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Abstract. Optimal control problems with convex costs, for which Hamiltonians have Lips-
chitz continuous gradients, are considered. Examples of such problems, including extensions of the
linear-quadratic regulator with hard and possibly state-dependent control constraints, and piecewise
linear-quadratic penalties are given. Lipschitz continuous differentiability and strong convexity of the
terminal cost are shown to be inherited by the value function, leading to Lipschitz continuity of the
optimal feedback. With no regularity assumptions on the limiting problem, epi-convergence of costs,
which can be equivalently described by pointwise convergence of Hamiltonians, is shown to guar-
antee epi-convergence of value functions. Resulting schemes of approximating any concave-convex
Hamiltonian by continuously differentiable ones are displayed. Auxiliary results about existence and
stability of saddle points of quadratic functions over polyhedral sets are also proved. Tools used are
based on duality theory of convex and saddle functions.
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1. Introduction. Given a point (τ, ξ) ∈ (−∞, T ]×R
n, a terminal cost g : R

n �→
R and a Lagrangian L : R

2n �→ R, consider the generalized problem of Bolza:

P(τ, ξ) : minimize

∫ T

τ

L(x(t), ẋ(t)) dt + g(x(T )) subject to x(τ) = ξ,(1)

with the minimization carried out over all absolutely continuous arcs x : [τ, T ] �→
R

n. While it is well known that a smooth Lagrangian need not lead to a regular
(maximized) Hamiltonian, which is defined by

H(x, y) = sup
v∈Rn

{y · v − L(x, v)} ,(2)

it is less appreciated that nonsmooth and infinite-valued L may give rise to a smooth
H. We explore this fact here, focusing on problems with convex g and L, and with
Hamiltonians for which ∇H is Lipschitz continuous.

Optimal control problems with explicit linear dynamics, hard and possibly state-
dependent control constraints, and state and control penalties can be reformulated
in Bolza format; see Clarke [10] or Rockafellar [18]. In section 2 we show that a
broad range of optimal control problems, including various extensions of the classical
linear-quadratic regulator, can lead to a smooth Hamiltonian. This makes the results
of section 3 applicable to the control framework.
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Section 3 studies regularity of the value function V : (−∞, T ] × R
n �→ R, de-

fined as the optimal value in P(τ, ξ) parameterized by the initial condition. Lipschitz
continuity of ∇g and ∇H is shown to lead to Lipschitz ∇V ; explicit bounds on the
constants are given. We stress that no smoothness or even finiteness assumptions are
made on L. For comparison, in a nonconvex setting, if the method of characteris-
tics associated with the Hamilton–Jacobi equation has no shocks (in our setting, this
automatically holds; see Goebel [14]), the value function inherits continuous differen-
tiability from that of the terminal cost, under further regularity assumptions on L;
see Byrnes and Frankowska [7] and also Caroff and Frankowska [8]. We note that
while we work with continuously differentiable Hamiltonians, we do not require them
to be C2. This raises an obstacle to Riccati-like descriptions of V as given by Byrnes
[6] and Caroff and Frankowska [9] but allows for treatment of problems discussed in
section 2 (for those, hard constraints or piecewise linear-quadratic penalties exclude
C2 smoothness of the Hamiltonian).

Our interest in Lipschitz continuity of ∇V comes from the role the gradient plays
in constructing optimal feedback. With the regularity of H and V as just mentioned,
the adjoint variable to an optimal arc x(t) is just −∇V (t, x(t)), and the resulting
optimal feedback mapping is continuous and Lipschitz in the state variable. Conse-
quently, the classical differential equation tools and existence and uniqueness results
apply. This is not the case for the general convex but nonsmooth setting—there,
the resulting set-valued feedback may be highly irregular, even for piecewise linear-
quadratic costs; see Goebel [14].

In section 4 we show that regular Bolza problems—those with Lipschitz ∇g and
∇H—can approximate any convex problem fitting our mild growth conditions. The
approximations are explicit and, together with direct proofs in section 3, they should
yield insights to numerical implementation of the method of characteristics. The
approximations rely on a more general result concluding the convergence of value
functions, defined by any converging to g and L sequences of initial costs and La-
grangians. As the functions in question need not be finite, we rely on the concept of
epi-convergence. Its extensions to infinite dimensions, where various topologies have
to be considered, have been used to study control problems; see Buttazzo and Dal
Maso [5] and Briani [4]. These works, while not requiring full convexity, had stricter
growth assumptions and finite cost functions, and dealt, respectively, with conver-
gence of optimal solutions and pointwise convergence of value functions. Moreover,
methods used here are significantly different; we employ a dual problem leading to a
dual value function, as described by Rockafellar and Wolenski [27]. The symmetry
between the primal and dual problem, and the fact that epi-convergence is preserved
by convex conjugacy (vaguely speaking, the “lower half” of epi-convergence dualizes
to the “upper” and vice-versa), requires us to show just one side (the easier one) of
epi-convergence. A similar idea was employed by Joly and Thelin [17] in the study of
convex integral functionals; here we keep to a minimum the discussion of such issues,
preferring to work with functions on finite-dimensional spaces.

Some of our results are most conveniently handled with the tools related to conju-
gacy and epi/hypo-convergence of saddle functions; see, respectively, chapters 33–37
in Rockafellar [19], Attouch and Wets [2], and Attouch, Azé, and Wets [1]. We
present the necessary background in section 5. In particular, our results on finiteness
and differentiability of piecewise linear-quadratic Hamiltonians are closely related to
existence and uniqueness of saddle points of an auxiliary quadratic function defined
on a product of polyhedral sets. Such a function also appears as a Lagrangian in ex-
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tended linear-quadratic programming; see Rockafellar [25]. (In convex optimization,
Lagrangians are saddle functions used, in particular, to express optimality conditions.)

2. Extended piecewise linear-quadratic optimal control. In this section
we illustrate that control problems with constraints and nondifferentiable costs can
possess Hamiltonians with desirable smoothness properties. Let us start with the
following example.

Example 2.1 (separable smooth Hamiltonian). Suppose that L(x, v) = k(x) +
l(v), and l is a convex function. Then the Hamiltonian H(x, y) is differentiable and
∇H is (globally) Lipschitz continuous if and only if k has this property and l is
strongly convex (that is, v �→ l(v) − ρ‖v‖2 is convex for some ρ > 0). Indeed,
H(x, y) = −k(x) + l∗(y), where l∗(y) = supv {y · v − l(v)} is the convex function
conjugate to l. The statement about differentiability of l∗, and the bound (2ρ)−1

on its Lipschitz constant, can be found in [26, Proposition 12.60]. Strongly convex
functions include functions of the form l(v) = v · Pv for v ∈ C while l(v) = +∞
for v �∈ C, where P is a symmetric positive definite matrix and C is any convex set,
but the (piecewise) quadratic structure is not necessary. For example, the “barrier
function” l(v) = − log(1 − |v|) for v ∈ (−1, 1), l(v) = +∞ otherwise, is strongly
convex (note the nondifferentiability at the origin), we have l∗(y) = 0 for y ∈ [−1, 1],
l∗(y) = |y| − log |y| − 1 otherwise, and l∗ has a Lipschitz continuous gradient.

In the remainder of this section, we discuss control problems with explicit mention
of controls, dynamics, constraints, and penalties. Translating such problems to the
generalized format of Bolza (1) is possible; see Clarke [10] for a general exposition or
Rockafellar [18] for details in the convex case. This enables the translation of results
of sections 3 and 4 to the control setting. As finiteness of the Hamiltonian and of
the value function implies that an optimal arc x(·) has a bounded derivative—in the
control setting below, u(·) is bounded—the potential discrepancy between minimizing
over absolutely continuous arcs in P(τ, ξ) and over L2 controls in the linear-quadratic
regulator is avoided in most cases under discussion.

Separable Hamiltonians of Example 2.1, and their biaffine perturbations given by
H(x, y) = y ·Ax− k(x)+ l∗(y), appear, for example, in the linear-quadratic regulator
with control constraints of the type u(t) ∈ U . However, state-dependent constraints
u(t) ≤ Cx(t) + d or mixed control and state penalties call for the analysis of a more
general class of Hamiltonians.

Given vectors p, q; matrices A, B, C, D, P , Q; and sets U , V of appropriate
dimensions, consider the following control problem C(τ, ξ):

min

∫ T

τ

[
p · u(t) +

1

2
u(t) · Pu(t) + ρV,Q(q − Cx(t) −Du(t))

]
dt + g(x(T ))

s.t. ẋ(t) = Ax(t) + Bu(t), u(t) ∈ U a.e., x(τ) = ξ,

(3)

with the minimization carried out over all integrable controls u : [τ, T ] �→ R
k. The

convex and possibly infinite-valued penalty function ρV,Q(·) is given by

ρV,Q(s) = sup
v∈V

{
s · v − 1

2
v ·Qv

}
.(4)

The key assumptions, guaranteeing not only the convex structure of the problem, but
also the piecewise linear-quadratic structure of the resulting Hamiltonian, is stated
below. We recall that a set is polyhedral if it is the intersection of finitely many
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closed half-spaces; consequently, a polyhedral set is always closed and convex (but
not necessarily bounded).

Matrices P and Q are symmetric positive semidefinite.
Sets U and V are nonempty and polyhedral.

(5)

Such extended piecewise linear-quadratic optimal control format was proposed by
Rockafellar [22]. Therein, optimality conditions taking advantage of duality were
stated. Their minimax form (related to the structure of the Hamiltonian as out-
lined in Example 5.1 and the surrounding discussion) facilitates the use of various
primal-dual optimization methods to discretized problems; see Rockafellar and Zhu
[28], Wright [29], and Zhu [30].

