
Robustness of Stability through Necessary and Sufficient

Lyapunov-like Conditions for Systems with a Continuum of

Equilibria

Rafal Goebel

Department of Mathematics and Statistics, Loyola University Chicago, 1032 W. Sheridan Road,

Chicago, IL 60660

Abstract

The equivalence between robustness to perturbations and the existence of a continuous
Lyapunov-like mapping is established in a setting of multivalued discrete-time dynamics

for a property sometimes called semistability. This property involves a set consisting
of Lyapunov stable equilibria and surrounded by points from which every solution con-

verges to one of these equilibria. As a consequence of the main results, this property
turns out to always be robust for continuous nonlinear dynamics and a compact set
of equilibria. Preliminary results on reachable sets, limits of solutions, and set-valued

Lyapunov mappings are included.

1. Introduction

For a discrete-time dynamical system, this paper deals with a set which consists of
Lyapunov stable equilibria each of which is surrounded by points from where trajecto-

ries converge to one of these equilibria. Such equilibria were called semistable in [4].
Semistability in this sense was then studied in [17], [18], [19], [5], and more. The term

“semistability”, in a sense related to partial stability and different from [4], was discussed
in Russian control literature; see the survey [30]. The term was also used by [26] and

related works to represent a property of an equilibrium weaker than Lyapunov stability,
in the setting of abstract and set-valued dynamical systems. Some results of [26] are

related to preliminary results here; see Remark 2.11. This paper uses the term point-
wise asymptotic stability to characterize a set consisting of semistable, in the sense of [4],

equilibria. The goal is to establish robustness of pointwise asymptotic stability to pertur-
bations in dynamics and characterize this robustness through regularity of appropriate
Lyapunov-like mappings.

Sufficient conditions for pointwise asymptotic stability, for differential equations [4]
and then for differential inclusions [18], were given in terms of classical Lyapunov func-

tions and non-tangent, to the set of equilibria, behavior of trajectories. A converse
Lyapunov result for differential equations was obtained in [17]; this converse result does
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not result in a sufficient Lyapunov condition. A different approach, inspired by [25] where

the decrease of set-valued mappings was proposed as a sufficient condition for consensus,
was pursued by the author in [11]. Necessary and sufficient Lyapunov-like conditions

for pointwise asymptotic stability and a related invariance principle were given there in
terms of a set-valued Lyapunov-like mapping. Some results of [11] are recalled in Section

3. Robustness of pointwise asymptotic stability has received limited treatment. The
converse result of [17] was used in [20] to state robustness to higher-order perturbations
under homogeneity assumptions. This robustness result included assumptions on Lya-

punov stability of the equilibria for the perturbed, not just nominal, dynamics. A related
result was given in [16] for a switching system.

For the classical concept of asymptotic stability, the equivalence of asymptotic stabil-
ity to the existence of Lyapunov functions, with further relation between robustness of

the asymptotic stability or regularity of the dynamics to the continuity or smoothness of
Lyapunov functions, is well-appreciated. In particular, the equivalence of robustness of

asymptotic stability of an equilibrium and the existence of a smooth Lyapunov function
in the setting of nonlinear and multivalued dynamics was exhibited first in [8], in the

setting of differential inclusions. This was later carried over to asymptotic stability of
sets [29], to difference inclusions [21], and hybrid dynamics [7].

The contribution of this paper is showing the equivalence of robustness of pointwise

asymptotic stability to the existence of continuous set-valued Lyapunov functions, in the
setting of multivalued, but continuous in an appropriate sense, discrete-time dynamics

and for a compact set of equilibria. This is shown in Theorem 4.3. Because continuous
set-valued Lyapunov functions exist for pointwise asymptotically stable sets when the

dynamics are continuous, for such dynamics the pointwise asymptotic stability of com-
pact sets is always robust to sufficiently small perturbations. This is stated in Corollary

4.5 and appears to be a new result even in the single-valued case where the dynamics
are given by a continuous function.

The relevance of pointwise asymptotic stability for analysis of consensus algorithms
has been discussed, for example, in [17] and [20]. The issue of robustness of consensus
algorithms has seen treatment in the literature, with the focus on convergence and not

Lyapunov stability of consensus / equilibrium states and most often with robustness
to changes of communication topology in time or to delays. Examples in Section 2

illustrate how state-dependent changes in communication topology fit in the framework
of this paper and hint at applications of the robustness results to consensus problems.

Furthermore, Example 2.5 suggest potential application of the results to analysis of
optimization algorithms.

The paper is organized as follows. Section 2 introduces pointwise asymptotic stability
and other basic concepts, and collects preliminary results on the behavior of solutions

to a difference inclusion in the presence of a pointwise asymptotically stable closed set.
In particular, results on continuous or semicontinuous dependence of the reachable set
and of the limits of solutions on initial points are given. Section 3 introduces set-valued

Lyapunov functions and employs them in necessary and sufficient conditions for pointwise
asymptotic stability. A key observation here is that continuous set-valued dynamics lead

to a continuous set-valued Lyapunov function. Section 4 states and proves the main
result, Theorem 4.3.
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2. Setting and basic results

Throughout the paper, a difference inclusion

x+ ∈ F (x), (1)

is considered, where F : R
n

⇒ R
n is a set-valued mapping, i.e., for every x ∈ R

n, F (x)

is a subset of R
n. The function φ : N0 → R

n, where N0 = N ∪ {0}, is a solution to (1)
from the initial point ξ ∈ R

n if φ(0) = ξ and, for all i ∈ N, φ(i) ∈ F (φ(i− 1)). The set

of all solutions to (1) from ξ is denoted S(ξ). Given a set C ⊂ R
n, S(C) is the set of all

solutions to (1) from points in C, S(C) =
⋃

ξ∈C S(ξ).

