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Abstract. The paper studies convex Lyapunov functions for differential and difference inclusions
with right-hand sides given by convex processes, that is, by set-valued mappings the graphs of
which are convex cones. Convex conjugacy between weak Lyapunov functions for such inclusions
and Lyapunov functions for adjoint inclusions is established. Asymptotic stability concepts are
compared, and the existence of convex Lyapunov functions for classes of convex processes is shown.
The relevance of the results for the study of asymptotic controllability or stabilizability and of
detectability for linear control systems with conical control and state constraints is underlined.
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1. Introduction. A convex process is a set-valued mapping, the graph of which
is a convex cone. Differential and difference inclusions for which the right-hand side
is a convex process and their asymptotic stability and controllability properties have
been studied, for example, by [3], [38], [39], [2], [8], [34], [17], and [37], for two main
reasons. One reason is that linear control systems with conical constraints, for ex-
ample, nonnegativity constraints on control as in [7], [29], [24], [26] or on states [6],
leading to so-called positive systems [14], [5], can be modeled by convex processes.
Another reason is that convex processes can be used to approximate less regular dy-
namics [16], [8], [37], and through such approximations, properties like controllability
or stability can be analyzed.

For linear dynamical and control systems, there exist various equivalences be-
tween properties of a system and properties of the adjoint, or dual, system. For a
convex process, there exist some characterizations of asymptotic stability through
eigenvalues of the adjoint process [37] recalled here as Theorem 1.1; the duality be-
tween controllability and observability cones for a process and its adjoint has been
shown [3], generalizing some results on linear control system with constraints [7], [29];
and there is a duality between concepts of viability and invariance [2].

The contribution of this paper is to show that convex Lyapunov functions, through
the basic operation of convex conjugacy, can be used to establish implications between
certain asymptotic stability properties of a convex process and other asymptotic stabil-
ity properties of the adjoint process. Asymptotic stability properties and the existence
of convex Lyapunov functions is also studied here in more detail than before in [8],
[37], and the constructions of Lyapunov functions, following the standard approaches
in systems theory, are elementary. Methods used in this paper, convex conjugacy of
Lyapunov functions in particular, are very different from methods used in the works
mentioned above.
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The next two sections discuss the relevance of convex processes for systems theory
and some related results on duality of dynamical systems. Formal definitions of a
convex process, its adjoint, and other notions used in the discussion and in the rest
of the paper are in section 1.3.

1.1. Motivation and relevance for systems theory. The basic example of a
convex process is provided by a linear mapping, F (x) = Ax for a matrix A, in which
case the adjoint convex process is just F ∗(y) = AT y, where AT is the transpose of A.
Asymptotic stability of the linear differential equation

(1.1) ẋ = Ax

is equivalent to asymptotic stability of the dual linear differential equation

(1.2) ẏ = AT y.

This equivalence holds because the eigenvalues of A and of AT are the same, and
asymptotic stability here is equivalent to the eigenvalues having negative real parts.
This equivalence can be also verified by a pair of convex functions conjugate to one
another. Lyapunov [27] showed that asymptotic stability of (1.1) is equivalent to the
existence of a symmetric and positive definite matrix P such that the quadratic and
convex function V (x) = 1

2x ·Px decreases along every solution to (1.1). The decrease
means that PA + ATP is negative definite, which is equivalent to P−1AT + AP−1

being negative definite, which in turn means that V ∗(y) = 1
2y · P−1y, which happens

to be the convex conjugate of V , decreases along every solution to (1.2). This is a basic
case of a pair of convex conjugate Lyapunov functions establishing the equivalence of
asymptotic stability for a convex process and its adjoint.

Another example of a convex process F and its adjoint F ∗ is provided by

(1.3) F (x) = Ax+K, F ∗(y) =
{
AT y if y ∈ K∗,
∅ if y �∈ K∗,

where A is a matrix, K is a closed convex cone, and K∗ is the cone polar to K. When
K is a linear subspace given as the range of a matrix B, weak asymptotic stability
of ẋ ∈ F (x) is exactly the asymptotic controllability or stabilizability of the control
system

(1.4) ẋ = Ax+Bu,

i.e., the property that for every initial point ξ, there exists a control function u on
[0,∞) such that the resulting solution to (1.4) from ξ converges to 0 as t → ∞.
From linear systems theory, see [25], this stabilizability is known to be equivalent to
detectability of the dual linear system

(1.5)

{
ẏ = AT y,
o = BT y,

i.e., the property that every solution to (1.5) for which the output o(t) is always 0 is
convergent to 0 as t→ ∞. When K is the range of B, the dual cone K∗ is the kernel
of BT , and thus detectability of (1.5) is exactly asymptotic stability of ẏ ∈ F ∗(y)
with F ∗ as in (1.3).

Convex processes provide a framework for handling conical constraints and es-
tablishing equivalences as above. For example, consider K to be the image under B
of the nonnegative orthant, in which case the dual cone K∗ consists of all vectors y
for which BT y is in the nonnegative orthant. Then, the object dual to
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3334 RAFAL GOEBEL

ẋ = Ax+Bu, u ≥ 0,

is (1.5) with the constraint that o(t) be nonnegative. The duality between controlla-
bility and observability in such cases was dealt with in [7], [29], [3]. This paper lays
a foundation for analyzing stabilizability and detectability in a format which lets one
treat control and state constraints and continuous and discrete-time dynamics.

1.2. Related instances of duality results. One way of generalizing the du-
ality between asymptotic stability for a linear system and its adjoint is to consider a
linear differential inclusion. In its basic form, it is

(1.6) ẋ ∈ A(x) = conAix,

where Ai, i = 1, 2, . . . , k are matrices and con stands for the convex hull: conAix
is the smallest convex set containing A1x,A2x, . . . , Akx. The dual linear differential
inclusion is

(1.7) ẏ ∈ AT (y) = conAT
i y.

Asymptotic stability of (1.6) was shown to be equivalent to asymptotic stability of
(1.7) by [4]. Asymptotic stability here can also be characterized by a convex Lyapunov
function [28], in fact a smooth one [13]. The equivalence of asymptotic stability
of (1.6) and of (1.7) can then be verified through the use of convex conjugates of
Lyapunov functions [23]. This carries over to discrete-time systems, and for both
discrete-time and continuous-time cases, the Lyapunov function conjugacy leads to
numerical methods of establishing asymptotic stability [20]. It must be noted that the
right-hand sides of (1.6), (1.7) are not convex processes. For example, the mapping
x �→ con{x, 2x}, where x ∈ R, does not have a convex graph.

A different duality was established for a strict and closed convex process F and
its adjoint F ∗ in [3], generalizing [7], [29], which dealt with linear control systems with
nonnegative controls. When translated to the setting of this paper, where convergence
to 0 is of interest, the duality result of [3] states that

(1.8)
(
CF

T

)∗
= −DF∗

T ,
(
CF
)∗

= −DF∗
,

where

CF
T =

{
φ(0) |φ satisfies φ̇(t) ∈ F (φ(t)) on [0, T ] and φ(T ) = 0

}
,

DF∗
T =

{
ψ(T ) |ψ satisfies ψ̇(t) ∈ F ∗(ψ(t)) on [0, T ]

}
,

and CF =
⋃

T>0 C
F
T , DF∗

=
⋂

T>0D
F∗
T . The results of [7], [29], and [3] were not

shown using Lyapunov technology, but through analysis of eigenvectors and invariant
subspaces. An extension beyond the strict and autonomous case was obtained in [34]
through the use of conjugate duality for optimal control problems.