Here, we begin by describing when the control problem (3) fits the convex duality
framework of Rockafellar and Wolenski [27], we call upon some of their results in
later sections. The Hamiltonian for C(τ, ξ) (see Rockafellar [23] or apply (2) to the
Lagrangian (11)) is

H(x, y) = y ·Ax + J∗(B∗y, Cx),(6)

where the function J∗, convex in a and concave in b, is given by

J∗(a, b) = sup
u∈U

inf
v∈V

{
a · u + b · v − p · u− 1

2
u · Pu + q · v +

1

2
v ·Qv + v ·Du

}
.(7)

Here and in what follows, B∗ denotes the transpose of B. The Hamiltonian (and the
Lagrangian (11)) are piecewise linear-quadratic: their effective domains are unions
of finitely many polyhedral sets, relative to each of which the functions are linear-
quadratic (Goebel [12]). Goebel and Rockafellar [15] showed that if a piecewise linear-
quadratic Hamiltonian is finite, the control problem fits the framework of [27]. A
particular consequence of such a structure of the Hamiltonian, shown in [15], is that
the knowledge of V (τ , ·) at any particular τ ∈ (−∞, T ] determines V (uniquely) for
all times τ ∈ (−∞, T ].

In our setting, the finiteness of J∗, which implies that of the Hamiltonian, is
described by the following result. For a given set S, the recession cone S∞ consists
of all z such that S + z ⊂ S, while for a cone K, the polar cone K∗ is {w | w · z ≤
0 for all z ∈ K}.

Theorem 2.2 (finiteness of J∗
). Assume that (5) holds. Then, the function J∗

is finite if and only if the following is satisfied:{
U∞ ∩ kerP ∩ (−D∗V ∞)∗ = {0},
V ∞ ∩ kerQ ∩ (DU∞)∗ = {0}.(8)

Above, (DU∞)∗ = {w | D∗w ∈ U∞∗} and (−D∗V ∞) = {z | − Dz ∈ V ∞∗},
this comes directly from the definitions. The proof of Theorem 2.2, as well as that
of Theorem 2.4, requires some notions of saddle function theory. We present them
and the proofs in section 5. Note that if D is the zero matrix (which excludes many
modeling options), the function J∗ is separable: J∗(a, b) = supu∈U

{
a · u− 1

2u · Pu
}
−

supv∈V

{
−b · v − 1

2v ·Qv
}
, and (8) reduce to known conditions on recession cones and

kernels, we mention them in the discussion preceding Example 3.8.
Corollary 2.3. Assume that (5) holds.
(a) If U is a bounded set, J∗ is finite if and only if V ∞ ∩ kerQ = {0} (and this

holds in particular when V is bounded or Q is positive definite).
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(b) When sets U and V are cones, J∗ is finite if and only if{
U ∩ kerP ∩ (−D∗V )∗ = {0},
V ∩ kerQ ∩ (DU)∗ = {0}.

Arguments of Example 2.1 imply that in the separable case, as described before
Corollary 2.3, positive definiteness of P and Q is equivalent to the differentiability
of J∗. Below, we give a sufficient condition for differentiability, applicable to cases
where D �= 0 and not requiring the positive definiteness of P and Q. A somewhat
extreme example, showing that this last property is not necessary, is as follows. For a
and b one-dimensional, consider J∗ with p = q = P = Q = 0, D = 1, and U = V = R.
Direct calculation shows that J∗(a, b) = ab.

Theorem 2.4 (differentiability of J∗
). Assume that the following condition holds:{

kerP ∩ [D∗(V ∞ ∩ −V ∞)]
⊥

= {0},
kerQ ∩ [D(U∞ ∩ −U∞)]

⊥
= {0}.

(9)

Then J∗ is differentiable and ∇J∗ is Lipschitz continuous.
Lipschitz continuity of ∇J∗, while guaranteed by the proof, is automatic in the

presence of differentiability of J∗. This is thanks to the piecewise linear-quadratic
structure; if J∗ is differentiable, then ∇J∗ is piecewise affine (and there is finitely
many pieces). The piecewise linear-quadratic structure furthermore implies that J∗

is not C2, unless it is in fact quadratic (and this excludes any hard constraints or
piecewise linear-quadratic penalties in the underlying problem).

In the remainder of this section, we illustrate the modeling capabilities of the
extended piecewise linear-quadratic control, and use Theorem 2.4 to conclude the
differentiability of the Hamiltonian for various extensions of the linear-quadratic reg-
ulator. Computational methods for such problems in discrete time are of great interest
in the engineering literature; see Bemporad et al. [3] and the references therein.

Given symmetric positive semidefinite matrices E and G and a symmetric and
positive definite F , this classical problem is as follows:

min

∫ T

τ

1

2
(x(t) · Ex(t) + u(t) · Fu(t)) dt +

1

2
x(T ) ·Gx(T ),

s.t. ẋ(t) = Ax(t) + Bu(t), x(τ) = ξ.

(10)

Minimization is carried out over all L2 controls u(·) on [τ, T ] (optimal controls turn out
to be bounded, and in fact continuous). The value function for (10) is V (τ, ξ) = 1

2ξ ·
S(τ)ξ, where the matrix S(·) solves the associated Riccati equation, the Hamiltonian
is quadratic, and the optimal feedback is linear in the state. Results of section 3 will
show that while constraints and penalties destroy the linear structure, the optimal
feedback may still be Lipschitz continuous. Here, we focus on the regularity of the
Hamiltonian.

The linear-quadratic regulator can of course be cast in the format (3), by taking

P = F, Q = I, U = R
k, V = R

n, C =
√
E, D = 0, p = 0, q = 0.

Indeed, we obtain ρV,Q(q −Cu−Dv) = supv{(−
√
Eu) · v − 1

2v · v} = 1
2u ·

√
E

∗√
Eu.

It can be easily verified that conditions (8) and (9) are (obviously) satisfied.
Example 2.5 (fixed control constraints). A linear-quadratic regulator with a

constraint u(t) ∈ U , for a nonempty polyhedral set U , certainly fits the format (3).
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Thanks to the positive definiteness of P = F and Q = I, conditions (8) and (9) hold,
and thus the Hamiltonian is finite and differentiable (if U is bounded, the Hamiltonian
remains finite but not differentiable if the matrix F is just positive-semidefinite).
Direct calculation yields J∗(a, b) = ρU,F (a) − 1

2‖b‖2, and thus the Hamiltonian is
H(x, y) = y ·Ax− 1

2x · Ex + ρU,F (B∗y). Note that H is not C2.

Example 2.6 (state-dependent inequality constraints on controls). Consider (10)
with the following constraint on the control:

u(t) ≤ C0x(t) − q0,

for some matrix C0. Taking U = R
k, V = R

n × R
k
+, P = F, p = 0, and

Q =

[
In×n 0n×k

0k×n 0k×k

]
, q =

[
0n×n

q0

]
, C =

[√
E

C0

]
, D =

[
0n×k

−Ik×k

]
,

where 0n is a zero vector in R
n, 0n×k is the zero matrix of appropriate dimension,

etc., casts the problem in the framework of (3). We get, for s =

(
s1

s2

)
with s1 ∈ R

n,

s2 ∈ R
k,

ρV,Q(s) = sup
v∈V

{
s · v − 1

2
v ·Qv

}
= sup

v1∈Rn,v2∈R
k
+

{
s1 · v1 + s2 · v2 −

1

2
v1 · v1

}
= sup

v1∈Rn

{
s1 · v1 −

1

2
v1 · v1

}
+ sup

v2∈R
k
+

{s2 · v2} =
1

2
|s1|2 + δ

R
k
−
(s2),

and thus, since

q − Cx−Du =

(
−
√
Ex

q0 − C0x + u

)
,

expression ρV,Q(q − Cu−Dv) equals

1

2
x · Ex + δ

R
k
−
(q0 − C0x + u) =

1

2
x · Ex +

{
0 if u ≤ C0x− q0,

+∞ otherwise.

As desired, the penalty function enforces the inequality constraint.
We now check the finiteness and differentiability of the Hamiltonian. First, con-

ditions in both (8) and (9) are satisfied since P is positive definite. We have V ∞ = V ,
kerQ = {0n}×R

k, and, since U∞∗ = 0n, (DU∞)∗ = {w | [0n×n, Ik×k]w = 0} = R
n×

0k; thus the second condition for finiteness is satisfied. Similarly, [D(U∞∩−U∞)]⊥ =
R

n × 0k, and the Hamiltonian is differentiable.

Example 2.7 (state-dependent control constraints through quadratic penalties).
Adding to the integrand in (10) the penalty function

s∑
i=1

{
0 if qi − ci · x(t) − di · u(t) ≤ 0,

1
2λi (qi − ci · x(t) − di · u(t))

2
if qi − ci · x(t) − di · u(t) > 0,

with λi > 0 leads to another problem in the extended piecewise linear-quadratic
format. Indeed, set U = R

k, V = R
n × R

s
+, P = F, p = 0, and

Q =

[
In×n 0n×s

0s×n Λ−1

]
, q =

⎡⎢⎢⎣
0n×n

q1
...
qs

⎤⎥⎥⎦ , C =

⎡⎢⎢⎣
√
E
c1
...
cs

⎤⎥⎥⎦ , D =

⎡⎢⎣
0n×k

d1

· · ·
ds

⎤⎥⎦ ,
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where Λ is a diagonal matrix with diagonal entries λi. It can be verified that the
corresponding Hamiltonian function is finite and continuously differentiable (but not
C2).

We add that combining penalty functions from Example 2.7, with constraints
of either Example 2.5 or 2.6, is possible in the extended piecewise linear-quadratic
format. Moreover, these suggested combinations will lead to a differentiable Hamilto-
nian. In section 3 we will return to the examples above to describe the corresponding
optimal feedback mappings.

3. Value function regularity. Techniques used in this and the following sec-
tions will rely in part on the Hamilton–Jacobi and duality theories developed for
convex control problems in Rockafellar and Wolenski [27]. The required assumptions
on the problem P(τ, ξ) defined in (1), which we pose throughout this section, are
stated below. The growth conditions in (A2), (A3) are quite mild, their detailed
discussions can be found in [27] and also Goebel [14].

Assumption 3.1 (basic assumptions).
(A1) The functions g : R

n �→ R and L : R
2n �→ R are proper, l.s.c., and convex.

(A2) The set F (x) = {v | L(x, v) < ∞} is nonempty for all x, and there is a
constant ρ such that dist(0, F (x)) ≤ ρ(1 + |x|) for all x.

(A3) There exist constants α, β and a coercive, proper, nondecreasing function θ(·)
on [0,∞) such that L(x, v) ≥ θ(max{0, |v| − α|x|}) − β|x| for all x and v.