One motivation for considering set-valued dynamics, following Krasovskii [23] and
Filippov [10], is the link between set-valued regularization of discontinuous dynamics
and the effect on such dynamics of perturbations, as shown in [15], [14] for differential

equations and in [28] for hybrid systems, which encompass difference equations and
inclusions used here. The example below illustrates this.

Example 2.1. Let x1, x2, . . . , xI ∈ R
m represent states of I agents. Suppose that each

agent changes its position following the rule: find the average state of all agents, including

myself, whose states differ less than 1 from my state and move half-way towards this
average. This and similar dynamics have seen treatment in the literature, with the
origins going back to [13] and [24]; see the extensive discussion in [6]. In the simple case

of two one-dimensional agents, dynamics are given by the function f(x) equal to

{

(x1, x2) if |x1 − x2| ≥ 1
(

3x1

4 + x2

4 ,
x1

4 x1 + 3x2

4

)

if |x1 − x2| < 1
.

The set-valued regularization of this discontinuous f is given by the set-valued mapping
F whose graph is the closure of the graph of f . Alternatively, F is the “smallest”

outer semicontinuous, as defined below, mapping such that f(x) ∈ F (x) for all x ∈ R
n.

Explicitly, F (x) is







(x1, x2) if |x1 − x2| > 1
{

x1,
3x1

4 + x2

4

}

×
{

x2,
x1

4 + 3x2

4

}

if |x1 − x2| = 1
(

3x1

4 + x2

4 ,
x1

4 + 3x2

4

)

if |x1 − x2| < 1

.

The Cartesian product representing F (x) when |x1 − x2| = 1 contains four points and
represents the fact that small perturbations, or measurement error if this is cast as a

feedback control problem, agent x1 can either move or remain stationary, and so can x2.
4

Let M : R
n

⇒ R
n be a set-valued mapping. Let x ∈ R

n. Then M has a nonempty
value at x ifM(x) 6= ∅. M is outer semicontinuous (osc) at x if for every sequence xi → x,

every convergent sequence yi ∈ F (xi), one has limi→∞ yi ∈ F (x). It is continuous at x
if, additionally, for every y ∈ F (x), every sequence xi → x, there exist yi ∈ F (xi) such
that the sequence of yi converges and limi→∞ yi = y. The mapping M is locally bounded

at x if there exists a neighborhood U of x such that F (U) =
⋃

z∈U F (z) is bounded. If
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M has compact values and is locally bounded at x, then osc at x is equivalently described

by: for every ε > 0 there exists δ > 0 such that F (x + δIB) ⊂ F (x) + εIB, which means
that for every z ∈ x + δIB, F (z) ⊂ F (x) + εIB. Here IB is the closed unit ball in R

n,

and so z ∈ x+ δIB means that z is in a closed ball of radius δ around x, i.e., |z−x| ≤ δ.
The additional condition for continuity of such M at x is: for every ε > 0 there exists

δ > 0 such that, for every z ∈ x+ δIB, F (x) ⊂ F (z) + εIB.
Throughout the paper, the following assumption is posed. It ensures, among other

things, that solutions to (1) exist.

Assumption 2.2. The set-valued mapping F : R
n

⇒ R
n has nonempty values and is

locally bounded on R
n.

For J ∈ N0, consider the finite-horizon reachable set

R≤J (ξ) := {φ(j) | φ ∈ S(ξ), j ∈ {0, 1, . . . , J}} .

When F is locally bounded, then R≤J is locally bounded, and then, if F is osc or
continuous then so is R≤J . This can be verified directly, but also follows from the

representation R≤J(ξ) = {ξ} ∪ F (ξ) ∪ F 2(ξ)∪ · · · ∪ FJ (ξ) and results about unions and
compositions of set-valued mappings, [27, 4.31, 5.52]. The infinite-horizon reachable set

R(ξ) =
⋃

J∈N

R≤J (ξ)

does not inherit regularity properties from F , in fact, R(ξ) fails to have closed values

even if F is a continuous function. Better regularity properties hold for the closure of
the reachable set, i.e., the mapping R : R

n
⇒ R

n given by

R(ξ) = R(ξ).

2.1. Pointwise asymptotic stability

A set consisting of equilibria which are semistable in the terminology of [4], i.e., a set

consisting of Lyapunov stable equilibria and surrounded by points from which solutions
converge to some equilibrium in the set, will be called pointwise asymptotically stable.
Below, rgeφ denotes the range of the solution φ, so, for example, rgeφ ⊂ a+ εIB means

that φ(j) ∈ a+ εIB for all j ∈ N0.

Definition 2.3. The set A ⊂ Rn is locally pointwise asymptotically stable (PAS) for

(1) if

• every a ∈ A is Lyapunov stable for (1), that is, for every ε > 0 there exists δ > 0
such that rgeφ ⊂ a+ εIB for every φ ∈ S(a+ δIB), and

• (1) is locally convergent to A, that is, there exists a neighborhood V of A such that,
for every φ ∈ S(V ), limj→∞ φ(j) exists and belongs to A.

The set of all ξ such that, for every φ ∈ S(ξ), limj→∞ φ(j) exists and belongs to A is
the basin of pointwise attraction of A, and is denoted BPA. If BPA = Rn, then A is

globally pointwise asymptotically stable
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Example 2.4. The set

A =
{

(x1, x2, . . . , xI) ∈ R
Im | x1 = x2 = · · · = xI

}

is locally PAS for the dynamics outlined in Example 2.1. This can be verified directly.
Alternative justification, for the two agent case, is suggested in Example 3.2. 4

The next example illustrates that PAS sets naturally arise in many convex optimiza-
tion algorithms. The notation ‖x‖A represents the distance of x from the set A, so

‖x‖A = infa∈A ‖x− a‖ and ‖ · ‖ is the Euclidean norm.