Weak asymptotic stability of convex processes has been studied in [38], [39], [8],
[37], [17], mostly through eigenvalue and higher-order spectral analysis and limited
use of Lyapunov functions. Dual characterizations of weak asymptotic stability of
a convex process, through properties of its adjoint, originally derived in [38], [39], can
be found in [37, Theorem 8.10] and are summarized below.

Theorem 1.1. Let F : Rn ⇒ R
n be a closed and strict convex process. Then the

following are equivalent:
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(a) ẋ ∈ F (x) is weakly asymptotically stable.
(b) The only solution to ẏ ∈ −F ∗(y) with a nonnegative Lyapunov exponent is

the trivial solution y(t) ≡ 0.
(c) The restriction of F ∗ to the maximal subspace invariant under F ∗ is an

asymptotically stable linear operator, and either the maximal eigenvalue of
F ∗ is negative or F ∗ has no eigenvalues.

1.3. Convex processes: Preliminaries. Given a set-valued mapping
F : R

n ⇒ R
m, i.e., a mapping that to each x ∈ R

n assigns a set F (x) ⊂ R
m,

the domain is domF = {x ∈ R
n |F (x) �= ∅}, the range is rgeF =

⋃
x∈Rn F (x), and

the graph is gphF = {(x, y) ∈ R
n+m | y ∈ F (x)}. A nonempty set K ⊂ R

n is a cone
if for every x ∈ K, every λ ≥ 0, one has λx ∈ K. Convexity of a cone can thus be
characterized as follows: for every x, x′ ∈ K, x + x′ ∈ K. Given a cone K ⊂ R

n, its
dual cone is

K∗ = {y ∈ R
n |x · y ≥ 0 ∀x ∈ K},

where x·y stands for the dot product. K∗ is always a closed convex cone, and (K∗)∗ =
K if K is closed and convex. For example, in R

n, {0}∗ = R
n and (Rn)∗ = {0}; if K is

the nonnegative orthant Rn
+, then K

∗ = R
n
+ as well; if K = rgeB = BR

k for a n× k
matrix B, then K∗ = kerBT , the kernel of BT ; and, more generally, if K = BU for
a n × k matrix B and a cone U ⊂ R

k, then K∗ = {y |BT y ∈ U∗}. The set-valued
analysis concepts used here follow [31].

A set-valued mapping F : Rn ⇒ R
m is a convex process if gphF is a convex

cone. A convex process F is called strict if domF = R
n and closed if gphF is closed,

equivalently, if F is outer semicontinuous. Every linear mapping is a strict and closed
convex process. The mapping F in (1.3) is a convex process if K is a cone; it is then
strict, and it is closed if K is a closed cone. The mapping

(1.9) F (x) =

{
Ax if x ∈ X,
∅ if x �∈ X

is a convex process if X is a cone, it is not strict unless X is the whole space, and it
is closed if and only if X is closed.

The adjoint convex process of a convex process F : Rn → R
n is the closed convex

process F ∗ : Rn ⇒ R
n given by

F ∗(y) = {w ∈ R
n | w · x ≤ y · v ∀(x, v) ∈ gphF} .

That this defines a closed convex process follows from an alternative definition of F ∗:

(y, w) ∈ gphF ∗ ≡ (−w, y) ∈ (gphF )
∗

and from properties of convex cones mentioned before. Examples of convex processes
and their adjoints include F (x) = Ax, F ∗(y) = AT y; the pair F , F ∗ in (1.3); and,
more generally,

(1.10) F (x) =

{
Ax +K if x ∈ X,

∅ if x �∈ X,
F ∗(y) =

{
AT y −X∗ if y ∈ K∗,

∅ if y �∈ K∗,

whereK and X are convex cones. If F is a closed convex process, then F ∗∗ = (F ∗)∗ =
−F (−·). Consequently, if F (x) = Ax, then F ∗∗ = F ; and for F in (1.3) withK closed,
F ∗∗(x) = − (A(−x) +K) = Ax−K.
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For more background on convex processes, consult the books [30], where convex
processes were introduced; [2], where extensions to spaces beyond R

n are included;
[37], which includes elements of the theory of differential inclusions given by convex
processes; and [8], where the convex processes were used to approximate nonlinear
control systems with control constraints.

1.4. Standing assumptions. Throughout the paper, F : Rn ⇒ R
n is always a

convex process. Thus if F given by (1.3), then K is a convex cone, and if given by
(1.10), then K and X are convex cones. F ∗ is the convex process adjoint to F .

2. Convex conjugacy of Lyapunov functions. The paper is concerned with
stability properties of differential inclusions

(2.1) ẋ ∈ F (x),

respectively, difference inclusions

(2.2) x+ ∈ F (x),

and their relationship to stability properties of the adjoint differential inclusions

(2.3) ẏ ∈ F ∗(y),

respectively, adjoint difference inclusions

(2.4) y+ ∈ F ∗(y).

The standard notation ẋ in (2.1) represents dx
dt , while x

+ and (2.2) is to be understood
as requiring that x(j + 1) ∈ F (x(j)).

This section establishes duality between convex weak Lyapunov functions for
(2.1) or (2.2) and convex Lyapunov functions for (2.2) or (2.4). The existence of
such Lyapunov functions is addressed in section 4 . Let H be the set of all functions
f : Rn → [0,∞) which are positive definite, i.e., f(0) = 0 and f(x) > 0 if x �= 0,
positively homogeneous of degree 2, and for which there exist a, b > 0 such that
a‖x‖2 ≤ f(x) ≤ b‖x‖2 for all x ∈ R

n. The lower and upper bounds hold automatically
for every positive definite and homogeneous function if it is continuous, as it always is
if it is convex. Examples of functions in H include quadratic functions f(x) = 1

2x ·Px
with symmetric and positive definite P , pointwise minima and maxima of finitely
many such functions, and, more generally, squares of Minkowski functionals (also
called gauges) of compact sets containing 0 in their interiors. Let HS be the set of
all f ∈ H which are differentiable.

A function V ∈ HS is a weak Lyapunov function for (2.1) if, for some γ > 0,

(2.5) ∀x ∈ domF ∃v ∈ F (x) such that ∇V (x) · v ≤ −γV (x).

A function V ∈ H is a weak Lyapunov function for (2.2) if, for some γ ∈ (0, 1),

(2.6) ∀x ∈ domF ∃v ∈ F (x) such that V (v) ≤ γV (x).

A function V ∈ HS is a Lyapunov function for (2.1) if, for some γ > 0,

(2.7) ∀x ∈ domF ∀v ∈ F (x) ∇V (x) · v ≤ −γV (x).
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A function V ∈ H is a Lyapunov function for (2.2) if, for some γ ∈ (0, 1),

(2.8) ∀x ∈ domF ∀v ∈ F (x) V (v) ≤ γV (x).

For a function f ∈ H, its convex conjugate function f∗, defined by

f∗(y) = sup
x∈Rn

{y · x− f(x)} ,

belongs to H and is convex. If f ∈ H is convex, then the convex conjugate of f∗ is
f . For example, if P is a symmetric and positive definite matrix, then the convex
conjugate of f(x) = 1

2x · Px is f∗(y) = 1
2y · P−1y; and if Pi, i = 1, 2, . . . , I, are such

matrices then the convex conjugate of f(x) = 1
2 maxi=1,2,...,I x ·Pix is the convex hull

of, i.e., the greatest convex function bounded above by mini=1,2,...,I
1
2y · P−1

i y. For a
general exposition, see [30] or [31], and for a discussion oriented toward conjugacy of
Lyapunov functions, see [23].