The symbol R stands for the interval [−∞,+∞], a function f : R
n �→ R is said

to be proper if it does not take on the value −∞, and its effective domain dom f =

{x | f(x) < +∞} is nonempty; a function f is called coercive if lim|x|→+∞
f(x)
|x| = +∞.

Example 3.2 (piecewise linear-quadratic Lagrangian). Translating the control
problem C(τ, ξ) discussed in section 2 to the format of Bolza (1) (see [10] or [18])
leads to the Lagrangian

L(x, v) = inf
u

{
p · u +

1

2
u · Pu + ρV,Q(q − Cx−Du) | v = Ax + Bu, u ∈ U

}
.(11)

In particular, the value function defined by (1) with the Lagrangian (11) is the same
as that defined by (3). If (5) holds and the corresponding Hamiltonian (6) is finite (as
is always the case if conditions (8) are in place), then the Lagrangian above satisfies
Assumption 3.1; see [15, Corollary 4.5].

A key tool for the analysis of the regularity of the value function V is the global
description of the graph of ∂ξV (τ, ·) as the image of gph ∂g under a certain flow
mapping. Here, and in what follows, ∂ξV denotes the subdifferential in the sense of
convex analysis, of the convex function ξ �→ V (τ, ξ); the subdifferentials ∂g and ∂yH
should also be understood in the convex sense; see Rockafellar [19, section 23]. The
subdifferential ∂̃xH(x, y) of the concave function H(·, y) equals −∂x (−H(x, y)). If
any of the mentioned functions are differentiable, the subdifferential reduces to the
gradient. Consider the Hamiltonian inclusion

−ẏ(t) ∈ ∂̃xH(x(t), y(t)), ẋ(t) ∈ ∂yH(x(t), y(t)).(12)

A pair of absolutely continuous arcs (x(·), y(·)) on [a, b] will be called a Hamiltonian
trajectory if it satisfies (12) for almost all t ∈ [a, b].

Theorem 3.3 (flow of the value function). One has η ∈ ∂ξV (τ, ξ) if and only if,
for some ηT ∈ ∂g(ξT ), there is a Hamiltonian trajectory on [T − τ, T ] from (ξ,−η) to
(ξT ,−ηT ).
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The above result was shown by Rockafellar and Wolenski [27], as Theorem 2.4,
in the setting of control problems with an initial cost function, and for which the
value function is parameterized by a terminal constraint. A change of variables in the
expression for the value function yields the result as described above.

In a less convex setting, descriptions of the (appropriately understood) sub-
differential of the value function in the flavor of Theorem 3.3 are possible in some
local sense, as long as the image of the subdifferential of the terminal cost under
the Hamiltonian flow remains a subdifferential of a function—this is the case in our
convex setting for any length of the time interval [τ, T ]. Under stronger smoothness
assumptions than used here, the Hessian of the value function may then turn out to
be a solution of an appropriate matrix Riccati differential equation; see Byrnes [6]
and Caroff and Frankowska [9].

To illustrate Theorem 3.3, we show that a piecewise linear-quadratic problem need
not yield a piecewise linear-quadratic value function. This is in contrast to discrete
time problems.

Example 3.4 (loss of piecewise linear-quadratic structure). Consider a one-
dimensional problem of Bolza with the cost functions

L(x, v) =
1

2
v2 +

{
0, x < 0,

1
2x

2, x ≥ 0,
g(x) =

1

2
(x + 3)2.

The corresponding Hamiltonian is piecewise linear-quadratic and differentiable, and
its gradient is piecewise linear:

H(x, y) =

{
1
2y

2, x < 0,

− 1
2x

2 + 1
2y

2, x ≥ 0,
∇H(x, y) =

{
(0, y), x < 0,

(−x, y), x ≥ 0.

A Hamiltonian trajectory (x(·), y(·)) must satisfy ẋ(t) = y(t) = const when x(t) < 0,
and x(t) = αet + βe−t, y(t) = αet − βe−t for suitably chosen α, β when x(t) > 0.

The segment between (−2,−1) and (−1,−2) is contained in gph(−∇g). Param-
eterize the segment by (xs(T ), ys(T )) = (s − 2,−s − 1) with s ∈ [0, 1]. Hamiltonian
trajectories terminating at (xs(T ), ys(T )) are given by

(xs(t), ys(t)) =

⎧⎨⎩
(
(s + 1)(T − t) + s− 2,−s− 1

)
, 0 ≤ T − t ≤ 2−s

s+1 ,

(s + 1)
(

sinh(T − t− 2−s
s+1 ),− cosh(T − t− 2−s

s+1 )
)
, T − t ≥ 2−s

s+1 .

It is easy to check that for any t < T − 1, the set {(xs(t), ys(t)), s ∈ [0, 1]} is not a
straight line segment, nor is it a union of segments. But {(xs(t), ys(t)), s ∈ [0, 1]} ⊂
gph−∂ξV (T − t, ·), and consequently, V (T − t, ·) is not piecewise linear-quadratic.

Lemma 3.5. Suppose that H is differentiable and ∇H is Lipschitz continuous
with constant K. Let g(x) = 1

2a‖x‖2 + b · x + c, with a > 0. Then, for all τ ≤ T ,
(a) V (τ, ·) is differentiable with ∇ξV (τ, ·) Lipschitz continuous, with constant

a
[
1 +

(
eK(T−τ) − 1

)√
1 + a−2

]2
;

(b) V (τ, ·) is strongly convex with constant

a
[
1 +

(
eK(T−τ) − 1

)√
1 + a2

]−2

.
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Proof. Fix τ ≤ T . Pick two points, ξT1 �= ξT2 in R
n, and let ηTi = ∇g(ξTi ) =

a ξTi + b, i = 1, 2. Let (xi(·), yi(·)) be the Hamiltonian trajectory on [τ, T ] with
(xi(T ), yi(T )) = (ξTi ,−ηTi ) for i = 1, 2. As ∇H is Lipschitz continuous, the Hamilto-
nian trajectories and the endpoints just mentioned are well defined. To shorten the
notation, let α(t) = x1(t) − x2(t), β(t) = y1(t) − y2(t).

The monotone structure of ∇H implies that α(t) ·β(t) is a nondecreasing function
of t; see Theorem 4 in [20]—this is a distinguishing feature of a convex problem.
Consequently,

−‖α(τ)‖ ‖β(τ)‖ ≤ α(τ) · β(τ) ≤ α(T ) · β(T ) = −a‖α(T )‖2,

and thus ‖α(τ)‖ ‖β(τ)‖ ≥ a‖α(T )‖2. Lipschitz continuity of ∇H implies that

‖β(τ)‖ ≤ ‖β(T )‖ +
(
eK(T−τ) − 1

)
‖(a(T ), b(T ))‖.(13)

Maximizing ‖β(τ)‖/‖α(τ)‖ subject to the last two inequalities (this is a simple two-
dimensional calculus problem) yields

‖β(τ)‖
‖α(τ)‖ ≤

‖β(T )‖ +
(
eK(T−τ) − 1

)
‖(a(T ), b(T ))‖

a‖α(T )‖2
/[

‖β(T )‖ +
(
eK(T−τ) − 1

)
‖(a(T ), b(T ))‖

] ,
which simplifies to ‖β(τ)‖/‖α(τ)‖ ≤ a

[
1 +

(
eK(T−τ) − 1

)√
1 + a−2

]2
, since β(T ) =

−aα(T ). Thanks to Theorem 3.3, the last bound is in fact a bound on ‖η1−η2‖/‖ξ1−
ξ2‖ over all (ξi, ηi) such that ηi ∈ ∂ξV (τ, ξi), i = 1, 2. This shows (a).

A lower bound on ‖η1−η2‖/‖ξ1−ξ2‖ and the relationship between strong convex-
ity of a convex function and the Lipschitz continuity of the gradient of its conjugate
[26, Proposition 12.60] yield (b); see also Example 4.2.

Theorem 3.6 (Lipschitz gradient). Assume that H is differentiable and ∇H is
Lipschitz continuous with constant K.

(a) Suppose that g is differentiable and ∇g is Lipschitz with constant γ0. Then
V (τ, ·) is differentiable for all τ < T , and there exists a continuous func-
tion γ : (−∞, T ] �→ R with γ(T ) = γ0 such that ∇ξV (τ, ·) is Lipschitz with
constant γ(τ).

(b) Suppose that g is strongly convex with constant δ0. Then there exists a con-
tinuous (and positive) function δ : (−∞, T ] �→ R with δ(T ) = δ0 such that for
all τ < T , V (τ, ·) is strongly convex with constant δ(τ).

In fact, one can choose γ(τ) = c2−1
2c with c = (γ0 +

√
1 + γ2

0)e2K(T−τ), and δ(τ) =

2d
d2−1 with d =

(
δ−1
0 +

√
1 + δ−2

0

)
e2K(T−τ). In particular, γ(τ) ≤ (γ0 + 1

2 )e2K(T−τ)

and δ(τ) ≥ 2δ0
2+δ0

e−2K(T−τ).
Proof. The gradient of a differentiable convex function f is Lipschitz continuous

with constant a if and only if, for all x, x′,

f(x′) ≤ f(x) + ∇f(x) · (x′ − x) +
1

2
a‖x′ − x‖2;(14)

see Proposition 12.60 in [26]. If g is as assumed in (a), we have for any x, x′,
g(x′) ≤ gx(x′), where gx(x′) = g(x) + ∇g(x) · (x′ − x) + 1

2γ0‖x′ − x‖2. Then for

any τ ≤ T , V (τ, ξ) ≤ V
x
(τ, ξ), where V

x
(τ, ·) is the value function corresponding to

the initial cost gx. The latter value function is differentiable, as shown in Lemma
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3.5. Also, V (τ, ξx) = V
x
(τ, ξx), where ξx is the first coordinate of the initial point

of the Hamiltonian trajectory on [τ, T ] terminating at (x,−∇g(x)); this follows from
Theorem 3.3 and from the optimality of the first arc constituting the mentioned Hamil-
tonian trajectory in the definition of both value functions. Consequently, V (τ, ·) is
also differentiable at ξx, and ∇ξV (τ, ξx) = ∇ξV

x
(τ, ξx). Now, Lemma 3.5 implies

that the gradient of V
x
(τ, ·) is Lipschitz continuous with constant γ′ as described in

(a) of the lemma. Combining this, the inequality (14), and the comparison between
V (τ, ·) and V

x
(τ, ·) yields

V (τ, ξ) ≤ V (τ, ξx) + ∇ξV (τ, ξx) +
1

2
γ′‖ξ − ξx‖2.

