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Stabilizing a Linear System With Saturation
Through Optimal Control

Rafal Goebel

Abstract—We construct a continuous feedback for a saturated system
_ ( ) = ( ) + ( ( )). The feedback renders the system asymp-
totically stable on the whole set of states that can be driven to 0 with an
open-loop control. The trajectories of the resulting closed-loop system are
optimal for an auxiliary optimal control problem with a convex cost and
linear dynamics. The value function for the auxiliary problem, which we
show to be differentiable, serves as a Lyapunov function for the saturated
system. Relating the saturated system, which is nonlinear, to an optimal
control problem with linear dynamics is possible thanks to the monotone
structure of saturation.

Index Terms—Convex Lyapunov function, feedbacl stabilization, linear
system, optimal control, saturating actuator.

I. INTRODUCTION

Global asymptotic stabilization of a linear system with saturating
actuators

_x(t) = Ax(t) +B� (u(t)) (1)

cannot, in general, be achieved with a linear feedback. Moreover, if an
eigenvalue of A has a positive real part and � is bounded, the set X0

consisting of all states that can be driven to 0 with an open-loop control
will not equal the whole state–space. If such eigenvalues are excluded,
continuous feedbacks globally stabilizing (1) exist under mild assump-
tions on �, as shown by Sontag and Sussmann [19] and Sontag et al.
[20]. Also then, semiglobal stabilization can be achieved with linear
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feedback possessing additional properties like robustness and distur-
bance rejection; see [18]. For the general case, much work has been
devoted to estimating X0 and to semiglobal stabilization on X0 (that
is, to constructing feedbacks stabilizing (1) on any a priori given com-
pact subset of X0); see [13] and the numerous references therein. A
positive result on semiglobal stabilization with a continuous feedback
of a linear system under both input and state constraints was recently
shown by Stoorvogel et al. [21].
To summarize, the existence of a continuous static feedback that ren-

ders the saturated system (1) asymptotically stable on the whole setX0

has not been established. We prove it here, by exhibiting a feedback
which guarantees that the resulting trajectories of (1) are optimal for
the following linear-convex regulator problem:

LCR(x0) :

minimize
1

0

1

2
x(t) �Qx(t) + r (w(t))dt

s:t:
_x(t) = Ax(t) +Bw(t)

x(0) = x0:

(2)

This problem has no saturation but information about � is captured by
the convex penalty function r. The stabilizing feedback for the satu-
rated system (1) will turn out to be closely related to the optimal feed-
back for the LCR. In (2), the control variable is denoted w(�) to dis-
tinguish it from u(�) in (1)—these are not the same, andQ is any sym-
metric and positive–definite matrix.
Before describing the relationship between the saturation � and the

convex function r appearing in (2), we state the assumptions, which
are posed throughout this note.

A1) The pair (A;B), whereA 2 IRn�n,B 2 IRn�k , is control-
lable.

A2) The saturation function � : IRk 7! IRk has the form �(u) =
(�1(u1); �2(u2); . . . ; �k(uk)), where �i(0) = 0, �i is non-
decreasing on IR and strictly increasing on a neighborhood
of 0, i = 1; 2; . . . ; k.

Under A2), there exists a convex function s : IRk 7! IR with s(0) =
0 and with the gradient rs = �. Then, r is taken to be the convex
function conjugate to s in the sense of convex analysis; see [14]. We
explain this in detail in Section II.
Introducing a LCR as an auxiliary optimal control problem is a nat-