Some properties of convex functions are reflected in the same properties of their
conjugates. As noted above, f ∈ HC if and only f∗ ∈ HC, where HC is the set of
all f ∈ H which are convex. Furthermore, some properties of convex functions are
reflected in other properties of their conjugates. Here, it is relevant that a convex
f ∈ H is strictly convex if and only if f∗ is differentiable. Thus, f ∈ HCS if and only
if f∗ ∈ HCS, where HCS is the set of all f ∈ HS ∩HC which are strictly convex. For
f ∈ HCS, y = ∇f(x) is equivalent to x = ∇f∗(y) and to f∗(y) = y · x− f(x), and if,
furthermore, f(x) = 1/2, then f∗(y) = 1/2.

Homogeneity of V ∈ HS and of a convex process imply that it is enough to check
the inequality in (2.5) along a single level set of V . This is stated formally in the
lemma below. Similar equivalent conditions exist for (2.6), (2.7), and (2.8).

Lemma 2.1. Let V ∈ HS. Then (2.5) is equivalent to

(2.9) ∀x ∈ domF with V (x) =
1

2
∃v ∈ F (x) such that ∇V (x) · v ≤ −1

2
γ.

Proof. Clearly, (2.5) implies (2.9). For the opposite implication, take any x ∈
domF , x �= 0. Note that V (x) > 0, set λ =

√
2V (x), and let x′ = x/λ. Then

V (x′) = V (x/λ) = V (x)/λ2 = 1/2, and (2.9) implies that there exists v′ ∈ F (x′) such
that ∇V (x′) · v′ ≤ −γ/2. Positive homogeneity of V of degree 2, and thus positive
homogeneity of∇V of degree 1, turns∇V (x/λ)·v′ ≤ −γ/2 to∇V (x)·(λv′) ≤ −γV (x).
Because F is a convex process, its graph is a convex cone, F (x) = F (λx′) = λF (x′),
and v = λv′ ∈ F (x). Hence (2.9) implies (2.5).

The main results on the duality between Lyapunov and weak Lyapunov functions
are now stated and proved.

Theorem 2.2. Let F be strict. If V ∈ HCS is a weak Lyapunov function for
(2.1), then V ∗ is a Lyapunov function for (2.3). If V ∈ HC is a weak Lyapunov
function for (2.2), then V ∗ is a Lyapunov function for (2.4).

Proof. Consider the continuous-time case first. Let V ∈ HCS satisfy (2.5) with
some γ > 0. Take any y ∈ domF ∗ with V ∗(y) = 1/2 and let x = ∇V ∗(y), so
that y = ∇V (x) and V (x) = 1/2. By the definition of F ∗, for every w ∈ F ∗(y),
x · w ≤ y · v for every v ∈ F (x). By assumption, there exists v ∈ F (x) such that
∇V (x) · v ≤ −γ/2. Thus, for every y ∈ domF ∗ with V ∗(y) = 1/2 and every w ∈
F ∗(y), x · w = ∇V ∗(y) · w ≤ −γ/2. Homogeneity implies that V ∗ is a Lyapunov
function for (2.3).

D
ow

nl
oa

de
d 

08
/2

8/
13

 to
 1

47
.1

26
.4

6.
14

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3338 RAFAL GOEBEL

For the discrete-time case, let V ∈ HC satisfy (2.6) with some γ ∈ (0, 1). Then,
for every y ∈ domF ∗ and every w ∈ F ∗(y),

V ∗(w) = sup
x∈Rn

{w · x− V (x)} ≤ sup
x∈Rn

{
w · x− 1

γ
inf

v∈F (x)
V (v)

}

= sup
x∈Rn

sup
v∈F (x)

{
w · x− 1

γ
V (v)

}
≤ sup

x∈Rn

sup
v∈F (x)

{
y · v − 1

γ
V (v)

}

=
1

γ
sup
x∈Rn

sup
v∈F (x)

{(γy) · v − V (v)} ≤ 1

γ
sup
v∈Rn

{(γy) · v − V (v)}

=
1

γ
V ∗(γy) = γV ∗(y),

where the first inequality holds because −V (x) ≤ − 1
γ infv∈F (x) V (v), as implied by

(2.6); the second inequality comes from the definition of F ∗; and the third inequality
holds because rgeF ⊂ R

n. This finishes the proof.

Theorem 2.2 relied on strictness of F , which cannot be omitted without other
technical assumptions on the domains and ranges of F or ∇V ; see Example 3.2. It
did not rely on regularity of F . Theorem 2.4 does not directly rely on regularity of F
either but invokes (2.10) at every x ∈ domF , y ∈ domF ∗. This holds in particular
when F is strict and closed. The lemma below can be found in [37, Theorem 2.9].

Lemma 2.3. Let F be closed. Then, for every x ∈ int domF and every y ∈
domF ∗,

(2.10) inf
v∈F (x)

y · v = sup
w∈F∗(y)

w · x.

Beyond the strict and closed case, the equality (2.10) holds for all x ∈ domF , not
just int domF , for example, when F is given by (1.10). Indeed, a simple calculation
reveals that (2.10) holds for all x ∈ X , y ∈ K∗ and both sides of (2.10) equal y · Ax.

Theorem 2.4. Suppose that (2.10) holds for all x ∈ domF , y ∈ domF ∗. If
V ∗ ∈ HCS is a Lyapunov function for (2.3), then V is a weak Lyapunov function
for (2.1). If V ∗ ∈ HC is a Lyapunov function for (2.4), then V is a weak Lyapunov
function for (2.2).

Proof. Let V ∗ ∈ HCS be a Lyapunov function for (2.3), which thanks to homo-
geneity implies that for every y ∈ domF ∗ with V ∗(y) = 1/2, supw∈F∗(y)∇V ∗(y) ·w ≤
−γ/2. Take any x ∈ domF with V (x) = 1/2 and let y = ∇V (x), which implies
x = ∇V ∗(y) and V ∗(y) = 1/2. If y ∈ domF ∗, then, by assumption,

inf
v∈F (x)

∇V (x) · v = sup
w∈F∗(y)

∇V ∗(y) · w ≤ −γ/2.

Suppose now that y �∈ domF ∗. Because gphF is a cone, F (0) is a cone, and further-
more, because (0, F (0)) ⊂ gphF and gphF is a convex cone, for any v ∈ F (x) one
has (x, v+F (0)) ⊂ gphF . Recall now that domF ∗ = (F (0))

∗
, and hence y �∈ domF ∗

implies that there exists v0 ∈ F (0) such that y · v0 < 0. Pick an arbitrary v1 ∈ F (x)
and note that

inf
v∈F (x)

∇V (x) · v ≤ inf
v∈v1+F (0)

y · v = y · v1 + inf
v∈F (0)

y · v ≤ y · v1 + inf
λ>0

y · (λv0) = −∞.

Thus infv∈F (x) ∇V (x) · v ≤ −γ/2 if V (x) = 1/2. Homogeneity extends this to (2.5).