In light of Theorem 3.3 this bound holds for any ξ, ξ′, and thus ∇ξV (τ, ·) is Lipschitz
continuous with constant γ′.

The Optimality Principle and time-invariance of the Hamiltonian allow us to
derive, through arguments similar to those above, a Lipschitz constant for ∇ξV (τ ′, ·)
given a constant for ∇ξV (τ, ·), with τ ′ < τ . Let γ(t) denote the (smallest possible)

Lipschitz constant for ∇ξV (t, ·). Then γ(τ ′) ≤ γ(τ)[1 + (eK(τ−τ ′) − 1)
√

1 + γ(τ)−2]2

whenever γ(τ) > 0; a similar bound can be obtained for the case of γ(τ) = 0 for small
values of τ − τ ′ (by estimating ‖a(τ ′)‖, ‖b(τ ′)‖ from the proof of Lemma 3.5 as in
(13)). Consequently, we can show that

lim inf
τ ′→τ

γ(τ ′) − γ(τ)

τ ′ − τ
≥ −2K

√
1 + γ2(τ).

Thus γ(τ) ≤ φ(τ), where φ is the solution of φ′(t) = −2K
√

1 + φ2(t), φ(T ) = γ0.
This yields the bound at the end of Theorem 3.6 and proves (a).

A direct proof of (b) is symmetrical to the one just presented for (a), and an
alternate approach is explained in Example 4.2.

The factor 2 in the exponent in formulas for c and d at the end of Theorem 3.6
is not surprising. Consider H(x, y) = x · y corresponding to L(x, v) = δx(v). Then
for any g, V (τ, ξ) = g(eT−τξ) and the Lipschitz constant for ∇V (τ, ·) is e2(T−τ) times
that of ∇g.

Under the assumptions of Theorem 3.6 (a), an arc x(·) is optimal for P(τ, ξ) in
(1) if and only if

x(τ) = ξ, ẋ(t) = ∇yH(x(t),−∇ξV (t, x(t))) for almost all t ∈ [τ, T ].(15)

The properties of the optimal feedback mapping Φ : (−∞, T ]×R
n, defined by Φ(t, x) =

∇yH(x,−∇ξV (t, x)), are summarized below. Continuity of φ in both variables follows
from that of ∇ξV , which in turn is a consequence of graphical continuity of ∇ξV (t, ·)
in t, as stated in [27, Corollary 2.2]; details were worked out in Goebel [14].

Corollary 3.7 (Lipschitz optimal feedback). Suppose that H and g are dif-
ferentiable and their gradients are Lipschitz continuous. Then the optimal feedback
mapping Φ is continuous on (−∞, T ] × R

n, and there exists a continuous function
µ : (−∞, T ] �→ R such that for all t ≤ T , Φ(t, ·) is Lipschitz continuous with constant
µ(t).

If the problem of Bolza P(τ, ξ) represents a control problem C(τ, ξ) in (3) via the
transformation (11), an optimal control minimizes the right-hand side in (11). This
translates (15) to necessary and sufficient optimality conditions for C(τ, ξ) (general
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case with no smoothness present was discussed in [14]), x(τ) = ξ, ẋ(t) = Ax(t)+Bu(t),
and

u(t) = ∇1J
∗(−B∗∇ξV (t, x(t)), Cx(t)) for almost all t ∈ [τ, T ].(16)

Under the assumptions of Theorem 2.4, conclusions similar to those in Corollary
3.7 can be made about φ(t, x) = ∇1J

∗(−B∗∇ξV (t, x), Cx). In particular, optimal
controls turn out to be continuous. To finish this section, we calculate φ for some of
the examples of section 2.

We will need some properties of ρV,Q defined in (4) (recall that Q is positive
semidefinite and V is polyhedral). The function ρV,Q is proper, convex, and piecewise
linear-quadratic; dom ρV,Q = (V ∞ ∩ kerQ)∗ and, in particular, ρV,Q is finite-valued
if and only if V ∞ ∩ kerQ = {0} (Theorem 2.2 generalizes this fact). If this condition
holds, then

∂ρV,Q(s) = argmax
v∈V

{
s · v − 1

2
v ·Qv

}
= {v | s−Qv ∈ NV (v)} = (Q + NV )−1(s),

where NV (v) is the normal cone to the set V at v. For details, see Example 11.18 in
Rockafellar and Wets [26]. If Q is actually positive definite, and thus invertible, we
have, with proj√V Q being the projection onto

√
QV ,

∂ρQ,V (s) =
(√

Q
)−1

proj√
QV

((√
Q
)−1

s

)
.

Indeed for any convex set C, (projC)−1 = I + NC . Then[(√
Q
)−1

proj√
QV

(√
Q
)−1

]−1

=
√
Q
(
proj√

QV

)−1 √
Q =

√
Q
(
I + N√

QV

)√
Q.

The last expression equals Q+NV . It follows from the fact that
√
QN√

QV

√
Q = NV ,

and this can be deduced from the properties of the normal cone under a change of
coordinates.

Example 3.8 (optimal controls in feedback form). The linear-quadratic regulator
(10) with a constraint u(t) ∈ U (Example 2.5) has the following feedback mapping:

φ(t, x) = (F + NU )
−1

(−B∗∇ξV (t, x)) =
√
F

−1
proj√FU

(
−
√
F

−1
B∗∇ξV (t, x)

)
.

A similar formula was obtained by Heemels, Van Eijndhoven, and Stoorvogel [16] for
a conical U ; our regularity results are also stronger than those therein.

Example 2.6 discussed (10) with a constraint u(t) ≤ C0x(t) − q0. With the
matrices as defined in the mentioned example, we obtain

J∗(a, b) = sup
u∈U

inf
v∈V

{
a · u + b · v − 1

2
u · Pu +

1

2
v ·Qv + v ·Du

}
= inf

v∈V

{
b · v +

1

2
v ·Qv + sup

u∈Rk

{
(a + D∗v) · u− 1

2
u · Pu

}}
= inf

v∈V

{
b · v +

1

2
v ·Qv +

1

2
(a + D∗v) · P−1(a + D∗v)

}
=

1

2
a · P−1a− sup

v∈V

{
(−b−DP−1a) · v − 1

2
v · (Q + DP−1D∗)v

}
.
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The matrix Q + DP−1D∗ equals
[ In×n 0n×k

0k×n F−1

]
, and thus the sup expression above

is separable. Also, DP−1 =
[ 0k×k

−F−1

]
, so (−b −DP−1a)1 = −b1, (−b −DP−1a)2 =

−b2 − F−1a. Then J∗(a, b) equals

1

2
a · F−1a− 1

2

∥∥(−b−DF−1a)1
∥∥2 − sup

v2∈R
k
+

{
(−b−DF−1a)2 · v2 − v2 · F−1v2

}
=

1

2
a · F−1a− 1

2
‖b1‖2 − ρ

R
k
−,F−1

(
−b2 − F−1a

)
and thus ∇1J

∗(a, b) = F−1
[
a + (N

R
k
−

+ F−1)−1(−b2 − F−1a)
]
. Since for b = Cx we

have b1 =
√
Ex, b2 = C2x, the optimal feedback map is

φ(t, x) = −F−1
[
B∗∇ξV (t, x) −

(
N

R
k
−

+ F−1
)−1 (

F−1B∗∇ξV (t, x) − C2x
) ]

.

4. Convergence and approximation of value functions. In this section we
study the convergence of value functions defined by sequences of converging costs {gi}
and {Li},

Vi(τ, ξ) = inf

{
gi(x(0)) +

∫ τ

0

Li(x(t), ẋ(t)) dt
∣∣∣ x(τ) = ξ

}
,(17)

to V (τ, ξ) defined in (1). To treat sequences of possibly infinite-valued functions we
use the well appreciated in optimization notion of epi-convergence. A sequence of
functions fi : R

n → R, i = 1, 2, . . . , is said to epi-converge to f (e-limi fi = f for
short) if, for every point x ∈ R

n,
(a) lim infi fi(xi) ≥ f(x) for every sequence xi → x,
(b) lim supi fi(xi) ≤ f(x) for some sequence xi → x.

For details, consult Rockafellar and Wets [26, Chapter 7]. We will only need to directly
show the “lower” part of epi-convergence of value functions and rely on duality results
to complete the argument. Let us briefly introduce the needed concepts.

For a function f : R
n �→ R its convex conjugate is defined by

f∗(y) = sup
x∈Rn

{y · x− f(x)}.

If f is proper, l.s.c., and convex, then so is f∗, and the conjugate of f∗ equals f (that
is, f(x) = supy∈Rn{x · y − f∗(y)}). For details, consult Rockafellar [19, section 12].
Relations of certain properties of f to some other properties of f∗, say of coercivity
and finiteness, were alluded to in the previous sections; in Example 4.2 we discuss the
symmetry between strong convexity of f and Lipschitz continuity of ∇f∗, and revisit
Lemma 3.5 and Theorem 3.6. Epi-convergence of a sequence of convex function is
equivalent to that of the sequence of conjugates; we will need the following related
facts. Below, e-lim infi fi ≥ f means that condition (a) in the definition of epi-
convergence holds. A sequence {fi} is said to escape epigraphically to the horizon if
the epigraphical limit of fi is equal to +∞ everywhere.

Lemma 4.1. Suppose that functions f : R
n �→ R and fi : R

n �→ R, i = 1, 2, . . . ,
are proper, l.s.c., and convex.