ural idea. Feedbacks stabilizing a linear system _x(t) = Ax(t)+Bu(t)
can be found with the help of a LQR problem. When � in (1) is the
standard saturation, that is �i(ui) equals ui if �1 � ui � 1, �1
if ui < �1, and 1 if ui > 1, one can consider a linear-quadratic
regulator with a control constraint juij � 1. With a well-known opti-
mization technique, one can express the constrained LQR in theLCR
format (2): let r be quadratic if u satisfies the constraint, and equal to
+1 otherwise. The use of value functions of auxiliary problems as
Lyapunov functions is possible for general nonlinear systems, but need
not result in a smooth function, and the resulting stabilizing feedbacks
need not be continuous; see [6] and [5]. The expected lack of conti-
nuity of optimal feedbacks for problems with nonlinear dynamics was
a part of the motivation for an alternate approach to stabilization of a
saturated system in [20].
The special structure of LCR has important consequences for the

value function V (x0) defined as the optimal value in (2). Most impor-
tantly, V is a convex function. It is positive definite, has finite values
on the open and convex set X0 while V (x0) = +1 if x0 62 X0, and
its sublevel sets fxjV (x) � �g are compact for each � � 0. Finally,
we prove it is differentiable on X0, and then continuity of rV on X0

[which will be the key to continuity of the stabilizing feedback for (1)]
follows from a general property of convex functions. Details are pro-
vided in Section III.

0018-9286/$20.00 © 2005 IEEE
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Fig. 1. From a saturation function to a convex cost function (standard saturation).

With the differentiability of V established, standard dynamic pro-
gramming arguments, outlined following Corollary 3.2, show that the
optimal feedback for the LCR is

w = FLCR(x) = rs (�B�rV (x))

which is equivalent to FLCR(x) = argmaxwf�rV (x(t)) � Bw �
r(w)g. Optimal trajectories x(�) resulting from applying this optimal
feedback to the linear system satisfy

d

dt
V (x(t)) � �1

2
x(t) �Qx(t) (3)

and, hence, x(t) ! 0 as t ! 1.
Now, the relationship between the saturated system andLCR should

become clear. Since rs = �, the nonsaturated linear system with the
feedback w = rs(�B�rV (x)) is exactly the same as the saturated
system (1) with the feedback

u = F (x) = �B�rV (x):

This means that F is a stabilizing feedback for the saturated system.
Moreover, (3) shows that the value function for LCR serves as a clas-
sical Lyapunov function for the saturated system. We state this more
precisely in Section IV.

II. SATURATION FUNCTIONS AS GRADIENTS

The key to our approach is expressing the saturation function � of
the saturated linear system (1) as a gradient of a convex function. A
standard reference for the convex analysis facts we use later is the book
by Rockafellar [14].
Example 2.1: Let � : IR 7! IR be continuous and nondecreasing,

with �(0) = 0. Then

s(u) =

u

0

�(t)dt

defines a differentiable convex function s : IR 7! IR, with s(0) = 0,
s � 0, and, of course, s0 = �. Other often assumed properties of �
reflect in those of s. For example, if �(u) = 0 only for u = 0, then s
is positive definite. Also, if lim infu!0(�(u))=u > 0—equivalently,
if for some � > 0, � > 0, we have u�(u) � �u2 for juj < �—then
s(u) is bounded below by (1=2)�u2 if juj < �, by ���u � (1=2)��2

if u � ��, and by ��u � (1=2)��2 if � < u. Finally, if � is globally
Lipschitz with constant l, then s(u) � (l=2)u2. Here, the important
relationship is between strict convexity of s on a neighborhood of 0
and � being strictly increasing on such a neighborhood.

Statements just made can be easily verified for the standard satura-
tion function � : IR 7! [�1; 1], which is the derivative of the following
convex function:

s(u) =

�u� 1

2
; for u < �1

1

2
u2; for �1 � u � 1

u� 1

2
; for 1 < u.