D
ow

nl
oa

de
d 

08
/2

8/
13

 to
 1

47
.1

26
.4

6.
14

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LYAPUNOV FUNCTIONS AND DUALITY FOR CONVEX PROCESSES 3339

For the discrete-time case, let V ∗ ∈ HC satisfy (2.8) with some γ ∈ (0, 1). Then

inf
v∈F (x)

V (v) = inf
v∈F (x)

sup
y∈Rn

{v · y − V ∗(y)} = sup
y∈Rn

inf
v∈F (x)

{v · y − V ∗(y)}

for every x ∈ R
n. Indeed, switching the inf and sup is possible thanks to [30,

Theorem 37.3] because V ∗ is coercive (as it is positive definite and homogeneous
of degree 2), equivalently, such that V is finite-valued. If y �∈ domF ∗, then argu-
ments as above show that infv∈F (x) v · y = −∞, and thus, for y �∈ domF ∗, one has
infv∈F (x) {v · y − V ∗(y)} = −∞. Thus

inf
v∈F (x)

V (v) = sup
y∈domF∗

inf
v∈F (x)

{v · y − V ∗(y)} = sup
y∈domF∗

sup
w∈F∗(y)

{x · w − V ∗(y)}

≤ sup
y∈domF∗

sup
w∈F∗(y)

{
x · w − 1

γ
V ∗(w)

}
≤ sup

w∈Rn

{
x · w − 1

γ
V ∗(w)

}

= γ sup
w∈Rn

{
x ·
(
w

γ

)
− V ∗

(
w

γ

)}
= γV (x),

where the second equality comes from (2.10) and the first inequality holds because
for every y ∈ domF ∗ and every w ∈ F ∗(y), x · w − V (y) ≤ x · w − 1

γV (w) as implied

by (2.8). This finishes the proof.

3. Asymptotic stability concepts. Solutions to (2.1) are locally absolutely
continuous functions φ defined on some subinterval I of R+ that satisfy φ̇(t) ∈ F (φ(t))
for almost all t ∈ I. Solutions to (2.2) are functions φ on some subinterval I of
{0, 1, 2, . . .} such that φ(j+1) ∈ F (φ(j)) for all j ∈ I with j+1 ∈ I. A solution φ to
(2.1) or (2.2) is complete if the interval on which it is defined, domφ, is unbounded.
A solution φ to (2.1) or (2.2) is maximal if there does not exist another solution ψ
such that domφ is a strict subset of domψ and on domφ the solutions are equal.
Homogeneity of F ensures that if φ is a solution to (2.1) or (2.2), then so is λφ for all
λ > 0.

The differential inclusion (2.1), respectively, the difference inclusion (2.2), is
asymptotically stable if it is

• (Lyapunov) stable, that is, for every ε > 0 there exists δ > 0 such that every
solution φ with φ(0) ∈ δIB is such that rgeφ ⊂ εIB, and

• attractive, that is, every maximal solution φ is complete and limt→∞ φ(t) = 0,
respectively, limj→∞ φ(j) = 0.

The differential inclusion (2.1), respectively, the difference inclusion (2.2), is weakly
asymptotically stable if it is

• weakly attractive, i.e., for every ξ ∈ domF there exists a complete solution φξ
with φξ(0) = ξ and limt→∞ φξ(t) = 0, respectively, limj→∞ φξ(j) = 0, and

• considering only solutions φξ as above results in stability, i.e., for every ε > 0
there exists δ > 0 such that if ξ ∈ δIB, then rgeφξ ⊂ εIB.

When F represents a control system ẋ = f(x, u), u ∈ U , i.e., when F (x) =⋃
u∈U f(x, u), weak asymptotic stability as defined above resembles the notion of

asymptotic controllability, as introduced by [40]. (Asymptotic controllability some-
times includes a bounded control property which corresponds to velocities of φξ from
ξ near 0 being uniformly bounded.) Also, weak Lyapunov functions as defined in this
paper can be related to control Lyapunov functions; see, for example, [35]. In some of
the literature on dynamics generated by convex processes, for example, [37], [17], weak
asymptotic stability is used to describe what here is called weak attractivity. Note
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though that Proposition 3.1 ensures that for strict F , weak asymptotic stability as
defined here and as used in [37] is the same. In particular, this ensures that Theorem
1.1 holds here. Weak attractivity too has seen different interpretations, for example,
in [1], and an attractive system is sometimes called convergent [36]. Note also that
every convex process can be formulated as a control system ẋ = u, u ∈ F (x).

Homogeneity of F ensures that stability is uniform for (2.1) and (2.2). In fact,
if for some ε, δ > 0 one has that every solution φ with |φ(0)| = δ satisfies |φ(t)| ≤ ε,
then every solution φ satisfies |φ(t)| ≤ ε|φ(0)|/δ. In the discrete-time case, but not in
the continuous-time case, stability implies local boundedness of F . Indeed, if (2.2) is
stable, then F (0) = {0}, and consequently, if F is given by (1.10), then K = {0} and
F has the form (1.9). If, furthermore, F is closed, then F (0) = {0} implies that F is
locally bounded.

Homogeneity and convexity of gphF ensures that weak attractivity is sufficient
for weak asymptotic stability of (2.1), (2.2). In fact, a stronger stability property
follows when domF is polyhedral. (For strict F and continuous-time dynamics, this
was established in [37, Lemma 8.4], generalizing [8, Lemma 4.1] which dealt with F
as in (1.3); discrete-time (1.3) is done in [8, Lemma 8.9]. The proof below is similar.)
The inclusion (2.1) or (2.2) is weakly exponentially stable if it is weakly asymptotically
stable and the solutions φξ from the definition of weak attractivity satisfy, for some
M,k > 0, the bound

(3.1) ‖φ(t)‖ ≤Me−kt‖φ(0)‖ ∀t ∈ domφ.

For general homogeneous systems, asymptotic stability under some further uniformity
assumptions, but not attractivity, ensures exponential stability; this is valid beyond
classical systems, for example, in nonlinear switching systems [36].

Proposition 3.1. Let domF be polyhedral. If (2.1), respectively, (2.2), is weakly
attractive, then (2.1), respectively, (2.2), is weakly exponentially stable.

Proof. Consider a weakly attractive (2.2). Because domF is polyhedral, it is
generated by finitely many xi ∈ domF , i = 1, 2, . . . , l, i.e., every x ∈ domF can
be represented by x =

∑l
i=1 λixi, λi ≥ 0. Without loss of generality, ‖xi‖ = 2.

Furthermore, there exist points xi ∈ domF , ‖xi‖ = 2, i = l + 1, l + 2, . . . ,m, such
that con{0, x1, x2, . . . , xm} contains IB ∩ domF , where IB is the unit ball centered at
0. Weak attractivity implies that there exists J > 0 and, for each i = 1, 2, . . . ,m, a
solution φi with φi(0) = xi such that ‖φi(J)‖ ≤ 1/2. Then, for every x ∈ IB ∩ domF
there exists a solution φ such that φ(J) ∈ IB/2: indeed, x =

∑m
i=1 λixi with λi ≥ 0,∑m

i=1 λi ≤ 1, the function φ(j) =
∑m

i=1 λiφi(j) is a solution to (2.2) with φ(0) = x,
and

‖φ(J)‖ =

∥∥∥∥∥
m∑
i=1

λiφi(J)

∥∥∥∥∥ ≤
m∑
i=1

λi‖φi(J)‖ ≤
m∑
i=1

λi
1

2
≤ 1

2
.