(a) If e-lim infi fi ≥ f and e-lim infi f
∗
i ≥ f∗ and neither sequence escapes epi-

graphically to the horizon, then e-limi fi = f and e-limi f
∗
i = f∗.
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(b) Neither of the sequences fi, f
∗
i escapes epigraphically to the horizon provided

there exists a constant ρ > 0 such that fi(x) ≥ −ρ(‖x‖ + 1) and f∗
i (x) ≥

−ρ(‖x‖ + 1) for all x and i = 1, 2, . . ..
Proof. Statement (a) essentially follows from the statement and proof of Theorem

11.34 in [26]. We show (b). An application of a separation principle (for example,
Theorem 11.3 in [19]) implies that for every i = 1, 2, . . . , there exist αi ∈ R

n, βi ∈ R

such that fi(x) ≥ αi · x + βi ≥ −ρ(‖x‖ + 1) for every x ∈ R
n. It must be the case

that ‖αi‖ ≤ ρ while βi ≥ −ρ. We then obtain

f∗
i (αi) = sup

x
{αi · x− f(x)} ≤ sup

x
{αi · x− αi · x− βi} = −βi ≤ ρ.

Thus f∗
i (αi) ≤ ρ while by assumption, f∗

i (αi) ≥ −ρ(‖αi‖ + 1). As ‖αi‖ ≤ ρ, there
exists a convergent subsequence of (αi, f

∗
i (αi)), and, consequently, the sequence f∗

i

cannot escape to the horizon. A symmetric argument shows the corresponding fact
for the sequence fi.

For a given initial cost g and Lagrangian L, the dual value function Ṽ : (−∞, T ]×
R

n �→ R is defined in a fashion similar to V ,

Ṽ (τ, η) = inf

{
g∗(y(0)) +

∫ τ

0

L̃(y(t), ẏ(t)) dt
∣∣∣ y(τ) = η

}
,(18)

where the dual Lagrangian is

L̃(y, w) = L∗(w, y) = sup
(x,v)∈R2n

{w · x + y · v − L(x, v)}.(19)

If L satisfies Assumption 3.1, then so does L̃ (and consequently Ṽ (τ, ·) is proper, l.s.c.,
and convex for every τ ≤ T ), and in fact for any τ ≤ T , the functions V (τ, ·) and

Ṽ (τ, ·) are conjugate to each other:

Ṽ (τ, η) = sup
ξ∈Rn

{
η · ξ − V (τ, ξ)

}
, V (τ, ξ) = sup

η∈Rn

{
ξ · η − Ṽ (τ, η)

}
.(20)

These results were shown by Rockafellar and Wolenski [27]. The Hamiltonian H̃

associated with a dual Lagrangian L̃ is exactly H̃(y, x) = −H(x, y), and thus it has

the same smoothness properties as H. Note also that the Lagrangian dual to L̃ is the
original L.

Example 4.2 (strong convexity and Lipschitz differentiability). A convex function
f is differentiable and ∇f is Lipschitz continuous with constant σ if and only if f∗

is strongly convex with constant 1/σ. This and (20) automatically proves one of the
statements (a), (b) of Theorem 3.6 once the other is in place and similarly for Lemma
3.5. For example, we show (b) of 3.6 with the help of (a). Suppose g is strongly convex
with constant δ0, and ∇H is Lipschitz with constant K. Then ∇g∗ is Lipschitz with
constant γ0 = 1/δ0, while the dual Hamiltonian H̃ also has a Lipschitz gradient,

with constant K. Application of (a) shows that the dual value function Ṽ (τ, ·) is

differentiable, with ∇ηṼ (τ, ·) Lipschitz with constant γ(τ) as described at the end
of Theorem 3.6. Now (20) implies that V (τ, ·) is strongly convex, with constant
δ(τ) = 1/γ(τ). This yields the expression for δ(τ) as described in the other formula
at the end of Theorem 3.6. The lower bound on δ(τ) can be obtained in a similar
fashion from the upper bound on γ(τ).
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We now focus on sequences of Bolza problems. Given a sequence of Lagrangians
{Li}, for each i we let L̃i be the Lagrangian dual to Li as described in (19), and Hi

be the Hamiltonian corresponding to Li as suggested by (2). The value function Vi

is defined by (17), while Ṽi is defined similarly in terms of g∗i and L̃i.
Assumption 4.3 (uniform growth assumption). Each of the functions gi and

Li, i = 1, 2, . . . , is proper, l.s.c., and convex. There exist functions L and L, each
satisfying Assumption 3.1, such that, for every i = 1, 2, . . .,

L ≤ Li ≤ L.

As L satisfies Assumption 3.1 if and only if L̃ does, the second condition above
is equivalent to the existence of M and M , each satisfying Assumption 3.1, such that
M ≤ L̃i ≤ M ; take M to be the Lagrangian dual to L, M dual to L.

Lemma 4.4 (convergence equivalence). If Assumption 4.3 holds, the following
statements are equivalent:

(a) Lagrangians Li epi-converge to L,

(b) dual Lagrangians L̃i epi-converge to L̃,
(c) Hamiltonians Hi converge pointwise to H.
The proof is postponed until section 5. Also there we discuss the convergence of

Lagrangians (11) and Hamiltonians (6) corresponding to extended piecewise linear-
quadratic functions under perturbations of all defining data; see Theorem 5.6.

Assumption 4.5 (epi-convergence of cost functions). Sequences {gi}, {Li} epi-
converge, respectively, to g and L.

Equivalently, we could assume that sequences {g∗i } and {L̃i} epi-converge, respec-

tively, to g∗ and L̃. We are now ready to state the main result of this section.
Theorem 4.6 (value function epi-convergence). Let Assumptions 4.3 and 4.5

hold. For any τ ≤ T and a sequence τi → τ (in particular for τi = τ) we have

e-limVi(τi, ·) = V (τ, ·).(21)

Equivalently, e-lim Ṽi(τi, ·) = Ṽ (τ, ·). This implies e-limVi = V and e-lim Ṽi = Ṽ .
We prove the theorem by taking advantage of the representation

V (τ, ξ) = inf
ξ′∈Rn

{E(τ, ξ, ξ′) + g(ξ′)} ,(22)

where the fundamental kernel E : (−∞, T ] × R
n × R

n is given by

E(τ, ξ, ξ′) = inf

{∫ T

τ

L(x(t), ẋ(t)) dt | x(τ) = ξ, x(T ) = ξ′

}
,

with the infimum taken over all arcs with prescribed endpoints. A symmetric repre-
sentation of Ṽ (τ, η) is available, with Ẽ(τ, η, η′) defined in terms of L̃. The following
conjugacy relationship is a direct consequence of (20); to see this, consider E(·, ·, ξ′)
as the value function associated with the terminal cost g(x) = δξ′(x) and use the fact
that g∗(y) = ξ′ · y0:

Ẽ(τ, η, η′) = sup
ξ,ξ′

{η · ξ − η′ · ξ′ − E(τ, ξ, ξ′)} ,

E(τ, ξ, ξ′) = sup
η,η′

{
ξ · η − ξ′ · η′ − Ẽ(τ, η, η′)

}
.
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We will need some facts about continuity and convergence of integral functionals. It is
known that for a fixed τ > 0, the functional Φ(τ, ·) defined on the space of absolutely
continuous arcs on [0, τ ] by Φ(τ, z(·)) =

∫ τ

0
L(z(t), ż(t))dt is weakly sequentially lower

semicontinuous. This can be shown as a consequence of the conjugacy between L and
H, and by interchanging the integration and maximization,∫ τ

0

sup
w

{w · ż(t) −H(z(t), w)} dt = sup
w(·)

∫ τ

0

{w(t) · ż(t) −H(z(t), w(t))} dt,(23)

where the latter supremum is taken over all arcs w in L∞[0, T ] (see, for exam-
ple, [26, Theorem 14.60]). Now consider a sequence of functionals Φi(τ, z(·)) =∫ τ

0
Li(z(t), ż(t))dt a sequence of arcs xi on [0, τ ] weakly convergent to an arc x (mean-

ing that ẋi converge weakly to ẋ in L1 and xi(0) converge to x(0)). Then

lim inf
i

Φi(τ, xi(·)) ≥ Φ(τ, x(·)).(24)

We only need to consider the case where lim inf Φi(τ, xi(·)) < +∞. As in (23),
we have, for any w in L∞[0, T ], Φi(τ, xi(·)) ≥

∫ τ

0
{w(t) · ẋi(t) −Hi(xi(t), w(t))} dt.

Then, as ẋi(·) converge weakly in L1 to ẋ(·), xi(·) converge pointwise to x(·), and
Hi converge to H pointwise and also uniformly on compact sets (Lemma 5.4), we
get lim inf Φi(τ, xi(·)) ≥

∫ τ

0
{w(t) · ẋ(t) −H(x(t), w(t))} dt, and this holds for any w

in L∞[0, T ]. By (23), we conclude (24). In the proof of Lemma 4.7 we extend these
arguments to varying time intervals.

Lemma 4.7 (fundamental kernel epi-convergence). Let Ei and Ẽi be the fun-

damental kernels associated, respectively, with Li and L̃i. Under assumptions of
Theorem 4.6, for any τ < T and a sequence τi → τ (in particular for τi = τ) we
have

e-limEi(τi, ·, ·) = E(τ, ·, ·).(25)

Equivalently, e-lim Ẽi(τi, ·, ·) = Ẽ(τ, ·, ·). Consequently, e-limEi = E and e-lim Ẽi =

Ẽ.
Proof. Fix τ < T and τi → τ . First, we show that e-lim infi Ei(τi, ·, ·) ≥ E(τ, ·, ·),

that is, for any point (ξ, ξ′) ∈ R
2n and a sequence (ξi, ξ

′
i) → (τ, ξ, ξ′), we have

lim inf
i→∞

Ei(τi, ξi, ξ
′
i) ≥ E(τ, ξ, ξ′).(26)

We only need to consider the case where lim infi→∞ Ei(τi, ξi, ξ
′
i) = m < +∞, and

if necessary we pass to a subsequence so that Ei(τi, ξi, ξ
′
i) → m. There exist arcs

xi on [τi, T ] such that Ei(τi, ξi, ξ
′
i) = Φi(τi, xi(·)) =

∫ τi
0

Li(xi(t), ẋi(t))dt. Setting
ai = (T − τi)/(T − τ) and defining x0

i (τ + s) = xi(τi + ais), L
0
i (x, v) = aiLi(x, v/ai)

leads to

Φi(τi, xi(·)) =

∫ T

τi

Li(xi(t), ẋi(t))dt =

∫ T

τ

L0
i (x

0
i (t), ẋ

0
i (t))dt = Φ0

i (τ, x
0
i (·)),

with L0
i epiconverging to L [26, Exercise 7.47]. Corresponding Hamiltonians are

H0
i (x, y) = aiH(x, y), while the dual Lagrangians are L̃0

i (x, v) = aiL̃i(x, v/ai). As
{Li} satisfies Assumption 4.3, so does {L0

i }; this is a direct calculation. Conse-
quent uniform growth assumptions imply in particular that some subsequence of
rescaled arcs x0

i on [0, τ ] weakly converges to an arc x on [0, τ ] with x(τ) = ξ,
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x(T ) = ξ′ (this follows from Theorem 1 in [21]). Moreover, as in (24), we have
limi Φi(τi, xi(·)) = limi Φ

0
i (τ, x

0
i (·)) ≥ Φ(τ, x(·)). But the arc x is feasible for the

problem defining E(τ, ξ, ξ′), and (26) follows.