(4)

Example 2.2: Suppose �(u) = (�1(u1); �2(u2); . . . ; �k(uk)),
with each �i nondecreasing on IR, and �(0) = 0. With each �i we
can associate a convex function si as outlined in Example 2.1. Then,
� = rs for s(u) = k

i=1
si(ui), which is of course a convex

function. Growth properties of s can be analyzed in terms of that of
�i’s. In particular, s is strictly convex on a neighborhood of 0 2 IRk

if and only if each �i is strictly increasing on some neighborhood of
0 2 IR.
Now, we explain how the convex function r, representing the control

cost in the linear-convex regulator (2), is related to �. Given a convex
function s with rs = � and s(0) = 0, we set r to be the convex
function conjugate to s in the sense of convex analysis [14, Ch. 12]

r(w) = sup
u2IR

fw � u� s(u)g : (5)

This function is convex and lower semicontinuous. It need not be finite
everywhere—for some w, we may have r(w) = +1. Also, r need
not be differentiable. Its subdifferential @r defined by @r(w) = fz 2
IRk j r(w0) � r(w)+z�(w0�w) 8w0 2 IRkg is the set-valued inverse
of rs [14, Ch. 23]. The latter equals �, and need not be invertible in
the classical sense.
In many cases of practical interest, r can be found directly.

First, observe that the very definition (5) implies that when
s(u) = k

i=1
si(ui), as in Example 2.2, r(w) is given by

sup
u2IR

fw�u�s(z)g=
k

i=1

sup
u 2IR

fwi �ui�si(ui)g=
k

i=1

ri(wi)

where ri is the convex conjugate of si. That is, r can be found compo-
nentwise. We now give some one-dimensional examples.
Example 2.3: Consider the standard saturation �, shown in

Fig. 1(b). The function s given by (4), and shown in Fig. 1(a), can
be used to calculate r directly from the definition (5). An alternate
approach is to look at the set-valued inverse of �, equal to @r, which
is shown in Fig. 1(c). Then, it remains to “integrate” @r to obtain r,
shown in Fig. 1(d).
Explicit formulas for @r and r are as follows:

@r(w) =

;; for w < �1

(�1; 1]; for w = �1

w; for �1 < w < 1

[1;+1); for w = 1

;; for w > 1.

r(w) =
1

2
w2; for w 2 [�1; 1]

+1; for w 62 [�1; 1].

Example 2.4: Consider �(u) = u=
p
u2 + 1, which is a derivative

of s(u) =
p
u2 + 1 � 1. The conjugate r can be found through (5).

Alternatively, ��1(w) = r0(w) = w=
p
1� w2 for w 2 (�1; 1),

while for w 62 (�1; 1), ��1(w) = r0(w) = ;. Then, r(w) can be
found, for any w 2 [�1; 1], by integrating r0. This leads to r(w) =
1�p1� w2 on [�1, 1], while r(w) = +1 forw 62 [�1; 1]. Fig. 2(a)
shows s, Fig. 2(a) shows �, Fig. 2(a) displays ��1 = r0, and r is in
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Fig. 2. From a saturation function to a convex cost function (saturation of Example 2.4).

Fig. 2(a). Note a slight discrepancy between the set of points where r is
finite and the set of points where @r, which reduces to r0, is nonempty.

The set dom r = fw 2 IRnjr(w) < +1g need not equal IRn.
In fact r(w) = +1 whenever w 62 rge � (the closure of the range
of �). Infinite values of r introduce a control constraint to the linear-
convex regulator: feasible controls must satisfyw(t) 2 dom r. For the
standard saturation this yields w(t) 2 dom r = rge � = [�1; 1]. In
general rge� � dom r. (The equality rge � = dom r fails in Example
2.4.) For details, see the beginning of [14, Sec. 24].

To summarize this section, we state the following.
Fact 2.5: (Saturation and Convex Functions): Given a saturation

function � as in Assumption A2), there exist convex functions s :
IRk 7! [0;+1) and r : IRk 7! [0;+1] related to each other by
(5) and such that

i) s is differentiable,rs = �, s(0) = 0, and s is strictly convex
on some neighborhood of 0;

ii) r is positive definite and on some neighborhood of 0, it has
finite values.