In fact, for φ as above, ‖φ(j)‖ ≤ R for j = 0, 1, . . . , J−1, where R = max{‖φi(j)‖ | i =
1, 2, . . . ,m, j = 0, 1, . . . , J − 1}; the calculation is just as the one displayed above.
Homogeneity now implies that for every x ∈ IB/2 ∩ domF there exists a solution φ
with φ(0) = x, φ(J) ∈ IB/4, and |φ(j)| ≤ R/2 for j = 0, 1, . . . , J−1. Similar existence
follows for x ∈ IB/4 ∩ domF , x ∈ IB/8 ∩ domF , etc. Concatenation then yields, for
every x ∈ IB ∩ domF , a solution that satisfies (3.1) with M = 2R, k = (ln 2)/J , and
homogeneity implies the existence of such a solution for every x ∈ domF . The proof
for (2.1) follows exactly the same approach; cf. [37, Lemma 8.4].
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Example 3.2. Consider a case of (1.10):

F (x) =

{
x+ R− if x ∈ R+,

∅ if x �∈ R+,
F ∗(y) =

{
y − R+ if y ∈ R−,

∅ if y �∈ R−,

Then (2.1) is weakly asymptotically, and exponentially, stable, because for x ∈ R+

one has −2x ∈ R−, thus −x ∈ F (x), and the solution to ẋ = −x converges to 0.
In fact, because for x ∈ R+ one has −√

x ∈ F (x), for every initial point ξ ≥ 0

there exists a solution to (2.1) which reaches 0 in finite-time: x(t) =
(√
ξ − t/2

)2
.

Furthermore, because −a√x ∈ F (x) for arbitrarily large a > 0, 0 can be reached
from any initial point ξ > 0 in arbitrarily short time. Thus, in the notation of
section 1.2, CF = CF

T = R+.
On the other hand, (2.3) is not asymptotically stable. Indeed, for every initial

point ξ in domF ∗ = R−, every solution y(t) ≤ ξ for all t in its domain. Thus weak
asymptotic stability for (2.2) does not imply asymptotic stability for (2.3). However,
it can be verified that DF∗

T = DF∗
= R−, and so the duality (1.8) holds. Note

also that V ∈ HCS given by V (x) = 1
2x

2 is a weak Lyapunov function for (2.1) but
V ∗ ∈ HCS given by V (y) = 1

2y
2 is not a Lyapunov function for (2.3).

The same observation is true for the discrete-time case. There exist solutions
to (2.2) that reach 0 in one jump, which verifies weak asymptotic stability, but all
solutions to (2.4) remain bounded away from 0 by the initial condition, which violates
asymptotic stability. Note also that every y < 0 is an eigenvector F ∗ with any
eigenvalue λ ≥ 1, because for y ≤ 0, F ∗(y) = (−∞, y], one has λy ∈ F ∗(y). For strict
F , the existence of such an eigenvector for F ∗ precludes asymptotic stability of (2.2);
see [17, Theorem 5.3]. This example shows that the result does not carry over to
nonstrict F . (In [17], asymptotic stability required existence of solutions converging
to 0 even from points not in the domain of F ; hence, in that terminology and for
nonstrict and closed F , asymptotic stability always fails.)

Attractivity, and then asymptotic stability, relies on asymptotic properties of
solutions when t → ∞ or j → ∞. When existence of complete solutions is not
guaranteed, a natural property to consider is preasymptotic stability. The differential
inclusion (2.1), respectively, the difference inclusion (2.2), is preasymptotically stable
if it is stable and

• preattractive, that is, every maximal solution is bounded and every complete
solution φ satisfies limt→∞ φ(t) = 0, respectively, limj→∞ φ(j) = 0.

For sufficiently regular differential and difference inclusions, when domains are not
equal to R

n and, hence, when complete solutions need not exist, preasymptotic sta-
bility turns out equivalent to the existence of smooth Lyapunov functions. For some
convex processes, this is explicitly shown in the next section. Furthermore, it is
preasymptotic stability, and not asymptotic stability, that is naturally inherited by
a differential or difference inclusion from a linear/conical approximation to it. For
further discussion, see [21].

Example 3.3. Consider a case of (1.3), obtained with A =
(

0 1−1 0

)
and K =

{0} × R+:

F (x) = (x2,−x1) + {0} × R+, F ∗(y) =
{
(−y2, y1) if y2 ≥ 0,

∅ if y2 < 0.

Then (2.1) is weakly asymptotically stable. This can be seen by considering

f(x) =

{
(x2, 0) if x2 < 0, 0 < x1 < −x2,

(x2,−x1) otherwise,
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which is a selection from F (x), i.e., f(x) ∈ F (x) for all x, and observing that every
solution to ẋ = f(x) converges to 0. It is not asymptotically stable because there
exist periodic solutions (rotating around circles centered at the origin). On the other
hand, (2.3) is preasymptotically stable. The differential equation (ẏ1, ẏ2) = (−y2, y1)
represents counterclockwise motion along circles, and so every solution ψ satisfies
‖ψ(t)‖ = ‖ψ(0)‖ and so is bounded, as well as periodic with period 2π. The only
complete solution to this differential equation that satisfies the constraint y2 ≥ 0
is identically 0. All other maximal solutions have domains at most π long and are
bounded. Clearly, (2.3) is not asymptotically stable.

Example 3.4. Consider a case of (1.10) with A =
(
0 0
1 0

)
and K = X = R× {0}.

Then (2.1) is preasymptotically stable. Having ẋ2 = x1 and x2 constrained to be
0 suggests that the only maximal solution with a nontrivial domain is the complete
solution x(t) ≡ 0, and it is bounded and converges to 0. All other maximal solutions
have domains consisting of a single point and are bounded. Hence, preasymptotic
stability for (2.1) with F as in (1.10) is possible even though K ∩ X �= ∅. One can
show though that if intX �= ∅, it must be that K ∩X = ∅.

A stronger version of preasymptotic stability is uniform preasymptotic stability.
The inclusion (2.1), respectively, (2.2), is uniformly preasymptotically stable if, for
every solution,

‖φ(t)‖ ≤ β (‖φ(0)‖, t) ∀t ∈ domφ,

where β : [0,∞)× [0,∞), respectively, β : [0,∞)× {0, 1, 2, . . .}, is a continuous func-
tion such that r �→ β(r, t) is 0 at 0 and nondecreasing and t �→ β(r, t) is nonincreasing
and β(r, t) → 0 when t → ∞. Furthermore, (2.1), respectively, (2.2), is preexponen-
tially stable if every solution φ to (2.1), respectively, (2.2), satisfies (3.1). If (2.1),
respectively, (2.2) is preexponentially stable and every maximal solution is complete,
then it is exponentially stable.

Lemma 3.5. If (2.1), respectively, (2.2), is uniformly preasymptotically stable,
then (2.1), respectively, (2.2), is preexponentially stable.

The proof is similar to proofs of related results for different kinds of homoge-
neous dynamics, for example, [1, Theorem 2]. Furthermore, homogeneity implies that
uniform bound on, and uniform convergence of, solutions φ with ‖φ(0)‖ = 1 ensures
uniform, and then exponential, preasymptotic stability. A general result covering
both continuous-time and discrete-time dynamics is in [22, Proposition 4.3].

A principle established in [10] implies that asymptotic stability for set-valued but
regular and locally bounded dynamics is uniform. Here, homogeneity leads further,
to an exponential bound, and in the discrete-time case, local boundedness comes
automatically from asymptotic stability.

