ofA and Proposition 3.8 that uniform preattractivity is sufficient
for preasymptotic stability. In particular, one way to guarantee
preasymptotic stability would be for all trajectories starting near
A to enterA in finite time. This happens for the temperature con-
trol system described in [4]. Also, note that KLL-prestability
does not necessarily imply prestability or preattractivity un-
less extra conditions (for example, on growth of ω1) are as-
sumed. However, due to (34), preasymptotic stability of A is
reasonable.

It is not difficult to see that the augmented system described
in Lemma 7.12 would be KLL stable with respect to (ω1 , ω2)
on O, in the sense defined in [4]. Moreover, for this augmented
system, the set A would be asymptotically stable with basin
of attraction equal to O. Thus, according to the main result
of this paper, for function ω that was a proper indicator for
A on O, there would exist a smooth Lyapunov function for
(O, F,G,C,D, ω). Now, by the definition of the setA, it follows
that there exists α̃1 ∈ K∞ such that α̃1(ω1(x)) ≤ ω(x) for all
x ∈ O.

The other assumption we make is the following.
Assumption 9.3: The function ω2 is proper on O.
This assumption is satisfied for the temperature control ex-

ample in [4]. With this assumption, it follows that there exists
α̃2 ∈ K∞ such that ω(x) ≤ α̃2(ω2(x)) for all x ∈ O.

The preceding discussion can be summarized as follows.
Theorem 9.4: Under Assumptions 9.2 and 9.3, there exists a

smooth function V : O → R≥0 and class-K∞ function κ1 and
κ2 such that

κ1(ω1(x)) ≤ V (x) ≤ κ2(ω2(x)) ∀x ∈ O
max

f∈F (x)
〈∇V (x), f〉 ≤ −V (x) ∀x ∈ C

max
g∈G(x)

V (g) ≤ e−1V (x) ∀x ∈ D .

The main result of [4] now gives that the assumedKLL stabil-
ity with respect to two measures (technically, for the augmented
system in Lemma 7.12) is robust in the sense defined in [4].

X. CONCLUSION

Hybrid systems with preasymptotically stable compact sets
admit smooth Lyapunov functions. The key to establishing this
property is the fact that preasymptotic stability is robust. Smooth
Lyapunov functions are equivalent to robustness and are a con-
venient tool for encoding robustness. We illustrated this for
several classes of systems, including those subject to slowly
varying, weakly jumping parameters, to temporal regularization,
to jumps inserted under an average dwell-time condition, and
to flows inserted under a reverse average dwell-time condition.
Hopefully, converse Lyapunov theorems for hybrid systems will
lead to a better understanding of robustness in hybrid control
systems and to additional insights into robust stabilization by
hybrid feedback.
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APPENDIX

DWELL-TIME CONDITIONS PRODUCED BY HYBRID SYSTEMS

Proposition 1.1: Let δ ≥ 0 and let N be a positive integer. A
hybrid time domain E satisfies

j − i ≤ δ(t − s) + N

∀(t, j), (s, i) ∈ E with t + j > s + i (35)

if and only if E = dom τ for some solution τ to the hybrid
system {

τ̇ ∈ ηδ (τ) for τ ∈ C := [0, N ]

τ+ = τ − 1 for τ ∈ D := [1, N ]
(36)

where

ηδ (τ) :=
{

δ for τ ∈ [0, N)

[0, δ] for τ = N.

Proof: We observe that the interval [0, N ] is forward invari-
ant for (36). Suppose τ is a solution to (36). Then, for each
(s, i), (t, j) ∈ dom τ with t + j > s + i

0 ≤ τ(t, j)

≤ τ(s, i) + δ(t − s) − (j − i)

≤ N + δ(t − s) − (j − i) .

Rearranging the previous inequality gives (35). On the other
hand, suppose that a hybrid time domain E satisfies (35).
Then, take a solution τ to (36) with τ(0, 0) = N to track
the hybrid time domain E by flowing or jumping as appro-
priate. This is possible unless there is a jump in E, at time
(ti+1 , i), such that τ(ti+1 , i) < 1. Suppose that this happens.
Since τ = N is an equilibrium point of the flow of the hy-
brid system, without loss of generality, we can assume that
(0, 1) ∈ E and that τ(t, j) < N for all (t, j) ∈ dom τ satisfy-
ing ti+1 + i ≥ t + j > 0. Because of this, we have

1 > τ(ti+1 , i) = τ(0, 0) + δti+1 − i = N + δti+1 − i

i.e., i + 1 > δti+1 + N . This implies that E does not satisfy
(37), which is a contradiction. �

Proposition 1.2: Let δ ≥ 0 and λ > 0. A hybrid time domain
E satisfies

t − s ≤ δ(j − i) + λ

∀(t, j), (s, i) ∈ E with t + j > s + i (37)

if and only if E = dom τ for some solution τ to the hybrid
system{

τ̇ = 1 for τ ∈ C := [0, λ]

τ+ = max {0, τ − δ} for τ ∈ D := [0, λ].
(38)

Proof: We observe that the interval [0, λ] is forward invari-
ant for (38). Suppose τ is a solution to (38). Then, for each
(s, i), (t, j) ∈ dom τ with t + j > s + i

λ ≥ τ(t, j) ≥ τ(s, i) + (t − s) − δ(j − i)

≥ (t − s) − δ(j − i).

Rearranging the previous inequality gives (37). On the other
hand, suppose that a hybrid time domain E satisfies (37). Then,
take a solution τ to (38) with τ(0, 0) = 0 to track the hybrid
time domain E by flowing or jumping as appropriate. This
is possible unless there exist (t, j), (s, i) ∈ E with t > s such
that τ(s, i) = λ. Suppose that this happens. Since τ = 0 is an
equilibrium of the jump map of the hybrid system, without loss
of generality, we can assume that (ε, 0) ∈ E for some ε > 0 and
that τ(t, j) > 0 for all (t, j) ∈ dom τ with s + i ≥ t + j > 0.
This implies

λ = τ(s, i) = τ(0, 0) + s − δi = s − δi < t − δi

which contradicts that E satisfies (37). �
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