III. VALUE FUNCTION FOR LCR

The value function of the linear-convex regulator

V (x0) = inf

1

0

1

2
x(t) �Qx(t) + r (u(t))dt

j _x(t) = Ax(t) +Bu(t); x(0) = x0 (6)

with the minimization carried out over all locally integrable controls
u : [0;+1), is obviously positive definite. It may occur that for some
x0 2 IRn, V (x0) = +1; this is the case when no control makes the
integral in (6) finite.

A key property of V is that it is a convex function on IRn. This is
a consequence of a general principle that value functions for convex
optimization problems are convex; see [16]. Here, since a composition
of an affine map with a convex function is convex, and the trajectory
x(�) depends affinely on x0 and u(�), the integral in (6) is a convex
function of x0 and u(�). Minimizing it with respect to u(�) yields a
convex function of x0. Convexity can also be verified directly through
the definition of convexity, the infinite values just require some extra
care.

A consequence of the value function being convex is that the level
sets of V , being fx 2 IRn j V (x) � �g, are convex and bounded
for each � 2 IR. Boundedness follows from the existence of a
single nonempty and bounded level set [14, Cor. 8.7.1]: we have
fx 2 IRnjV (x) � 0g = f0g. In turn, boundedness implies that
any process (�x(�), �u(�)) for which the integral in (6) is finite satisfies
�x(t)! 0 as t!1. Indeed, from the definition of the value function
it follows that

V (�x(t)) �

1

t

1

2
�x(t) �Q�x(t) + r (�u(t))dt

for every t � 0, and the aforementioned integral tends to 0 as t! +1.
We now argue that the set dom V = fx 2 IRn j V (x) < +1g is

open. (This also follows from Lemma 4.2 of this note and [21, Lemma
9].) By continuity of r at 0 and controllability of (A;B), dom V con-
tains some neighborhoodN of 0. Pick any x0 2 dom V , and let (�x(�),
�u(�)) be a process for which the integral in (6) is finite. For someT > 0,
�x(T ) 2 N . Thus, any x00 from some neighborhood of x0 can be driven
into N by the control �u(�) truncated to [0, T ]. This shows that V (x00)
is finite and, thus, dom V is open.
The main result of this section claims the smoothness of V , which

will turn out to be the key to the continuity of the stabilizing feedback
for the saturated system.
Theorem 3.1: (Differentiability of V ): The value function V is dif-

ferentiable at every point of dom V and krV (xi)k ! +1 for any
sequence of points xi 2 dom V converging to a point not in dom V .
The gradient rV is continuous on dom V . The function V is strictly
convex.
Some results guaranteeing differentiability of value functions in

similar settings exist, but do not directly apply here. Benveniste and
Scheinkman [2] and Gota and Montrucchio [12] require r to be
differentiable and the optimal controls to be interior in some sense;
neither assumption is met here.1 Rockafellar [15] showed that if the
(maximized) Hamiltonian is strictly concave in x, strictly convex in p,
the value function is differentiable. The Hamiltonian for LCR is

H(x; p) = p � Ax �
1

2
x �Qx+ s(B�p): (7)

It is not strictly convex in p unlessB is invertible and s is strictly convex
everywhere. Barbu [1] incorporated a controllable linear system to the
framework of [15], under additional growth properties ofH . Ideas from
[15] and [1] can be combined to show that V is differentiable around
0. Then, writing LCR as a finite time problem with a terminal penalty
V and applying [9, Th. 3.1] could be used to obtain a global statement.
Instead, we rely on strict convexity of the dual optimal value function
and on a duality result of Goebel [8]; see also [10].