Lemma 3.6. If F is closed and locally bounded and (2.1) is preasymptotically sta-
ble, then (2.1) is preexponentially stable. If F is closed and (2.2) is preasymptotically
stable, then (2.2) is preexponentially stable.

Proof. In both cases, outer semicontinuity and local boundedness of F imply
uniform preasymptotic stability; see [21, Theorem 7.12]. Lemma 3.5 then gives preex-
ponential stability. For the discrete-time case, preasymptotic stability of (2.2) implies
that F (0) = {0}; indeed, otherwise Lyapunov stability is violated by solutions with
φ(0) = 0, φ(1) �= 0. Because F is closed, F (0) = {0} implies that F is locally
bounded; indeed, because F (0) = (domF ∗)∗ by [37, Lemma 2.11], domF ∗ = R

n and
F ∗ is strict, and then local boundedness of F follows from [37, Theorem 2.12].

One is naturally led to consider another property: the differential inclusion (2.1),
respectively, the difference inclusion (2.2), is weakly preasymptotically stable if, for
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every ξ ∈ domF , there exists a maximal solution φ with φ(0) = ξ which is bounded,
and if it is also complete, then limt→∞ φ(t) = 0, respectively, limj→∞ φ(j) = 0,
and considering only solutions φξ as above results in stability. Weak preasymptotic
stability will not play a role below.

4. Existence of convex Lyapunov functions. This section discusses the exis-
tence of weak Lyapunov functions for weakly asymptotically stable convex processes,
and Lyapunov functions for classes of asymptotically and preasymptotically stable
convex processes.

4.1. Weak asymptotic stability and weak Lyapunov functions. The ex-
istence of a smooth weak Lyapunov function V ∈ HCS for (2.1) or (2.2) with strict
and closed F implies weak exponential stability. In fact, exponential stability can be
achieved through continuous selections from F that rely on V . For the case of (2.1),
let V ∈ HCS be a weak Lyapuov function. The set S(x) = {v ∈ R

n | ∇V (x) · v ≤
− γ

2V (x)} depends continuously on x, as follows from [31, Example 5.10] and the fact

that for every x there exists v ∈ S(x) with ∇V (x) · v ≤ − 2γ
3 V (x). Furthermore, the

existence of such v implies that the convex sets S(x) and F (x) cannot be separated.
This, and continuity of F , imply that S(x) ∩ F (x) depends continuously on x; see
[31, Theorem 4.32c]. Now, [31, Proposition 4.9] implies that the projection of 0 onto
the nonempty convex set S(x) ∩ F (x) depends continuously on x. (This is the same
as picking the minimum norm element of S(x) ∩ F (x).) This projection defines the
needed f . For (2.2), one picks f(x) by projecting 0 onto {v ∈ F (x) |V (v) ≤ −γV (x)},
and arguments justifying continuity are very similar to those given above. The case of
a nonstrict F is not as simple and is not addressed here. For general control systems,
not related to convex processes, construction of feedbacks from control Lyapunov
functions are given in [11], [12].

The existence of a convex and homogeneous of degree 1 weak Lyapunov function
W for (2.1) was shown in [37, Theorem 9.1] for the case of a strict F , generalizing
[8, Theorem 4.1], which dealt with F as in (1.3). Squaring W and smoothing it
appropriately can yield a function inHCS which is a weak Lyapunov function for (2.1).
Proposition 4.2 shows an alternative construction through optimal control. Related
optimal control problems for positive systems, with nonnegativity constraints on the
states, are studied in [5]. The existence of a convex and homogeneous of degree 1 weak
Lyapunov function for (2.2) for the case of strict F was claimed in [37, Chapter 8,
Problem 4] and shown for (1.3) in [8, Theorem 8.8]. Proposition 4.3 verifies this claim,
and the proof does not rely on the spectral techniques suggested in [37]. Propositions
4.2 and 4.3 rely on smoothing of a nonsmooth convex function; one approach to this
is now recalled.

Lemma 4.1. Let f ∈ HC, and for λ > 0 consider sλf , where sλ represents the
self-dual smoothing operator [19, Definition 2.1]. Then for every λ > 0, sλf ∈ HCS
and sλf → f when λ↘ 0 uniformly on compact subsets of Rn.

Proof. Strictly convexity and differentiability is verified by [19, Lemma 2.3] and
so is uniform convergence, in light of continuity of f and sλf . Positive homogeneity of
degree 2 can be verified directly. Indeed, computing sλf amounts to taking a convex
conjugate of f , adding a multiple of norm squared to the conjugate, taking a conjugate
of the sum, and adding a multiple of norm squared to the result. Each of these four
operations preserves homogeneity.

Proposition 4.2. Let F be strict and closed. If (2.1) is weakly asymptotically
stable, then there exists a weak Lyapunov function V ∈ HCS for (2.1).
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Proof. Let L(x, v) = ‖x‖2 + ‖v‖2 + δgphF (x, v), where the indicator function
δgphF is given by δgphF (x, v) = 0 if (x, v) ∈ gphF , equivalently, if v ∈ F (x), and
δgphF (x, v) < ∞ if v �∈ F (x). This L fits the framework of [18]. Indeed, because
gphF is closed and convex, L is convex and lower semicontinuous; because gphF is
a convex cone, the distance from 0 of the set {v ∈ R

n |L(x, v) �= ∞} grows with at
most linear rate in x; and because L(x, v) ≥ ‖v‖2, L is bounded below by a coercive
function of v, and so L satisfies the basic assumption used in [32]. Furthermore, L is
positive semidefinite, and so it meets all assumptions of [18]. For x ∈ R

n, let

V0(x) = inf

{∫ ∞

0

L
(
φ(t), φ̇(t)

)
dt | φ(0) = x

}
,

where the minimization is over all locally absolutely continuous φ : [0,∞) → R
n. The

indicator term in L ensures that φ for which the integral above is finite is in fact a
solution to (2.1). The function V0 is convex, positive definite, positively homogeneous
of degree 2, and by the existence of solutions with exponentially decaying x(t) and ẋ(t)
[37, Theorem 9.2], it is finite-valued. By [18, Corollary 2.5], V0 satisfies a Hamilton–
Jacobi equation which states that for every x ∈ R

n and every y ∈ ∂V0(x) (here
∂V0 is the convex subdifferential of V ), one has supv∈Rn {(−y) · v − L(x, v)} = 0.
Consequently, for every such x and y there exists v ∈ F (x) such that −y · v − ‖x‖2 −
‖v‖2 = 0, and thus y · v ≤ −‖x‖2.

Now recall Lemma 4.1 and set V = sλ (V0) with small enough λ > 0. Then
V ∈ HCS. Because ∇sλ (V0) converge to ∂V graphically when λ ↘ 0 [31, Theorem
12.35], and because ∂V is locally bounded thanks to finiteness of V0 [31, Exercise
12.40], taking small enough λ ensures that for every x with ‖x‖ = 1 there exists
v ∈ F (x) such that ∇V (x) · v ≤ −‖x‖2/2. Homogeneity implies that V is a weak
Lyapunov function.

Proposition 4.3. Let F be strict. If (2.2) is weakly asymptotically stable, then
there exists a weak Lyapunov function V ∈ HCS for (2.2).

Proof. For x ∈ R
n, let

V0(x) = inf

⎧⎨
⎩

∞∑
j=0

‖φ(j)‖2 |φ is a solution to (2.2) with φ(0) = x

⎫⎬
⎭ .