Example 2.5. Let A ⊂ R
n be nonempty and closed and suppose limj→∞ ‖φ(j)‖A = 0

for every solution φ to (1) and, for every a ∈ A, every j ∈ N,

‖φ(j)− a‖ ≤ ‖φ(j − 1) − a‖. (2)

Sequences φ(j) satisfying (2) are called Fejér monotone and result from many opti-

mization algorithms, and appear in the analysis of nonexpansive mappings, variational
inequalities, etc; see [9] and [2]. For example, let f : Rn → R be a convex function with

the set of minimizers equal to A. Define continuous dynamics by letting F (x) to be
the unique minimizer of y 7→ f(y) + 1

2‖y − x‖2, which is a simple case of the proximal

point algorithm. Then the conditions above are met and A is pointwise asymptotically
stable for (1). Indeed, (2) ensures Lyapunov stability of each a ∈ A and convergence of

every solution to a point in A follows from [2, Theorem 5.11]; or it can be concluded
from Lyapunov stability of each a ∈ A and the fact that the ω-limit of every solution is
contained in A. 4

Lyapunov stability of a point can be equivalently expressed in terms of neighborhoods.

For Lyapunov stability of a set and for attractivity defined below, the two approaches
may differ; see the discussion in [1], [3]. Below, a set A is Lyapunov stable if for every

neighborhood U of A there exists a neighborhood V of A such that rgeφ ⊂ U for every
φ ∈ S(V ). For a non-compact A this differs from (ε, δ)-Lyapunov stability, requiring

that for every ε > 0 there exists δ > 0 such that rgeφ ⊂ A + εIB for every φ ∈
S(A + δIB). Similarly, A is locally attractive if there is a neighborhood V of A such
that limj→∞ ‖φ(j)‖A = 0 for every φ ∈ S(V ), and A is locally asymptotically stable if it

is Lyapunov stable and locally attractive. The basin of attraction of an asymptotically
stableA, denoted BA, is the set of all ξ such that for every φ ∈ S(ξ), limj→∞ ‖φ(j)‖A = 0.

It is clear that ifA consists of a single point, A = {a}, then local pointwise asymptotic
stability is the same as local asymptotic stability. If A is compact and every a ∈ A is

Lyapunov stable then A is Lyapunov stable. Furthermore:

Proposition 2.6. Let A ⊂ R
n be closed.

(a) If A is locally pointwise asymptotically stable then A is locally asymptotically stable,
with BPA ⊂ BA. If, furthermore, A is compact then BPA = BA.

(b) If A is locally attractive and every a ∈ A is Lyapunov stable, then A is locally

pointwise asymptotically stable.
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Proof. Suppose that the closed set A is PAS. Let U be a neighborhood of A. For each

a ∈ A, let εa > 0 be such that a + εaIB ⊂ U and then let δa > 0 correspond to εa as
required by Lyapunov stability of a. Also, let V come from local convergence of (1) to

A. Then the set
V ′ =

⋃

a∈A

(a+ δaIB) ∩ V (3)

is such that every φ ∈ S(V ′) satisfies rgeφ ⊂ U and limj→∞ ‖φ(j)‖A = 0 because φ
converges to a point in A. It is clear that BPA ⊂ BA. If A is compact, then every

φ ∈ S(BA) is bounded and has a nonempty ω-limit. Because limj→∞ ‖φ(j)‖A = 0, every
ω-limit point of φ is an element of A. Then each such ω-limit point is Lyapunov stable,

and hence there can be only one such point. Thus φ is convergent to a point in A and so
BA ⊂ BPA. This proves (a). Let V come from local attractivity of A and for a ∈ A let
δa > 0 come from Lyapunov stability of a invoked with ε = 1, so that rgeφ ⊂ a+ IB for

every φ ∈ S(a+ δaIB). Let V ′ be the neighborhood of A in (3). Then every φ ∈ S(V ′) is
bounded, arguments as above show that φ converges to a point in A, and so V ′ verifies

that (1) is locally convergent to A. This shows (b).

To see that BPA 6= BA in (a) above can happen, consider f : R2 → R2 be given by

f(x, y) =

{

(x− 1, y + ex−1 − ex) if y > ex

(x, y/e) if y ≤ ex
.

In particular, if y = ex+c, c > 0 then y+ = ex
+

+c. The x-axis is globally asymptotically
stable, BA = R2, and locally pointwise asymptotically stable, with BPA = {(x, y) | y ≤
ex}. Thus BA 6= BPA. Note that BPA is not open. Let F : R

2
⇒ R

2 be the set-valued
regularization of the discontinuous f . Explicitly,

F (x, y) =







(x− 1, y + ex−1 − ex) if y > ex

{(x− 1, y + ex−1 − ex), (x, y/e)} if y = ex

(x, y/e) if y < ex
.