Proof: (of Theorem 3.1.): Differentiability properties of V as
stated in the first sentence of Theorem 3.1 can be equivalently ex-
pressed in terms of the convex function conjugate to V . Theorem 3.4
of [8] describes this conjugate as the value function of a dual optimal
control problem

W (p0) = inf

+1

0

s (B�

p(t)) +
1

2
z(t) �Q�1z(t)dt

j _p(t) = �A�p(t)� z(t); p(0) = p0g : (8)

That is, the convex conjugate of V is W (��) and vice versa:
W (�p0) = supx fp0 � x0 � V (x0)g, V (x0) = supp fx0 � p0 �
W (�p0)g. In (8), z(�) should be thought of as a (dual) control vari-
able. Arguments similar to those at the beginning of the current section
show it is a positive–definite convex function and that processes (p(�),
z(�)) for which the integral in (8) is finite are such that p(t) ! 0 as

1These two works represent a wide body of theoretical economics research
devoted to optimal control on infinite time intervals, a good source of references
is [4].
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t ! 0; thus [8, Th. 3.4] applies. Now, [14, Th. 26.3] states that if W
is strictly convex on dom W , then V has the desired differentiability
properties.

Convexity of W means that W ((1 � �)p00 + �p000 ) � (1 �
�00)W (p00)+�W (p000 ) for all p

0
0, p

00
0 , all � 2 [0; 1]. IfW is not strictly

convex on dom W , then for some p00 6= p000 with W (p00), W (p000 )
finite, and some � 2 (0; 1) we have, for p�0 = (1 � �)p00 + �p000 ,
thatW (p�0 ) = (1� �00)W (p00) + �W (p000 ). Let (p

0(�), z0(�)), (p00(�),
z00(�)) be optimal processes forW (p00),W (p000 ). The last equality and
strict convexity of the quadratic function given by Q�1 imply that
for all t � 0, z0(t) = z00(t). Indeed, otherwise the process given by
p�(t) = (1 � �)p0(t) + �p00(t), z�(t) = (1 � �)z0(t) + �z00(t),
with p�(0) = p�0 , yields a cost lower than W (p�0 ). Similarly,
B�p0(t) = B�p00(t) for all sufficiently large t (since s is strictly
convex on a neighborhood of 0). As (�A�, B�) is detectable, for such
t’s, p0(t) = p00(t). However, then, since z0(t) = z00(t) for all t � 0,
we also have p0(t) = p00(t) for all t � 0. In particular, p0(0) = p00(0)
what contradicts p00 6= p000 . Thus,W is strictly convex on domW .

With differentiability of V on dom V established, continuity ofrV
follows, as V is a convex function; see [14, Cor. 25.5.1]. Strict con-
vexity of V can be verified directly, using arguments as those in the
previous paragraph.
Corollary 3.2: (Optimal Feedback forLCR): ThemappingFLCR :

dom V ! IRk defined by FLCR(x) = rs(�B�rV (x)) is the op-
timal feedback for LCR. That is, for any x0 2 dom V , the process
(x(�),w(�))with x(�) being the solution to x(0) = x0, _x(t) = Ax(t)+
Bw(t) and w(t) = FLCR(x(t)), is optimal for LCR(x0).

We outline the standard argument. The value function V satisfies the
Hamilton–Jacobi equation

H (x;�rV (x)) = 0; for all x 2 dom V (9)

where H is given by (7). (In fact the value function is the unique pos-
itive semidefinite, lower semicontinuous, and convex function satis-
fying H(x;�@V (x)) = 0; see [8].) From the definition of r in terms
of s in (5), one can see that r(rs(u)) = rs(u) � u � s(u). This and
the Hamilton–Jacobi equation show that

d

dt
V (x(t)) = �

1

2
x(t) �Qx(t)� r (w(t)) (10)

which implies both that x(t) ! 0 as t ! 0 and that x(�) is optimal
for LCR(x0). The latter follows from integrating (10) on [0;+1) and
comparing the result with the definition of V (x0). Additionally, this
shows that the optimal control w(�) is continuous and w(t) ! 0 as
t ! 1.