Then V0 is positively homogeneous of degree 2 and convex on R
n. Homogeneity

follows from homogeneity of F , and convexity is easily deduced from the fact that a
convex combination of two solutions to (2.2) is a solution to (2.2). Furthermore,

(4.1) ‖x‖2 ≤ V (x) ≤M2‖x‖2/(1− e−2k),

where the second inequality follows from the existence, for every x ∈ domF , of a
solution φξ satisfying (3.1), as guaranteed by Proposition 3.1, and M and k come
from (3.1). Finiteness and convexity of V0 ensure that it is continuous.

For ε ∈ (0, ‖x‖2/2), let φ be such that
∑∞

j=0 ‖φ(j)‖2 ≤ V0(x) + ε. Then

V0(x) + ε ≥
∞∑
j=0

‖φ(j)‖2 = ‖φ(0)‖2 +
∞∑
j=1

‖φ(j)‖2 ≥ ‖x‖2 + V0(φ(1)),

and because φ(1) ∈ F (x), for every x �= 0, there exists v ∈ F (x) such that

V0(v) ≤ V0(x) − ‖x‖2/2 ≤ γ′V0(x),

where γ′ =
(
1− 1−e−2k

2M2

)
and the second inequality comes from (4.1).
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Let V = sλ (V0) as in Lemma 4.1. Then V ∈ HCS and, because sλ (V0) converge
to V uniformly on compact sets when λ ↘ 0, for every γ ∈ [0, γ′) there exists λ > 0
such that V0(v) ≤ γ′V0(x) implies V (v) ≤ γV (x) for x with ‖x‖ = 1. The conclusion
follows from homogeneity.

The construction can be attempted if domF is polyhedral and, more generally,
when (2.2) is weakly exponentially stable. More care needs to be given then to
continuity of V0.

4.2. Asymptotic stability and Lyapunov functions. It is standard that
if there exists Lyapunov function V ∈ HS for (2.1), respectively, (2.2), then (2.1),
respectively, (2.2), is preexponentially stable. For example, for (2.2), one has

a‖φ(j)‖2 ≤ V (φ(j)) ≤ γjV (φ(0)) ≤ γjb‖φ(0)‖2

for every solution φ, and thus ‖φ(j)‖ ≤ Me−kj‖φ(0)‖ for k = (ln γ)/2, M = b/a,
where a and b are such that a‖x‖2 ≤ V (x) ≤ b‖x‖2.

The existence of a weak Lyapunov function for a preasymptotically stable (2.1)
immediately follows from the duality result of [37], as summarized in Theorem 1.1,
and from duality of weak Lyapunov and Lyapunov functions in Theorem 2.2.

Corollary 4.4. Let F be closed and locally bounded. If (2.1) is preasymptoti-
cally stable, then there exists a Lyapunov function V ∈ HCS for (2.1).

Proof. By Lemma 3.6, (2.1) is preexponentially stable. The exponential bound
(3.1) on solutions to (2.1) implies that the Lyapunov exponent of nonzero solutions
ψ to x ∈ −F (x), namely, − lim supt→∞

1
t ln |ψ(t)|, is bounded above by −k, where

k > 0. Let G(x) = −F ∗(−x), so that G∗ = F . Note that G is strict and closed.
Theorem 1.1 implies that ẏ ∈ G(y) is weakly asymptotically stable. Proposition 4.2
yields a weak Lyapunov function W ∈ HCS for ẏ ∈ G(y). Theorem 2.2 implies that
V =W ∗ is the desired Lyapunov function for ẋ ∈ G∗(x) = F (x).

Problem 4 in [37, section 8.6] suggests that this approach is possible in the
discrete-time case, as it claims that Theorem 1.1 is then valid too, and Theorem 2.2
covers the discrete-time case as well.

The remainder of this section shows how the existence of a Lyapunov function can
be obtained in some cases without the duality in Theorem 1.1, which then provides an
alternative approach to the equivalence of weak asymptotic stability and asymptotic
stability for a pair of adjoint convex processes. First, the existence of smooth—but not
convex—Lyapunov functions is obtained, under a local boundedness assumption, as
a consequence of [41, Theorem 2], which, essentially, combined a converse Lyapunov
result for hybrid inclusions (subsuming differential and difference inclusions) in [9,
Theorem 3.14] and a technique of [33] to produce a homogeneous Lyapunov function
from a smooth Lyapunov function.

Lemma 4.5. Let F be closed and locally bounded. If (2.1), respectively, (2.2),
is preasymptotically stable, then there exists a Lyapunov function V ∈ HS for (2.1),
respectively, (2.2).

Proof. Either (2.1) or (2.2) can be viewed as a hybrid inclusion in the framework
of [21]. The hybrid inclusion is then preasymptotically stable and can be augmented
to yield an asymptotically stable hybrid inclusion; see [9, Lemma 7.12]. For the
augmented hybrid inclusion, the data satisfies the standing assumptions in [9]—this
is where outer semicontinuity and local boundedness of F matters. Then, [9, Theorem
7.9] implies that the hybrid inclusion is robustly KLL-stable, which in turn ensures
that [41, Theorem 2] applies. Having δ = 0 and picking κ = 2 in that theorem proves
the current result.
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The next result shows that convexification of (weak) Lyapunov functions leads,
in some cases, to convex (weak) Lyapunov functions.

Lemma 4.6. Suppose that W : Rn → [0,∞) is differentiable, positive definite,
and coercive. Then V = conW is differentiable, positive definite, and coercive, and
the following implications hold:

(a) If W is a weak Lyapunov function for (2.1) or (2.2), then so is V .
(b) If F is as in (1.10) and W is a Lyapunov function for (2.1) or (2.2), then so

is V .
If, furthermore, W is positively homogeneous with degree p > 0, then so is V .

Proof. The claims about differentiability, coercivity, etc. are clear. Because W is
coercive, for every x ∈ R

n,

V (x) = min

{
n∑

i=0

λiW (xi) |
n∑

i=0

λixi = x,

n∑
i=0

λi = 1, λi ≥ 0

}
.

Let λi, xi, for i = 0, 1, . . . , n be the minimizers in the formula above. To prove (a), in
the continuous-time case, let vi ∈ F (xi) be such that ∇W (xi)·vi ≤ −γW (xi) and note
that v =

∑n
i=0 λivi ∈ F (x) as the graph of F is convex. Because ∇W (xi) = ∇V (x),

one obtains

∇V (x) · v = ∇V (x) ·
n∑

i=0

λivi =

n∑
i=0

∇W (xi) · λivi ≤
n∑

i=0

(−γλiW (xi)) = −γV (x).

In the discrete-time case, let vi ∈ F (xi) be such that W (vi) ≤ γW (xi) and note that
W (xi) = V (xi) and v =

∑n
i=0 λivi ∈ F (x). Then

V (v) = V

(
n∑

i=0

λivi

)
≤

n∑
i=0

λiV (vi) ≤
n∑

i=0

λiW (vi)

≤
n∑

i=0

λiγW (xi) = γ

n∑
i=0

λiW (xi) = γV (x).

To prove (b), take x ∈ X , k ∈ K and use the notation above. In the continuous-time
case,

∇V (x) · (Ax + k) = ∇V (x) ·
n∑

i=0

λi (Axi + v) =

n∑
i=0

λi∇W (xi) · (Axi + v)

≤
n∑

i=0

λi (−γW (xi)) = −γV (x).