The same argument applied to dual problems gives e-lim inf Ẽi(τi, ·, ·) ≥ Ẽ(τ, ·, ·).
Lemma 4.1 (a) will conclude (25) (and the equivalent dual statement) if we show that

neither Ei(τi, ·, ·) nor Ẽi(τi, ·, ·) escapes to the horizon. Uniform growth in Assumption
4.3 and the rescaling arguments above imply that {Ei(τi, ·, ·)} is uniformly bounded

below by Ê(τ, ·, ·), a fundamental function corresponding to some Lagrangian satisfy-
ing Assumption 3.1. As the latter function is proper and convex, it is bounded below
by an affine function. A similar bound is in place for Ẽi(τi, ·, ·), and thus the desired
conclusions hold.

Lastly, the very definition of epi-convergence explains that (25) implies e-limEi =
E.

Proof (Theorem 4.6). As in Lemma 4.7, we begin by showing that for any (τ, ξ) ∈
(0,+∞) × R

n and a sequence (τi, ξi) → (τ, ξ), we have

lim inf
i

Vi(τi, ξi) ≥ V (τ, ξ).(27)

It suffices to consider, passing to a subsequence if necessary, the case of limi Vi(τi, ξi) <
+∞. Recall (22). Functions gi epi-converge to g by assumption, while Lemma 4.7
and the definition of epi-convergence yield e-lim infi Ei(τi, ξi, ·) ≥ E(τ, ξ, ·). Now by
Theorem 7.46 of [26], we obtain

e-lim inf
i

{Ei(τi, ξi, ·) + gi(·)} ≥ E(τ, ξ, ·) + g(·).(28)

As mentioned in the proof of Lemma 4.7, {Ei(τi, ·, ·)} is uniformly bounded below by

Ê(τ, ·, ·), a fundamental kernel corresponding to some Lagrangian satisfying Assump-
tion 3.1. Proposition 4.2 in [27] implies that

Ei(τi, ξi, ξ
′) ≥ Ê(τ, ξi, ξ

′) ≥ θ (max {0, |ξ′| − α|ξi|}) − β|ξi|(29)

for a proper, nondecreasing, and coercive θ : [0,+∞) �→ R and constants α, β. As ξi
converge, there exist a, b such that Ê(τi, ξ, ξ

′) ≥ θ(max{0, |ξ′| − a}) − b. A similar
bound is in place for E(τ, ·, ·), and consequently, Ei(τi, ξi, ·) and E(τ, ξ, ·) are bounded
below by a coercive function. Convexity and epi-convergence of gi to g implies, by
7.34 in [26], that gi and g are bounded below (uniformly in i) by −ρ(| · |+1), for some
constant ρ. As infξ′{Ei(τi, ξi, ξ

′) + gi(ξ
′)} converge to a finite value, there exists a

compact set S such that

inf
ξ′

{Ei(τi, ξ
′, ξi) + gi(ξ

′)} = inf
ξ′∈S

{fi(ξ′) + Ei(τi, ξ
′, ξi)} ,

and a similar condition holds for E(τ, ξ, ξ′) + g(ξ′). Consequently, infimum in (22)
can be taken over S, similarly for Vi(τi, ·). Now (28) and Proposition 7.29 in [26] yield
(27).

Growth conditions gi(ξ
′) ≥ −ρ(|ξ′| + 1), (29), and the fact that since θ in (29) is

coercive, there exists γ > 0 such that θ ≥ ρ| · | − γ imply that

Vi(τi, ξ) ≥ inf
ξ′

{−ρ(|ξ′| + 1) + ρmax {0, |ξ′| − α|ξ|} − γ − β|ξ|}
≥ −(αρ + β)|ξ| − (ρ + γ).
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A similar bound holds for Ṽi(τi, ·). This and (27) show the desired epi-convergence of

Vi(τi, ·) as well as Ṽi(τi, ·), by Lemma 4.1 (b). Epi-convergence of Vi and Ṽi follows
directly from the definition of epi-convergence.

We now describe how any problems fitting the general Assumption 3.1 can be
approximated by problems with value functions possessing regularity as discussed in
section 3. We will rely on Moreau–Yosida envelopes of convex and saddle functions.
For any proper, l.s.c., and convex f and λ > 0, eλf(x) = infq

{
f(q) + 1

2λ‖x− q‖2
}

is
finite and differentiable; see [26, Theorem 2.26]. A generalization of this smoothing
technique to saddle functions was introduced by Attouch and Wets [2]. Applied to a
concave-convex Hamiltonian H (and simplified to single parameter λ vs. the original
two), it yields a differentiable concave-convex function

eλH(x, y) = sup
p

inf
q

{
H(p, q) − 1

2λ
‖x− p‖2 +

1

2λ
‖y − q‖2

}
.(30)

(We use the same notation for Moreau–Yosida regularization of convex and saddle
functions; it should be clear which one is considered.) The key fact is that ∇eλf
and ∇eλH are globally Lipschitz with constant 1/λ. This is the case since ∇eλf is
the Yosida regularization of the monotone subdifferential ∂f (see Exercise 12.23 in
[26]), while (x, y) �→ (−∇xeλH(x, y),∇yeλH(x, y)) is the Yosida regularization of the

monotone mapping (x, y) �→ (−∂̃xH(x, y), ∂yH(x, y)).
Corollary 4.8 (regularization of value functions). Let L be any Lagrangian

satisfying Assumption 3.1; L̃ be the associated dual Lagrangian; g be any proper,
l.s.c., and convex function; and V , Ṽ be the associated value functions. There exists
a sequence of finite convex functions gi and a sequence of Lagrangians Li satisfying
Assumption 4.3 such that the following hold.

(a) Conclusions of Theorem 4.6 hold for sequences {Vi}, {Ṽi} of value functions

corresponding, respectively, to Li, gi and their dual costs g∗i , L̃i.

(b) For each i, Vi and Ṽi are continuously differentiable, and there exist con-
tinuous and positive functions γi : (−∞, T ] �→ R, δ : (−∞, T ] �→ R such
that
(i) ∇ξVi(τ, ·) and ∇ξṼi(τ, ·) are Lipschitz with constant γ(τ),

(ii) V (τ, ·) and Ṽ (τ, ·) are strongly convex with constant δ(τ).
This can be achieved by considering (with H associated to L)

gi(x) = e1/i g(x) + ‖x‖2/i, Hi(x, y) = e1/i H(x, y),

and letting Li and L̃i be the Lagrangians associated with Hi.
Proof. Condition (A3) in Assumption 3.1 (by the proof of Theorem 2.3 in [27])

and the definition of Hi imply, respectively, that

H(x, y) ≤ θ∗(‖y‖) + (α‖y‖ + β) ‖x‖, Hi(x, y) ≤ sup
p

{
H(p, y) − 1

2λ
‖p− x‖2

}
.

Combining the two inequalities yields

Hi(x, y) ≤ θ∗(‖y‖) + sup
p

{
(α‖y‖ + β) ‖p‖ − 1

2λ
‖p− x‖2

}
= θ∗(‖y‖) +

λ

2
(α‖y‖ + β)

2
+ (α‖y‖ + β) ‖x‖.
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This in turn implies that (A3) holds for Li, with θ replaced by

θ′(r) = inf
s∈[0,r]

{
θ∗(s) +

λ

2
(αs + β)

2

}
.

Coercivity of both θ∗ and the quadratic implies that of θ′, which is obviously nonde-
creasing. A symmetric argument shows that L̃i satisfies (A3) uniformly, and conse-
quently, Assumption 4.3 is satisfied. Moreau–Yosida approximations of H hypo/epi-
converge to H, and as all these functions are finite, the convergence is pointwise
(Lemma 5.4). Functions gi epi-converge to g by Theorem 1.25 and Exercise 7.47 in
[26]. This shows (a).

To see (b), note that g has a Lipschitz gradient (with constant i) as well as
strongly convex (with constant 1/i). Now, invoke Theorem 3.6 and the symmetry
between strong convexity and Lipschitz continuity of the gradient of the dual as
outlined in Example 4.2.

Example 4.9 (regularization of control problems). Recall that the Hamiltonian
(6) corresponding to an extended piecewise linear-quadratic problem (3) had the spe-
cial structure H(x, y) = y · Ax + J∗(B∗y, Cx). The regularization, as described in
Corollary 4.8, can be applied to such H, but a more explicit smoothing technique
is available. One may regularize J∗ directly, using the convex-concave counterpart
of (30)—the infimum is to be taken over the first variable, supremum over the sec-
ond. Such regularization, with parameter 1/i can be equivalently obtained by defining
functions J∗

i in (7) with matrices P and Q replaced, respectively, by positive definite
P + I/i, Q + I/i. (Here I denotes an identity matrix of appropriate size.)