We note that the solutions to the closed-loop equation _x(t) =
Ax(t) + BFLCR(x(t)) are unique, even though in general the
right-hand side need not be Lipschitz continuous. This is a conse-
quence of the uniqueness of optimal processes for LCR. (Assuming
that for some x0 there exist two different optimal processes for (2)
leads to a contradiction, through arguments very similar to those used
in the proof of strict convexity of W in the proof of Theorem 3.1.)
Finally, we add that the conditions in Corollary 3.2 are not only suffi-
cient, but also necessary for optimality; this follows from Proposition
3.7 and Corollary 3.8 in [8].

IV. STABILIZING FEEDBACK FOR SATURATED SYSTEMS

We are now ready to state our main result.
Theorem 4.1: (Stabilizing Feedback for Saturated Sys-

tems): Consider the system

_x(t) = Ax(t) +B� (u(t)) (11)

under assumptions A1) and A2). LetX0 be the set of all x0 2 IRn for
which there exists a piecewise continuous control u : [0;+1) 7! IRk

such that the solution of (11) with x(0) = x0 converges to 0. Let
Q 2 IRn�n be any symmetric and positive–definite matrix.
Then, there exists a continuous mapping F : X0 7! IRk and a

convex, positive–definite, and differentiable function V : X0 7! IR

such that, for any x0 2 X0, the solution x(�) to

_x(t) = Ax(t) +B� (F (x(t))) (12)

with x(0) = x0 satisfies

d

dt
V (x(t)) � �

1

2
x(t) �Qx(t) (13)

so that x(t) ! 0 as t ! +1.
As may be now expected, justification of Theorem 4.1 hinges upon

translating the optimal feedback for LCR to a stabilizing feedback for
the saturated system. First, we need to relate the set where the value
function V is finite to X0.
Lemma 4.2: X0 = dom V .
Proof: Fix x0 2 X0. There exists a piecewise continuous con-

trol such that the resulting solution of the saturated system, originating
at x0, converges to 0. As � is continuously invertible around 0 and (A
and B) is controllable, x0 can be steered to 0 by a piecewise contin-
uous control u(�) in finite time, say T > 0. Then, the control w(t) =
�(u(t)) on [0; T ] and w(t) = 0 for r > T and the resulting trajec-
tory of _x(t) = Ax(t) + Bw(t) yields a finite cost in (6). Indeed, as
rge � � dom r (by the discussion at the end of Section II), r(w(�)) is
piecewise continuous, x(�) is continuous, and both are 0 outside a com-
pact interval. Thus, V (x0) < +1 which means thatX0 � dom V .
On the other hand, if x0 2 dom V , then the solution of

_x(t) = Ax(t) +Brs (�B�
rV (x(t))) (14)

converges to 0; see Corollary 3.2. By construction,rs = �, so u(t) =
�B�rV (x(t)) is the control required by the definition of X0. Thus
dom V � X0.

Proof: (of Theorem 4.1): Given (11) and a matrixQ as assumed,
let V be the value function (6) with the convex function r given by (5)
and s such that s(0) = 0, rs = �. Corollary 3.2 and the discussion
following it show that for any point x0 2 domV , so by Lemma 4.2, for
any point x0 2 X0, the solution x(�) to (14) with x(0) = x0 satisfies
(13). As by constructionrs = �, the mapping F : X0 7! IRk defined
by

F (x) = �B
�
rV (x) (15)

satisfies the conclusions of Theorem 4.1. Continuity was established in
Theorem 3.1.