In the discrete-time case,

V (Ax + k) = V

(
n∑

i=0

λi (Axi + v)

)
≤

n∑
i=0

λiV (Axi + v) ≤
n∑

i=0

λiW (Axi + v)

≤
n∑

i=0

λi (γW (xi)) = −γV (x).

Note that the conical structure of K and X is not relevant in the proof of (b)
above; hence the result holds if K and X are just convex sets.

To combine Lemma 4.5 and Lemma 4.6 to obtain a Lyapunov function for (2.1)
or (2.2), assumptions of closedness, local boundedness, and single-valuedness must be
posed. This requires F to have the form (1.9).
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Corollary 4.7. Let F be as in (1.9) with X closed. If (2.1), respectively, (2.2),
is preasymptotically stable, then there exists a Lyapunov function V ∈ HCS for (2.1),
respectively, (2.2).

Proof. Lemma 4.5 implies the existence of a Lyapunov function V1 ∈ HS for
(2.1), respectively, (2.2). Because F is single-valued, the concepts of a weak Lyapunov
function and of a Lyapunov function for (2.1), (2.2) are the same. Thus, Lemma 4.6
implies that the convex function V2 = conV1 is also a Lyapunov function for (2.1),
respectively, (2.2), and V2 ∈ HS. In particular, (2.7), respectively, (2.8), holds with
V2 for every x ∈ domF with ‖x‖ = 1. Then (2.7), respectively, (2.8), holds for such x
with V = V2 +α‖ · ‖2 and γ replaced by γ′ ∈ (0, γ) for sufficiently small α > 0. Then
V ∈ HCS and homogeneity imply that (2.7), respectively, (2.8), holds also for x with
‖x‖ �= 1.

This is a weaker result than Corollary 4.4. Both results are different than related
results on the existence of Lyapunov functions for positive linear and switching sys-
tems; see [15] and the references therein. Here, invariance is not assumed and general
cones are considered, and the conclusions are weaker.

4.3. Duality of asymptotic stability concepts. Based on the existence of
Lyapunov functions established in the previous sections and on the conjugacy be-
tween Lyapunov and weak Lyapunov functions from section 2, but without invoking
Theorem 1.1, one obtains some implications between stability properties of (2.1), (2.2)
and of (2.3), (2.4).

Corollary 4.8. If F is strict and (2.1), respectively, (2.2), is weakly attractive,
then (2.3), respectively, (2.4), is preexponentially stable.

Proof. For a strict F , Proposition 3.1 showed that weak attractivity ensures weak
exponential stability. Then, Proposition 4.2, respectively, 4.3, gives the existence of
a Lyapunov function V ∈ HCS for (2.1), respectively, (2.2). Theorem 2.2 shows that
V ∗ ∈ HCS is a Lyapunov function for (2.3), respectively, (2.4), and consequently,
(2.3), respectively, (2.4), is preexponentially stable.

If F and F ∗ are as in (1.3), and so F ∗ has the form as in (1.9), stronger conclusions
hold.

Corollary 4.9. Let F and F ∗ be given by (1.3). The following are equivalent:

(a) (2.1), respectively, (2.2), is weakly attractive.
(b) (2.1), respectively, (2.2), is weakly exponentially stable.
(c) (2.3), respectively, (2.4), is preexponentially stable.
(d) (2.3), respectively, (2.4), is preasymptotically stable.

Proof. Proposition 3.1 shows that (a) implies (b), because domF = R
n is poly-

hedral, and the converse implication is obvious. Corollary 4.8 shows that (a) implies
(c) because F is strict, and (c) implies (d). If (2.3), respectively, (2.4), is preasymp-
totically stable, then Corollary 4.7, applied to F ∗ in which K∗ is closed, gives a
Lyapunov function V ∗ ∈ HCS for (2.3), respectively, (2.4). Theorem 2.4 then shows
that V ∈ HCS is a weak Lyapunov function for (2.1), respectively, (2.2). Weak
exponential stability for (2.1), respectively, (2.2) follows, and so (d) implies (b).

5. Conclusions and future work. The main results of this paper showed,
roughly, that a convex function V is a weak Lyapunov function for dynamics given by
a convex process F if and only if the conjugate function V ∗ is a Lyapunov function
for dynamics given by the adjoint convex process F ∗. Further results related various
asymptotic stability properties of dynamics given by convex processes to the existence
of convex Lyapunov and weak Lyapunov functions.
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An important application of the results is the analysis of linear time-invariant
dynamical systems with conical constraints. Let U be a closed cone. Suppose that

(i) the linear control system ẋ = Ax + Bu is asymptotically controllable with
locally integrable controls u : [0,∞) → U .

Then

(ii) the dual linear system ẏ = AT y, o = BT y is detectable through U∗,
in the sense that every solution y : [0,∞) → R

n to ẏ = AT y which satisfies o(t) =
BT y(t) ∈ U∗ is such that limt→∞ y(t) = 0. Indeed, (i) implies that (2.1) is weakly
attractive with F (x) = Ax+K, where K = BU , and Corollary 4.9 implies that (2.3)
is preasymptotically/exponentially stable. This entails convergence to 0 of every com-
plete solution to (2.3) with F ∗(y) given in (1.3). But y ∈ K∗ is then equivalent to
BT y ∈ U∗, and the conclusion about detectability follows. To show the reverse im-
plication through results of this paper, one needs to check when detectability in (ii)
implies preasymptotic stability for (1.5). This and treatment of state constraints are
topics for future work. Regarding state constraints, note that Example 3.2 showed
that in their presence, weak asymptotic stability need not dualize to preasymptotic
stability. On the other hand, Lyapunov functions for the adjoint dynamics (2.3), (2.4)
in the case of (1.10) dualize to weak Lyapunov functions for (2.1), (2.2) as seen in
Theorem 2.4. Hence, results of this paper will lead to some relations between ap-
propriately understood asymptotic controllability and detectability for linear systems
with conical control and state constraints.

Developments in this paper are different from, and complement, Theorem 1.1,
where dual characterization of weak asymptotic stability was given in terms of eigen-
values, invariant subspaces, and Lyapunov exponents rather than Lyapunov functions.
The implication from (a) to (b) and (c) in Theorem 1.1 can be established through
Proposition 4.2, which gives a weak Lyapunov function V for ẋ ∈ F (x), and Theo-
rem 2.2, which states that V ∗ is a Lyapunov function for the adjoint inclusion. The
resulting preexponential stability of the adjoint inclusion then implies (b) and (c).
On the other hand, Theorem 1.1 was essential in the converse Lyapunov result for
preasymptotic stability given here in Corollary 4.4. Further comparison of the current
work to Theorem 1.1 hinge upon relating (b) and (c) of this theorem to preasymptotic
stability, which is an interesting topic for future work.

In general, a complete and symmetric theory of conjugate Lyapunov functions for
convex processes requires resolving the issue of the existence of a convex Lyapunov
function for a general preasymptotically stable convex process. Section 4.2 gives an
affirmative answer for locally bounded processes, with a direct, and not relying on
duality, construction of the Lyapunov function given only for special cases. One
should expect that a direct construction, not relying on [21], [9], or [41], should be
possible. A related and interesting question is whether the duality result (1.8) of [3]
can be derived by relying on duality between Lyapunov inequalities that characterize
finite-time convergence.
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