With dynamics given by F , the x-axis is still locally pointwise asymptotically stable,

with BPA = {(x, y) | y < ex}, which is open. C.f. Proposition 2.10.
Note that local attractivity of a set A can be defined differently: there exists a

neighborhood V of A such that every φ ∈ S(V ) converges to A in the sense that for
every neighborhood U of A there exists j0 such that φ(j) ∈ U for all j > j0. For an

unbounded A, this is a stronger condition than what was discussed above. With the new
definition, no solution φ ∈ S(V ) can be divergent unless it converges to A in finite time:
if limj→∞ ‖φ(j)‖ = ∞ and rgeφ ∩ A = ∅ then U =

⋃

a∈A a + 1
2 minj∈N0

‖φ(j) − a‖IB
is a neighborhood of A such that rgeφ ∩ U = ∅. Consequently, every φ ∈ S(V ) has
an omega-limit point in A. Hence, if each a ∈ A is Lyapunov stable and the closed

set A is locally attractive according to the new definition, then A is locally pointwise
asymptotically stable as ensured by Proposition 2.6 (b) and BPA = BA. Related results

can be found in [3, Section 5].

2.2. Basic properties

This section collects several properties of solutions to (1) when there exists a PAS

set. They lead up to Proposition 2.13 which is essential for Theorem 3.3 (c) which is
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then relied on in the main result. Versions of some of the results, for the continuous-time

and single-valued setting, can be found in [4], [5]. Throughout the section, the following
is assumed.

Assumption 2.7. The set A ⊂ R
n is nonempty, closed, and pointwise asymptotically

stable for (1).

This assumption implies that F (x) = x for all x ∈ A and also that F is continuous

at each such x. Properties of solutions to (1) shown below require mild regularity of F
not just at points of A but at all points of BPA. The following assumption strengthens

Assumption 2.2.

Assumption 2.8. The set-valued mapping F : R
n

⇒ R
n is locally bounded, outer semi-

continuous, and nonempty-valued on R
n.

The standard consequence of Assumption 2.8 for solutions to (1) is contained in the
first part of (a) in Lemma 2.9. PAS strengthens this, as stated in the second part of (a).

In (a), locally uniform convergence means uniform convergence on every compact subset
of N0 and in (c), ‖φ− φ′‖∞ = supj∈N0

‖φ(j)− φ′(j)‖.

Lemma 2.9. Pose Assumption 2.7 and 2.8. Then:

(a) For every compact set K ⊂ Rn and every sequence φi ∈ S(K), there exists a

subsequence φik which converges pointwise and locally uniformly to some φ ∈ S. If
φ(0) ∈ BPA, then the subsequence φik converges to φ uniformly.

(b) For any sequence of φi ∈ S(BPA) uniformly convergent to φ ∈ S(BPA), one has

limi→∞ (limj→∞ φi(j)) = limj→∞ φ(j).

(c) For every compact K ⊂ BPA and every ε > 0 there exists δ > 0 such that, for
every φ ∈ S(K + δIB) there exists φ′ ∈ S(K) such that ‖φ− φ′‖∞ < ε.

Proof. For (a), the first conclusion is standard; local boundedness of F and a diagonal-
ization argument yields pointwise convergence and it implies locally uniform convergence.

For the second conclusion, let a = limj→∞ φ(j) ∈ A. Pick an arbitrary ε > 0. Let δ > 0
be related to ε/2 as required by Lyapunov stability of a. Let J ∈ N be such that

φ(J) ∈ a + δ/2IB and let I ∈ N be such that φi(J) ∈ φ(J) + δ/2IB ⊂ a + δIB for all
i ≥ I . Then, for all i ≥ I , j ≥ J, φ(j) ∈ a+ ε/2IB, φi(j) ∈ a+ ε/2IB and consequently,

φi(j) ∈ φ(j) + εIB. Now, relying on local uniform convergence of φi to φ, pick I ′ ≥ I
such that φi(j) ∈ φ(j) + εIB for all i ≥ I ′, j ∈ {0, 1, . . . , J}. Then φi(j) ∈ φ(j) + εIB for

all i ≥ I ′ and all j ∈ N0, which verifies uniform convergence. Conclusions (b) and (c)
follow directly from (a).

The limit mapping L : BPA ⇒ A assigns to each x ∈ BPA the set of limits of all

solutions from x.

L(ξ) =

{

lim
j→∞

φ(j) | φ ∈ S(ξ)

}

In [5, Proposition 2.3], in a single-valued and continuous-time case, L was shown to
be continuous. Proposition 2.10, which recalls some properties of R and L from [11,

Proposition 4.1], and Proposition 2.13 generalize this to the multivalued case.
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Proposition 2.10. Pose Assumption 2.7 and 2.8. Then:

(a) R, and thus R and L, are locally bounded on BPA;

(b) BPA is an open set;

(c) R and L are outer semicontinuous on BPA and, for every ξ ∈ BPA,

R(ξ) = R(ξ) ∪ L(ξ), L(ξ) = R(ξ) ∩A.

Proof. Only L(ξ) = R(ξ)∩A was not shown in [11, Proposition 4.1]. Take a ∈ R(ξ)∩A.
Let δi ∈ (0, 1/i) be related to εi = 1/i as required by Lyapunov stability of a. For i ∈ N,

there exist φi ∈ S(ξ) and ji ∈ N0 such that φi(ji) ∈ a + δi/2IB. Without relabeling,
pass to a uniformly convergent subsequence of φi’s, with the limit φ ∈ S(ξ). Then
limj→∞ φ(j) = a, and hence a ∈ L(ξ).

To see how L can be well-defined in absence of PAS but fail the properties in Propo-
sition 2.10, consider F : R → R given by F (x) =

√

|x|. The interval A = [0, 1] is

the smallest compact and globally asymptotically stable set, with BA = R. Note that
L(x) = {1} if x 6= 0 while L(0) = 0. Consequently, L is not osc on BA. In fact, it is not

osc at 0, which is in the asymptotically stable set A.