5. Convex analysis tools. We say that a function K : R
k × R

l �→ [−∞,+∞]
is convex-concave if, for any fixed z ∈ R

l, the function K(·, z) is convex, while for any
fixed w ∈ R

k, K(w, ·) is concave. We call a convex-concave function K proper if the
effective domain of K, defined as

domK =
{
w ∈ R

k | K(w, z) < +∞ ∀z ∈ R
l
}
×
{
z ∈ R

l | −∞ < K(w, z) ∀w ∈ R
k
}
,

is nonempty.
Convex function duality gives a one-to-one correspondence between a proper lsc

convex function and its conjugate (also proper and l.s.c.). Saddle function duality
describes a one-to-one correspondence between equivalence classes of proper closed
saddle functions. Closedness is a notion corresponding, in a sense, to lower semicon-
tinuity of convex functions. For the somewhat technical definition, and the reasons
for considering equivalence classes, see Rockafellar [19]. Here, we limit ourselves to
the facts crucial to the developments in what follows.

Any equivalence class [K] of closed saddle functions contains the lowest and the
highest element, denoted K and K, and consists of all closed saddle functions K such
that K ≤ K ≤ K. If a saddle function K is finite, then it is closed, K = K = K, and
the class [K] of all closed functions equivalent to K is just {K}. A saddle function k,
defined on W ×Z, for some nonempty closed convex sets W ⊂ R

K , Z ⊂ R
L, gives rise

to an equivalence class [K] of saddle functions on R
K ×R

l, whose lowest and highest
elements, K, K, are given by

K(w, z) =

⎧⎨⎩ k(w, z) for w ∈ W, z ∈ Z,
−∞ for z �∈ Z,
+∞ for w �∈ W, z ∈ Z;

K(w, z) =

⎧⎨⎩ k(w, z) for w ∈ W, z ∈ Z,
+∞ for w �∈ W,
−∞ for w ∈ W, z �∈ Z.
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Equivalent saddle functions have the same effective domains, on the relative interior
of which they are equal to each other (and finite).

For a given saddle function K, the lower conjugate K∗ and the upper conjugate
K∗ are defined by

K∗(a, b) = sup
u∈Rk

inf
v∈Rl

{a·u+b·v−K(u, v)}, K∗(a, b) = inf
v∈Rl

sup
u∈Rk

{a·u+b·v−K(u, v)}.

(31)
The lower and upper conjugate functions are equivalent to each other and are, re-
spectively, the lowest and the highest elements of [K∗], the class of saddle functions
conjugate to K. In fact, K∗, K∗ do not depend on the choice of K ∈ [K], so [K∗]
should be thought of as conjugate to [K]. The lower and upper conjugates of any
K∗ ∈ [K∗] are, in turn, the lowest and highest elements of [K].

Example 5.1 (Hamiltonian in terms of a conjugate function). Recall that the
Hamiltonian (6) was expressed in terms of a function J∗, which can be viewed as a
conjugate of J (a unique conjugate, if we request that J∗ be finite), where

J(u, v) = p · u +
1

2
u · Pu + q · v − 1

2
v ·Qv − v ·Du for (u, v) ∈ U × V,(32)

and has appropriately assigned ±∞ values outside U × V .

Subdifferentials of K∗ are exactly the saddle points in the expressions in (31);
see Rockafellar [19, Theorem 37.2]. In particular, as finite saddle functions have
nonempty subdifferentials, Theorem 2.2 can be viewed as saying that J has a saddle
point on U×V for any (p, q). In other words, the function J0 below has a saddle point
under any affine perturbation. Similarly, Theorem 2.4 states the Lipschitz continuity
of saddle points of J∗ under perturbations. From a numerical viewpoint, finding the
gradients of the Hamiltonian (6) amounts to solving a quadratic minimax problem.

As the linear terms p · u and q · v in (32) do not influence the finiteness and
differentiability of J∗(·, ·), in proofs of Theorems 2.2 and 2.4 we work with

J0(u, v) =
1

2
u · Pu− 1

2
v ·Qv − v ·Du.

(From (7), we get that J∗(a, b) = J∗
0 (a−p, b+q).) We will need the following technical

lemma.
Lemma 5.2. Assume that sets W and Z in R

n are polyhedral. Then W +Z = R
n

is equivalent to W∞ +Z∞ = R
n. For a linear mapping L we have (LW )∞ = LW∞.

Proof. For a polyhedral set W we can conclude that W ⊂ W∞ + εwB for some
ε > 0, this follows for example from Corollary 3.53 in [26]. Thus if W + Z = R

n,
then W∞ + Z∞ + (εw + εz)B = R

n. But since W∞ + Z∞ is a cone, we must have
W∞ + Z∞ = R

n. Now assume the latter. We have W∞ ⊂ W − w for any w ∈ W .
Similarly for Z. Then W∞ +Z∞ ⊂ W +Z− (w+ z), which shows that W +Z = R

n.
The fact about linear mappings follows directly from the representation of a polyhedral
set in Corollary 3.53 in [26].

For a proper lsc and convex function f , finiteness of f∗ is equivalent to coercivity
of f . Generalization of this fact to saddle functions, shown by Goebel [13, Proposition
2.7], states that for a proper closed convex-concave function K : R

k ×R
l �→ [−∞,∞],

the following conditions are equivalent:
(a) The class [K∗] of convex-concave functions conjugate to K consists of a unique

finite-valued function.
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(b) The convex function α(u) = supv K(u, v) and the concave β(v) = infu K(u, v)
are both proper and coercive (respectively, in the convex and concave sense).

A concave function g is coercive (in the concave sense) if −g is coercive as a convex
function. Condition (a) can be translated to the following: for every (a, b) ∈ R

k ×R
l,

K∗(a, b) = K∗(a, b), and the common value is finite).
Proof (Theorem 2.2). By the result quoted above, J∗

0 (·, ·) is finite if and only if
the convex function

φ(u) = sup
v∈V

{
1

2
u · Pu− 1

2
v ·Qv − v ·Du + δU (u)

}
and the concave function

ψ(v) = inf
u∈U

{
1

2
u · Pu− 1

2
v ·Qv − v ·Du− δV (v)

}
are proper and coercive. By symmetry, it will suffice to analyze φ(·). We have

φ(u) =
1

2
u · Pu + δU (u) + sup

v∈V

{
v · (−Du) − 1

2
v ·Qv

}
.

Let φ1(u) = 1
2u · Pu + δU (u) and φ2(u) = supv∈V

{
v · (u) − 1

2v ·Qv
}
. Properness of

φ(·) is equivalent to the existence of some u ∈ U with φ2(−Du) finite. As domφ2 =
(V ∞ ∩ kerQ)∗ [26, Example 11.18], we get that φ(·) is proper if and only if −DU ∩
(V ∞ ∩ kerQ)∗ �= ∅. Assuming that this holds, we obtain, through Corollary 11.33 in
[26], that the conjugate of the function u �→ φ2(−Du) at a point w is given by

inf
v∈V

{
1

2
v ·Qv | w = −D∗v

}
and the domain of this function is −D∗V . The domain of φ∗

1(·) is (U∞∩kerP )∗. Then
the domain of φ∗(·) is (U∞ ∩ kerP )∗ + (−D∗V ). Now the properness and coercivity
of φ(·) is equivalent to domφ∗(·) = R

k. We get that φ(·) is proper and coercive if and
only if

−DU ∩ (V ∞ ∩ kerQ)∗ �= ∅, −D∗V + (U∞ ∩ kerP )∗ = R
k.

Analogous statements for ψ(·) follow after analyzing the convex function −ψ(·) in the
above way. We obtain

D∗V ∩ (U∞ ∩ kerP )∗ �= ∅, DU + (V ∞ ∩ kerQ)∗ = R
l.

Now note that −D∗V +(U∞∩kerP )∗ = R
k implies D∗V ∩(U∞∩kerP )∗ �= ∅. Indeed,

since 0 ∈ R
k, there exists a v ∈ V such that 0 ∈ −D∗v+(U∞∩kerP )∗. But this means

that D∗v ∈ (U∞ ∩ kerP )∗, so D∗V ∩ (U∞ ∩ kerP )∗ �= ∅. The latter condition is then
superfluous, and a similar statement can be made about −DU ∩ (V ∞ ∩ kerQ)∗ �= ∅.

Using the properties of polyhedral sets in Lemma 5.2, we can translate the con-
dition DU + (V ∞ ∩ kerQ)∗ = R

l to

DU∞ + (V ∞ ∩ kerQ)∗ = R
l.

By polarizing both sides of this equation according to the rules in Corollary 11.25 in
[26], we get one of the conditions in (8). The other one is obtained symmetrically
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from −D∗V + (U∞ ∩ kerP )∗ = R
k. The expression for (DU∞)∗ and (−D∗V ∞)∗ also

come from Corollary 11.25.
Saddle points in the definition (7) of J∗ are exactly the subgradients of that

function. This allows us to use a result of Dontchev and Rockafellar [11] on the
stability of saddle points; we quote it below in a form specialized for our current
setting. By (a, b) ∈ ∂sK(w, z) we mean that a ∈ ∂wK(w, z), b ∈ ∂̃zK(w, z).

Lemma 5.3 (see [11, Theorem 3.2]). Assume that (ū, v̄) ∈ ∂sJ∗
0 (a, b). Then a

necessary and sufficient condition for ∂sJ∗
0 to be single-valued and Lipschitz continu-

ous on a neighborhood of (a, b) is the following:{
u ∈ U0 − U0, Pu = 0, Du ∈ [V0 ∩ −V0]

⊥ ⇒ u = 0,
v ∈ V0 − V0, Qv = 0, D∗v ∈ [U0 ∩ −U0]

⊥ ⇒ v = 0,
(33)

where U0 = TU (ū) ∩ (a− Pū + R∗v̄)⊥ and V0 = TV (v̄) ∩ (b + Qv̄ + Rū)⊥.
The subspace U0 − U0 is the smallest subspace containing U0, whereas U0 ∩−U0

is the largest subspace contained in the cone U0. Similarly for V0.
Proof (Theorem 2.4). For a convex set S, the lineality space Sl of S is the set of

all those vectors y, such that for all x ∈ S, the line from x in the direction of y is
contained in S. If S is a polyhedral set, Sl = S∞ ∩ −S∞. Using this notation,

[D∗(V ∞ ∩ −V ∞)]
⊥

=
{
u | Du ∈ V ⊥

l

}
,

and similarly for the other similar expression in condition (9). Thus, this condition
can be restated as {

Pu = 0, Du ∈ V ⊥
l ⇒ u = 0,

Qv = 0, D∗v ∈ U⊥
l ⇒ v = 0.