V. COMMENTS AND EXTENSIONS

We nowmake several comments regarding our main result, Theorem
4.1, and the constructions leading up to it.

i) The stabilizing feedbackF for the saturated system is not the
same as the optimal feedback for LCR. However, by con-
struction, trajectories of the saturated system with u(t) =
F (x(t)) agree with optimal trajectories for the linear-convex
regulator.

ii) The optimal feedback FLCR for the linear-convex
regulator is related to the stabilizing feedback F by
FLCR(x) = �(F (x)), and when � is invertible,
F (x) = ��1(FLCR(x)). When � is not invertible, the
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Fig. 3. Examples of admissible saturations

relationship F (x) = ��1(FLCR(x)) is not valid even in the
set-valued sense, as then ��1 is not single-valued.

iii) Our construction of F does not rely on considering ��1, not
even on a subset of rge � on which � is invertible (as was,
for example, the approach of [19]). Partly due to this, F (and
not just �(F (�))) is continuous even when the saturation �
is not invertible on “large” subsets of rge �. Furthermore,
we do not request that � be Lipschitz, differentiable at 0, or
bounded. Examples of saturations we allow are sketched in
Fig. 3.

iv) When � is an identity on some neighborhood of 0, which is
the case for the standard saturation �, then rV , and con-
sequently FLCR, is locally Lipschitz. This can be shown
through strong (not just strict) convexity of the dual value
function W used in the proof of Theorem 3.1 and a conju-
gacy relationship in Proposition 12.60 of [17], or by writing
V in terms of a finite-horizon problem and using results of
[7].

v) When � is invertible, and generally, when there exists a con-
tinuous mapping � on rge � such that �(�(w)) = w forw 2
rge � (as is the case, for example, for the standard saturation,
but not for the saturation sketched above on the left), then
other choices of the function r in (2) can be considered. Pre-
cisely, if s and r are functions as described by Fact 2.5, with
the conditionrs = � replaced by rgers = rge �, then the
resulting LCR fits our framework and �(rs(�B�rV (x)))
is a continuous stabilizing feedback for the saturated system.

vi) LCR is a convex optimization problem. From the numer-
ical computation viewpoint, such problems have many ad-
vantages over their nonconvex counterparts; see [3]. A seem-
ingly more obvious choice of an auxiliary problem, with a
convex or even quadratic cost and the dynamics provided by
the saturated system, does not lead to a convex problem and
is unlikely to yield a regular feedback or even a regular value
function (which need not be convex); time-optimal control
has similar drawbacks. Convexity also yields a global de-
scription ofrV in terms of a Hamiltonian dynamical system
associated with LCR [8, Prop. 3.7]. This suggests a numer-
ical method for computing the feedback which does not re-
quire the calculation of optimal values of LCR. For details
and numerical examples for the standard saturation case, see
[11].

vii) An approach different from ours, but with some convex struc-
ture, would be to find a Lyapunov function ~V for the satu-
rated system as a solution to the Hamilton–Jacobi inequality

inf
u

r~V (x) � (Ax +B�(u)) � �
1

2
x �Qx

which translates to H(x;�r~V (x)) � 0 for H(x; p) =
p �Ax� (1=2)x �Qx+sup

w2rge � p �Bw � 0. This Hamil-
tonian is concave in x, convex in p, similarly to (7) corre-
sponding to LCR. However, it is not finite everywhere un-
less � is bounded. Also, it is not clear if solutions are smooth

(sinceH is not strictly convex in p anywhere). Furthermore,
recovering the stabilizing feedback for the saturated system
would need to involve ��1 in some way.

viii) The componentwise structure of � as in assumption A2) is
not necessary for our main result, as long as the conclusions
of Fact 2.5 remain valid. Corollary 5.1 makes this precise,
and Example 5.2 shows a saturation function without the
componentwise structure.