Remark 2.11. In [26], semi-stability was defined to be a property of motions in a
generalized dynamical system having sets as values. In this terminology, the mapping

j → R≤j(x) is semi-stable for every x ∈ A when A is PAS. Indeed, the condition of
[26] that for every ε > 0 there exist δ > 0 and J ∈ N0 so that x′ ∈ x + δIB implies

R≤j+J (x′) ⊂ Rj+J(x) + εIB is satisfied, with J = 0, because R≤j(x) = {x} and x is
Lyapunov stable. Hence, some results of [26] turn out closely related to this work. For

example, [26, Theorem 3] suggests that R(x) = R(x) ∪ Λ(x), where Λ(x) is the ω-limit
of the set {x}. Under the current assumptions, one can then argue that Λ(x) = L(x),

through Lemma 2.9, to recover the first equation in Proposition 2.10 (c). It should be
noted that semi-stability of [26] does not imply pointwise asymptotic stability. 4

The next result shows uniform convergence of solutions from a compact set K to the

compact set of their limits L(K) and a finite-horizon approximation for R(K).

Lemma 2.12. Pose Assumption 2.7 and 2.8. Then, for every compact set K ⊂ BPA
and every ε > 0, there exists J ∈ N such that

(a) for every φ ∈ S(K), φ(j) ∈ L(K) + εIB for every j ≥ J;

(b) for every ξ ∈ K, R(ξ) ⊂ R≤J(ξ) + εIB and, consequently, R(K) ⊂ R≤J(K)+ εIB.

Proof. Suppose that (a) fails. Then there exist sequences of φi ∈ S(K) and ji ∈ N such

that φi(ji) 6∈ L(K) + εIB and limi→∞ ji = ∞. Without relabeling, pass to a uniformly
convergent subsequence of φi, with limit φ ∈ S(K). Let a = limj→∞ φ(j) ∈ L(K) and

let δ > 0 be related to ε as required by Lyapunov stability of a. There exists J ′ ∈ N such
that φ(J ′) ∈ a+δ/2IB. There exists I ∈ N such that, for all i > I , φi(J

′) ∈ φ(J ′)+δ/2IB
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and thus φi(J
′) ∈ a + δIB. Lyapunov stability of a now yields that φi(j) ∈ a + εIB for

all i > I , j > J ′ which is a contradiction. For (b), let M = L(K) and note that
M ⊂ A is compact thanks to outer semicontinuity and local boundedness of L on BPA.

For every a ∈ M , Lyapunov stability implies that there exists δa ∈ (0, ε/2) such that
R(x) ⊂ a + ε/2IB for every x ∈ a + δaIB. The family of sets a + δaIB, where a ∈ M ,

is an open cover of M . Let ai + δai
IB, i ∈ {1, 2, . . . , I} be a finite subcover and let

δ = mini∈I δai
. Then, for every x ∈M + δIB, there exists i ∈ I with x ∈ ai + δai

IB, and
hence

R(x) ⊂ ai + δai
IB ⊂ ai + ε/2IB ⊂ x + εIB.

Take J ∈ N so that, for every φ ∈ S(K), φ(J) ∈M +δIB. It exists because of (a). Then,
for every φ ∈ S(K), φ(j) ∈ φ(J) + εIB for every j > J and this verifies the claim.

Further regularity of the set-valued mappings R and L can be concluded when F is
continuous, not just osc.

Proposition 2.13. Pose Assumption 2.7 and 2.8. If, furthermore, F is a continuous
set-valued mapping, then R and L are continuous on BPA.

Proof. Recall that R and L locally bounded and osc. Pick ε > 0 and ξ ∈ BA. By
Lemma 2.12 there exists J ∈ N such that R(ξ) ⊂ R≤J(ξ) + ε/2IB. Because both

R≤J(ξ) and ε/2IB are closed and bounded, R≤J(ξ) + ε/2IB is closed and thus R(ξ) ⊂
R≤J(ξ) + ε/2IB. Because R≤J is continuous, there exists δ > 0 such that, for every

ξ′ ∈ ξ + δIB, R≤J(ξ) ⊂ R≤J (ξ′) + ε/2IB. For each such ξ′,

R(ξ) ⊂ R≤J(ξ) + ε/2IB

⊂ R≤J(ξ′) + ε/2IB + ε/2IB ⊂ R(ξ′) + εIB.

This verifies that R is continuous. Now pick ξ and ξi → ξ in BPA and y ∈ L(ξ). Use

Lyapunov stability of y to pick δi > 0 be such that φ(0) ∈ y + δiIB implies rgeφ ⊂
y + i−1IB. Because L(ξ) ⊂ R(ξ) and R is continuous at ξ, there exist φi ∈ φ(ξ)

and ji ∈ N0 so that φi(ji) ∈ y + δiIB. Then limj→∞ φi(j) ∈ y + i−1IB, and because
limj→∞ φi(j) ∈ L(ξi), this verifies continuity of L at ξ.

The section concludes with an example of continuous F , related to the consensus
dynamics in Example 2.1.

Example 2.14. Let φ : R
m → [0, 1] be a continuous function such that φ(0) = 1,

φ(z) = 0 when ‖z‖ ≥ 1. The j-th agent changes its position by moving half-way towards

the weighted average of positions of other agents, given by

waj(x) =

J
∑

i=1

xiφ(xj − xi)

/

J
∑

i=1

φ(xj − xi) .

The function φ can represent the strength of the signal with which agents broadcast their

positions or the certainty in observation of other agent positions. This yields continuous
dynamics x+

i = fi(x) = 1
2 (xi +waj(x)) for which PAS of the set A from Example 2.4

can be analyzed. 4
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3. Set-valued Lyapunov functions

Set-valued Lyapunov functions provide necessary and sufficient conditions for point-

wise asymptotic stability. Key results of [11] on this topic are recalled below in Theorem
3.3 and also strengthened for the case of continuous set-valued dynamics.