We first show that for a closed convex set S and any w ∈ NS(s), Sl ⊂ w⊥. The
condition for w ∈ NS(s) is that for all x′ ∈ S, (x′ −x) ·w ≤ 0, in particular, for every
l ∈ Sl, l · w ≤ 0. But Sl is a subspace, so it must be that l · w = 0. This shows that
Sl ⊂ w⊥. Also note that Sl ⊂ TS(s).

Pick any (a, b) with J∗
0 (a, b) finite. As J∗

0 is piecewise linear-quadratic, ∂sJ∗
0 (a, b)

is nonempty. Pick any (ū, v̄) ∈ ∂sJ∗
0 (a, b). This is equivalent to (a, b) ∈ ∂sJ0(ū, v̄),

meaning a − Pū + D∗v̄ ∈ NU (ū) and b + Qv̄ + Dū ∈ −NV (v̄), and consequently
Ul ⊂ (a − Pū + D∗v̄)⊥ and Vl ∈ (b + Qv̄ + Dū)⊥. This implies that Ul ⊂ U0 and
Vl ⊂ V0, so then Ul ⊂ U0 ∩ −U0, Vl ⊂ V0 ∩ −V0 and also U⊥

l ⊃ (U0 ∩ −U0)
⊥,

V ⊥
l ⊃ (V0 ∩ −V0)

⊥.
In view of the above inclusions, condition (9) implies that (33) holds everywhere.

That is, in the neighborhood of every point where J∗ is finite, this function is also
differentiable—therefore, in particular, finite. But the domain of J∗

0 is a polyhedral,
so also closed, set. Then J∗

0 is finite and differentiable everywhere.
A corresponding notion of convergence for convex-concave functions is that of

epi/hypo-convergence. We will only use it for sequences of convex-concave functions
which are modulated (in the sense of Rockafellar [24]), that is, for sequences which
satisfy the following: for some ρ ≥ 0 and some i0, we have, for all i > i0,

inf
|w|≤ρ

Ki(w, z) ≤ ρ(1 + |z|) ∀z, sup
|z|≤ρ

Ki(w, z) ≥ −ρ(1 + |w|) ∀w.(34)

Under Assumption 4.3, the sequence of functions (y, x) → Hi(x, y) is modulated.
This can be seen by looking at the equivalent to Assumption 3.1 growth conditions



1808 RAFAL GOEBEL

on the Hamiltonian, as described in Rockafellar and Wolenski [27], Theorem 2.3; see
also our proof of Corollary 4.8. A sequence of (equivalence classes of) convex-concave
functions Ki is said to epi/hypo-converge to K if

lim
ε↘0

[
lim sup

zi→z,i→∞

(
inf

|wi−w|≤ε
Ki(wi, zi)

)]
≤ K(w, z),(35)

lim
ε↘0

[
lim inf

wi→w,i→∞

(
sup

|zi−z|≤ε

Ki(wi, zi)

)]
≥ K(w, z).(36)

Lemma 5.4 (convergence of finite saddle functions). Let Ki, i = 1, 2, . . . and K
be finite-valued convex-concave functions on R

k × R
l. The following are equivalent:

(a) Ki converge epi/hypo-graphically to k,
(b) Ki converge pointwise to k,
(c) Ki converge uniformly to k on every compact subset of R

k × R
l.

Proof. Assume (a). Subdifferentials of Ki converge graphically to that of K, this
follows from an extension of Attouch’s theorem for convex functions; see [24, Theorem
4.3]. As subdifferentials of K are convex-valued, Exercise 5.34 in [26] implies the
existence of N > 0, ε0 > 0 such that, ‖∂wKi(w

′, z′)‖ < N for (w′, z′) ∈ (w, z) + ε0B.
For ε < ε0 we have inf |wi−w|≤ε Ki(wi, zi) ≥ Ki(w, zi) − εN . Using this in (35) we get

K(w, z) ≥ lim
ε↘0

[
lim sup

zi→z,i→∞
(Ki(w, zi) − εN)

]
≥ lim

ε↘0

[
lim sup
i→∞

(Ki(w, z) − εN)
]

= lim sup
i→∞

Ki(w, z).

Symmetric argument shows that K(w, z) ≤ lim infi→∞ Ki(w, z), and thus Ki converge
to K pointwise. Implication (b)⇒(c) was shown in [19, Theorem 35.1], while (c)⇒ (a)
is simple—it follows from the uniform continuity of K and the definition of epi/hypo-
convergence.

Proof (Lemma 4.4). The equivalence of (a) and (b) follows from the definitions of

L̃i, L̃ and the fact that convex conjugacy preserves epi-convergence; see, for example,
Theorem 11.34 in [26]. An extension of this fact to partial conjugacy, first shown by
Attouch, Aze, and Wets [1] and specialized to modulated sequences in [24, Theorem
4.1], implies that (a) is equivalent to the “hypo/epi-convergence” of Hi to H. As
the Hamiltonians are finite, hypo/epi-convergence is equivalent to their pointwise
convergence.

We conclude by discussing the convergence of extended piecewise linear-quadratic
problems. Let Ci(τ, ξ) be defined as in (3) by matrices Ai, Bi, Ci, Di, Pi, Qi, vectors
pi, qi and sets Ui, Vi. To study the convergence of {Ci(τ, ξ)} to C(τ, ξ) one could
analyze the sequence of Lagrangians {Li} defined as in (11), with the help of the cal-
culus of epi-convergence, as described for example in [26, Chapter 7]. We propose an
alternate way, suggested by Lemma 4.4 and Example 5.1—we focus on Hamiltonians
and rely on the lemma below.

Lemma 5.5 (convergence of constrained saddle functions and their conjugates).
Suppose that

(a) ki : R
k × R

l �→ R, i = 1, 2, . . . , are convex-concave functions converging
pointwise to a finite-valued convex-concave function k;

(b) Wi ∈ R
k, Zi ∈ R

l, i = 1, 2, . . . , are nonempty closed convex sets converging,
respectively, to nonempty closed convex sets W , Z.
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Let [Ki] be the equivalence class of convex-concave functions determined by ki and
Wi ×Zi, similarly define [K] by k and W ×Z, and assume that {[Ki]} is modulated.
Then the sequence {[Ki]} epi/hypo-converges to K. Consequently, the sequence {[Mi]}
given by

Mi(a, b) = sup
w∈Wi

inf
z∈Zi

{a·w+b·z−ki(w, z)}, Mi(a, b) = inf
z∈Zi

sup
w∈Wi

{a·w+b·z−ki(w, z)}

epi/hypo-converges to [M ] described by

M(a, b) = sup
w∈W

inf
z∈Z

{a ·w+ b · z− k(w, z)}, M(a, b) = inf
z∈Z

sup
w∈W

{a ·w+ b · z− k(w, z)}.

If all four of the functions above are finite-valued, the equivalence classes [Mi] and
[M ] consist of just one function each, and the convergence is pointwise.

Proof. We show that (35) holds for {Ki} and K; the argument for (36) is sym-
metrical. When w �∈ W , there is nothing to prove, as K(w, z) = +∞. Suppose that
w ∈ W and fix ε > 0. There exists a sequence w̄i → w with w̄i ∈ Wn, and we have

lim sup
zi→z,i→∞

(
inf

|wi−w|≤ε
Ki(wi, zi)

)
≤ lim sup

zi→z,i→∞
Ki(w̄i, zi).

If z �∈ Z, any sequence zi → z must eventually satisfy zi �∈ Zi, and thus Ki(w̄i, zi) =
−∞. Thus

lim sup
zi→z,i→∞

(
inf

|wi−w|≤ε
Ki(wi, zi)

)
= −∞ = K(w, z).

Now note that

lim sup
zi→z,i→∞

(
inf

|wi−w|≤ε
Ki(wi, zi)

)
≤ lim sup

zi→z,i→∞
Ki(w̄i, zi)

≤ lim sup
zn→z,n→∞

kn(w̄n, zn) = k(w, z),

where the equality follows from the fact that ki converge to k uniformly on any
compact neighborhood of (w, z) (Lemma 5.4). If z ∈ Z, k(w, z) = K(w, z), and this
shows the epi/hypo-convergence of {Ki} to K.

Epi/hypo-convergence is preserved under saddle function conjugacy [24, Theorem
4.2]. As {Mi} are saddle conjugates of {Ki} (in (31) the infimum and supremum
need to be taken only over the sets where the function values are finite), epi/hypo-
convergence of {Ki} to K implies that of {Mi} to M . The last statement follows from
Lemma 5.4.

A related result was shown by Wright [29]. It concluded the convergence of {Ki},
if each Ki had the form k′i(w) − k′′i (z) − w · Dz (separable saddle function plus a
constant biaffine term); convergence of Mi was not addressed there. Also in [29],
epi/hypo-convergence was employed to study discrete approximations of C(τ, ξ).

Theorem 5.6 (convergence of piecewise linear-quadratic Hamiltonians). Assume
that matrices Ai, Bi, Ci, Di, Pi, Qi, vectors pi, qi and sets Ui, Vi defining the problem
Ci(τ, ξ) converge, respectively, to A, B, C, D, P , Q, p, q, U , V defining C(τ, ξ).
Suppose also that the data in Ci(τ, ξ), i = 1, 2, . . . , and C(τ, ξ) satisfies the conditions
of Theorem 2.2. Then Hamiltonians Hi converge pointwise to H.

Proof. The sequence of functions Ji corresponding to Ci(τ, ξ) as in (32) is modu-
lated (too see this, note that there exist ui ∈ Ui converging to some u ∈ U , and for



1810 RAFAL GOEBEL

some ρ > 0, inf |u|≤ρ J i(u, v) is bounded above by pi · ui + 1
2ui ·Piui + qi · v− v ·Diui;

this shows the first inequality in (34)). The quadratic expressions defining Ji in (32)
converge pointwise (on the whole space) to that of J . Lemma 5.5 guarantees that
{Ji} as well as {J∗

i } epi/hypo-converge to, respectively, J and J∗. As the functions
J∗
i and J∗ are finite, their convergence is uniform on compact sets by Lemma 5.4.

But then, it also implies the pointwise convergence of Hamiltonians Hi.
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