Corollary 5.1: The conclusions of Theorem 4.1 hold for any � such
that functions s, r as described in Fact 2.5 exist.
This is true since the statements in Section III and the proof of The-

orem 3.1 only invoke Fact 2.5. Lemma 4.2 requires that ��1 be con-
tinuous around 0. However, ��1 = rr there, as differentiability of r
around 0 is implied by strict convexity of s around 0, and rr is con-
tinuous, as the gradient of any differentiable convex function is. We
now give an example of � which satisfies the assumption of Corollary
5.1, but does not have the componentwise structure. For such saturation
functions, calculating s and r is less simple, and makes use of calculus
rules for conjugate convex functions; see [14] or [17, Ch. 11].
Example 5.2: (Projection Onto a Convex Set): The standard satura-

tion � on IR can be thought of as a projection of u onto [�1, 1]—for
any u, �(u) is the point in [�1; 1] closest to u. In general, if C is a
nonempty, closed, and convex set in IRk , the projection onto it, denoted
PC , is a well-defined continuous mapping, with Lipschitz constant 1;
see, for example, [17, Cor. 12.20]. Then also PC = rs for a convex
function r given by

s(u) = inf
z2IR

sup
c2C

z � c+
1

2
ku� zk2 : (16)

This formula becomes much clearer for particular choices ofC . For ex-
ample, considerC to be the unit ball in IRk . The map PC is an identity
for points in C , and a radial projection onto the unit sphere for points
outside it (that is, PC(u) = u=kuk). Then, sup

c2C u � c = kuk, and
s(u) = (1=2)kuk2 for kuk � 1, kuk � 1=2 for kuk > 1. When
k = 1, this reduces to the function r corresponding to standard sat-
uration. Note also that this s is strictly convex around 0. In fact, this
property is present whenever 0 is in the interior of C .
The conjugate r of (16) can be found through Example 11.4 and

Theorem 11.23 in [17]

r(w) =
1

2
kwk2; for w 2 C

+1; for w 62 C.

The standard saturation is to a special instance of the aforementioned
formula.
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Consensus Seeking in Multiagent Systems Under
Dynamically Changing Interaction Topologies

Wei Ren and Randal W. Beard

Abstract—This note considers the problem of information consensus
among multiple agents in the presence of limited and unreliable infor-
mation exchange with dynamically changing interaction topologies. Both
discrete and continuous update schemes are proposed for information
consensus. This note shows that information consensus under dynamically
changing interaction topologies can be achieved asymptotically if the union
of the directed interaction graphs have a spanning tree frequently enough
as the system evolves.

Index Terms—Cooperative control, graph theory, information con-
sensus, multiagent systems, switched systems.

I. INTRODUCTION

The study of information flow and interaction amongmultiple agents
in a group plays an important role in understanding the coordinated
movements of these agents. As a result, a critical problem for coordi-
nated control is to design appropriate protocols and algorithms such
that the group of agents can reach consensus on the shared informa-
tion in the presence of limited and unreliable information exchange
and dynamically changing interaction topologies. Consensus problems
have recently been addressed in [1]–[7], to name a few. In this note,
we extend the results of [2] to the case of directed graphs and present
conditions for consensus of information under dynamically changing
interaction topologies.
In contrast to [2], directed graphs will be used to represent the in-

teraction (information exchange) topology between agents, where in-
formation can be exchanged via communication or direct sensing. A
preliminary result for information consensus is presented in [8], where
a linear update scheme is proposed for directed graphs. However, the
analysis in [8] was not able to utilize all available communication links.
A solution to this issue was presented in [4] for time-invariant commu-
nication topologies. Information consensus for dynamically evolving
information was addressed in [9] in the context of spacecraft formation
flying where the exchanged information is the configuration of the vir-
tual structure associated with the (dynamically evolving) formation.
In many applications, the interaction topology between agents may

change dynamically. For example, communication links between
agents may be unreliable due to disturbances and/or subject to com-
munication range limitations. If information is being exchanged by
direct sensing, the locally visible neighbors of a vehicle will likely
change over time. In [2], a theoretical explanation is provided for
the observed behavior of the Vicsek model [10]. Possible changes
over time in each agent’s nearest neighbors is explicitly taken into
account, and is an example of information consensus under dynami-
cally changing interaction topologies. Furthermore, it is shown in [2]
that consensus can be achieved if the union of the interaction graphs
for the team are connected frequently enough as the system evolves.
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