The following definition comes from [11, Definition 2.3], with a minor change allowing

for lack of regularity of W at points not in A. Below, domW = {x ∈ R
n |W (x) 6= ∅}

and forward invariance of a set S ⊂ R
n with respect to (1) means that every φ ∈ S(S)

satisfies rgeφ ⊂ S.

Definition 3.1. A set-valued mapping W : R
n

⇒ R
n is a set-valued Lyapunov function

for (1) and a nonempty set A ⊂ R
n if

(a) W (x) = {x} for every x ∈ A;

(b) x ∈W (x) for every x ∈ domW ;

(c) W is locally bounded and, at every x ∈ A, it is outer semicontinuous;

(d) domW is an open neighborhood of A forward invariant with respect to (1) and there
exists a continuous and positive definite with respect to A function α : domW →
[0,∞) such that, for any convergent sequence of points xi ∈ domW satisfying
limi→∞ α(xi) = 0, one has limi→∞ xi ∈ A and

W (F (x)) + α(x)IB ⊂W (x) ∀x ∈ domW. (4)

An outer semicontinuous (continuous) set-valued Lyapunov function W is a set-

valued Lyapunov function W which is osc (continuous) at every x ∈ domW . Note
that the existence of the continuous and positive definite with respect to A function α
implies that A is closed.

Example 3.2. Consider the two agent dynamics from Example 2.1. For x with |x1 −
x2| < 1, let

W (x) =

(

x1 + x2

2
,
x1 + x2

2

)

+ r(x)IB,

where r(x) is the distance of x from (x1+x2

2 , x1+x2

2 ). For |x1 − x2| ≥ 1, set W (x) = ∅.
Then W is a set-valued Lyapunov function for (1) and A = {x ∈ R2 | x1 = x2}. In fact,

W is continuous on domW and (4) holds with α(x) = 1
2r(x). Note that the set-valued

mapping W ′(x) = x+r(x)IB, is not a set-valued Lyapunov function because α satisfying
(4) fails to exist:

(

x1+x2

2 , x1+x2

2

)

is on the boundary of both W ′(x) and W ′(F (x)), and

in particular, W ′(F (x)) is not in the interior of W ′(x). 4

Theorem 3.3.

(a) If there exists a set-valued Lyapunov function W for (1) and A, then A is pointwise
asymptotically stable and domW ⊂ BPA.
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(b) Assume that F satisfies Assumption 2.8 and the set A ⊂ R
n is nonempty and

compact. If A is pointwise asymptotically stable then there exists an outer semi-
continuous set-valued Lyapunov function W for (1) and A with domW = BPA.

(c) Assume that F satisfies Assumption 2.8, is continuous, and the set A ⊂ R
n is

nonempty and closed. If A is pointwise asymptotically stable then there exists a
continuous set-valued Lyapunov function W for (1) and A with domW = BPA.

Proof. The sufficiency in (a) closely follows the idea of [25, Theorem 4] and was shown
as [11, Theorem 3.1]. The assumptions in [11] involved osc of W but the proof of [11,

Theorem 3.1] relied only on osc at points in A, as assumed here. The necessary condition
in (b) was shown as [11, Theorem 4.7]. The necessary condition for pointwise asymptotic
stability in (c) follows from the proof of [11, Theorem 4.4]. Indeed, while [11, Theorem

4.4] did not conclude continuity ofW , the proof relied on settingW (x) = R(x)+V (x)IB,
where V is a smooth function. Proposition 2.13 showed that continuity of F implies

continuity for R, and then continuity ofW follows from continuity and local boundedness
of R and of the mapping x 7→ V (x)IB; see [27, Proposition 5.51].

The next result shows that the existence of a set-valued Lyapunov function implies
the existence of a set-valued Lyapunov function with convex values; this will be used in

Section 4 in the proof of the main result. For a set S ⊂ R
n, conS denotes the convex

hull of S, i.e., the smallest convex set containing S, equivalently, the intersection of all

convex sets containing S.

Proposition 3.4. If W : Rn
⇒ Rn is a set-valued Lyapunov function for (1) and a set

A ⊂ R
n then so is conW . If, furthermore, W is outer semicontinuous or continuous

then so is conW .

Proof. Clearly, conW satisfies (a) and (b) of Definition 3.1. Local boundedness of W
implies this property for conW and ensures that osc of W at every x ∈ A implies osc of

conW at each such x. (4) implies that W (y) + α(x)IB ⊂ W (x) for every x ∈ domW ,
y ∈ F (x), and so

con (W (y) + α(x)IB) ⊂ conW (x). (5)

Now, con (W (y) + α(x)IB) = conW (y)+α(x)IB because α(x)IB is a convex set. Indeed,

con (W (y) + α(x)IB) ⊂ conW (y) + α(x)IB because the convex set conW (y) + α(x)IB
contains W (y) +α(x)IB and con (W (y) + α(x)IB) is the smallest such set. On the other
hand, take z ∈ conW (y) + α(x)IB. There exist finitely many zi ∈ W (y), λi > 0 with

Σλi = 1 and b ∈ IB such that z = Σλizi + α(x)b. Then z = Σλi (zi + α(x)b), which
verifies that z ∈ con (W (y) + α(x)IB). Consequently, (5) turns to

conW (y) + α(x)IB ⊂ conW (x)

and this implies that (4) is satisfied by conW . Outer semicontinuity or continuity of

conW follows from [27, Proposition 4.30], in light of local boundedness of W .

The remark below establishes the equivalence between the existence of a set-valued

Lyapunov function as defined here and a set-valued mapping which satisfies (a), (b),
and (c) of Definition 3.1 and (d’), below, used by [25] to characterize a decrease of a

set-valued Lyapunov function.
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Remark 3.5. If W : R
n

⇒ R
n is a set-valued Lyapunov function for (1) and a set

A ⊂ R
n then

diamW (F (x)) ≤ diamW (x) − 2α(x) ∀x ∈ domW. (6)

On the other hand, suppose that W : R
n

⇒ R
n satisfies (a), (b), and (c) of Definition

3.1 and

(d’) there exists a function µ : {W (x) | x ∈ U} → [0,∞), where U ⊂ R
n is a neighbor-

hood of A forward invariant with respect to (1), such that

W (F (x)) ⊂W (x) ∀x ∈ U, (7)

and, moreover, such that x 7→ µ(W (x)) is locally bounded on U and for which
there exists a lower semicontinuous function β : U → [0,∞), positive definite with
respect to A, and such that

µ(W (F (x))) ≤ µ(W (x)) − β(x) ∀x ∈ U. (8)

Then the set-valued mapping Ω : U ⇒ Rn defined by

Ω(x) = W (x) + µ(W (x))IB, ∀x ∈ U

is a set-valued Lyapunov function for (1) and A. Indeed, if x ∈ U , y ∈ F (x), then
W (y) ⊂W (x) thanks to (7) and (µ(W (y))+β(x))IB ⊂ µ(W (x))IB thanks to (8). Hence

Ω(y) + β(x)IB = W (y) + µ(W (y))IB + β(x)IB

⊂ W (x) + µ(W (x))IB = Ω(x).

This establishes (4) for Ω, with α = β. Replacing β with a continuous and positive

definite with respect to A function bounded above by β proves the claim. For example,
one can consider β′(x) = infu∈U {β(u) + |x− u|}, which has the needed properties and

is Lipschitz continuous with constant 1; see [27, Example 9.11]. 4

4. Robustness

This section establishes the equivalence between the existence of a continuous set-
valued Lyapunov function and robust pointwise asymptotic stability for a compact set
A. The robustness definition below parallels what has been used for difference inclusions

for example in [21] and [7]. When dynamics result from implementation of feedback in
a control system, the perturbation (10) can model measurement error, numerical errors

in feedback algorithm, external perturbations, etc.

Definition 4.1. The set A ⊂ Rn is robustly pointwise asymptotically stable for (1) if

it is pointwise asymptotically stable and there exists a continuous and positive definite
with respect to A function ρ : Rn → [0,∞) such that A is pointwise asymptotically stable
for

x+ ∈ Fρ(x) (9)
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with the basin of pointwise attraction equal to BPA, where Fρ : R ⇒ R
n is the set-valued

mapping defined by

Fρ(x) =
⋃

y∈F (x+ρ(x)IB)

y + ρ(y)IB. (10)

The example below shows how pointwise asymptotic stability can fail under per-

turbations if those do not vanish sufficiently fast near A. While the convergence to a
neighborhood of A may still occur, Lyapunov stability of points in A fails completely.

[4, Example 1.1] is a related illustrative example.

Example 4.2. In R
2 let A = [−1, 1]×{0}, let PA(x) be the nearest point to x in A, so

that ‖x‖A = ‖x− PA(x)‖, let λ(x) =
‖x‖A

‖x‖A+1 , and define F : R
2 → R

2 by

F (x) = λ(x)x+ (1− λ(x))PA(x).

Then ‖F (x)‖A = λ(x)‖x‖A and PA(F (x)) = PA(x). In short, (1) results in the decrease

of the distance of x from A by a factor λ(x). In particular, if ‖x‖A = 1
n then ‖x+‖A =

1
n+1 , and the solution to (1) from (0, 1) is φ(j) =

(

0, 1
j+1

)

, j ∈ N0. Let ρ(x) = ε‖x‖A

for any ε > 0. Then there exists a solution φ to (9), in fact to x+ ∈ F (x) + ρ(F (x))IB,

from (0, 1) such that φ2(j) = 1
j+1 while φ1(j) increases from 0 to 1 in finitely many

steps, then decreases from 1 to −1 in finitely many steps, then increases from −1 to

1, etc. This is caused by the fact that the sequence ‖φ(j)‖A = 1
j+1 is not summable,

and so neither is the sequence of perturbations ρ(φ(j)). This solution converges to A,
limj→∞ ‖φ(j)‖A = 0, but does not converge to any point in A. In fact, it could be argued

that the ω-limit of this solution equals A. This behavior is possible with an arbitrarily
small ε > 0. However, small ε > 0 preserve semiglobal practical stability of A: for every

compact set K and δ > 0, there exists ε > 0 such that solutions to (9) from K converge
to the δ-neighborhood of A. 4

The main result of the paper is now stated and proved.

Theorem 4.3. Let A ⊂ R
n be compact and pointwise asymptotically stable for (1). The

following are equivalent:

(a) A is robustly pointwise asymptotically stable for (1).

(b) There exists a continuous set-valued Lyapunov function W for (1) and A.

The idea behind the implication from (a) to (b) is this: pointwise asymptotic stability

ensures the existence of an outer semicontinuous set-valued function and then robust-
ness makes possible to construct from it a continuous set-valued Lyaupnov function.
The construction is very similar to what was done in [8, Proposition 3.5], when using

robustness of (the classical) asymptotic stability for a differential inclusion to construct a
continuous differential inclusion for which asymptotic stability is still present. Here, the

construction is applied to W , not to the dynamics. For readers convenience, the details
are included. The idea behind the implication from (b) to (a) is that the decrease of a
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continuous set-valued Lyapunov function is preserved locally under small perturbations.

Then, pointwise asymptotic stability implies (the classical) asymptotic stability, and the
robustness of the latter property lets one combine the sizes of local perturbations to

obtain a global robustness result for pointwise asymptotic stability.

Proof. (a) =⇒ (b). First, note that if A is robustly PAS for (1) then A is robustly
PAS for

x+ ∈ F (x), (11)

where F : R ⇒ R
n is the osc regularization of F , i.e., the set-valued mapping defined, at

each x ∈ R
n, by

F (x) =
⋂

δ>0

F (x+ δIB). (12)

Indeed, F (x) ⊂ Fρ(x) for every x ∈ BPA, so A is PAS for (11). Furthermore, F ρ/2(x) ⊂

Fρ(x), where F ρ/2 is a perturbation of F , and this verifies robustness of PAS of A for

(11). Because F satisfies Assumption 2.8, without loss of generality, it is supposed be-

low that F satisfies Assumption 2.8. Let ρ come from Definition 4.1 and, without loss
of generality, let it be Lipschitz continuous with constant 1. (Otherwise, one consid-

ers ρ′(x) = min{infz∈BPA {ρ(z) + |x− z|} , |x|A}, which has the desired properties and
satisfies ρ′(x) ≤ ρ(x).)

Theorem 3.3 yields an osc set-valued Lyapunov function W for (9) and A with
domW = BPA. This W can be assumed to be convex, by Proposition 3.4. Then,

arguments as in the proof of [8, Proposition 3.5], with W replacing F and BPA \ A re-
placing R

n \ {0}, yield the existence of a locally Lipschitz, hence continuous, set-valued
mapping W ′ : BPA \A ⇒ R

n such that, for every x ∈ BPA \A,

W (x) ⊂W ′(x) ⊂ con W (x+ ρ(x)IB). (13)

Indeed, the interiors of Ux = x+ 1
3ρ(x)IB, x ∈ BPA\A, form a covering of BPA\A, and

a locally finite open subcovering Vi, i ∈ N, can be found, together with a subordinated

smooth partition of unity ψi, i ∈ N. For i ∈ N, let xi be such that Vi ⊂ Uxi
. For

x ∈ BPA \A, let

W ′(x) =

∞
∑

i=1

ψi(x) conW

(

xi +
1

3
ρ(xi)IB

)

. (14)

Then W ′ is continuous at every x ∈ BPA \ A. For such x, if ψi(x) > 0 then x ∈ Vi ⊂
Uxi

= xi+
1
3ρ(xi)IB and so W (x) ⊂W

(

xi + 1
3ρ(xi)IB

)

and consequently W (x) ⊂W ′(x).
Furthermore, Lipschitz continuity of ρ with constant 1 and x ∈ xi + 1

3ρ(xi)IB imply
2
3ρ(xi) < ρ(x) and xi +

1
3ρ(xi)IB ⊂ x+ 2

3ρ(xi)IB ⊂ x+ρ(x)IB. Then W (xi +
1
3ρ(xi)IB) ⊂

W (x + ρ(x)IB) and consequently W ′(x) ⊂ con W (x + ρ(x)IB). This concludes the

arguments borrowed from [8, Proposition 3.5].
Extend W ′ given by (14) to BPA by setting W ′(x) = {x} for x ∈ A. Then (13)

holds for x ∈ A (in fact, as an equality) and W ′ is continuous at each x ∈ A. Indeed,
for every a ∈ A, ε > 0, by outer semicontinuity of W there exists δ > 0 so that
W (a+ δIB) ⊂W (a) + εIB, and then by continuity of ρ and the fact that ρ(a) = 0, there
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exists δ′ > 0 such that x+ρ(x)IB ⊂ a+δIB for every x ∈ a+δ′IB. Hence, for x ∈ a+δ′IB,

W ′(x) ⊂ con W (x+ ρ(x)IB) ⊂ con W (a+ δIB)

⊂ W (a) + εIB = W ′(a) + εIB.

This shows W ′ is osc, and hence continuous because W ′(a) is a single point. It remains
to show that W ′ is a set-valued Lyapunov function for (1). Because W is a set-valued

Lyapunov function for (9) andW (x) is convex, for every x ∈ BPA, every y ∈ F (x+ρ(x)),

con W (y + ρ(y)IB) + α(x)IB ⊂W (x).

Then, (13) implies W ′(y)+α(x)IB ⊂W ′(x), for every y ∈ F (x+ρ(x)), in particular, for

every y ∈ F (x). Hence, the continuous set-valued mapping W ′ is a set-valued Lyapunov
function for (1).

(b) =⇒ (a). A preliminary result is needed.

Lemma 4.4. Let W be a continuous set-valued Lyapunov function for (1) and A. Let
α come from (4). Then:

(i) W is a set-valued Lyapunov function for (11); in fact, it satisfies (4) with α.

(ii) For every compact set K ⊂ domW such that K ∩ A = ∅ there exists δ > 0 such
that, for all x ∈ K,

W (F (x+ δIB) + δIB) +
1

2
α(x)IB ⊂W (x). (15)

Proof. For (i), take x ∈ domW , y ∈ F (x) and note that there exist xi → x, yi → y,
with yi ∈ F (xi). Then W (yi)+α(xi)IB ⊂W (xi) and, for any ε > 0 and all large enough

i, continuity of W implies that W (y) ⊂ W (yi) + εIB and W (xi) ⊂ W (x) + εIB while
continuity of α implies that α(x) ≤ α(xi) + ε. Then

W (y) + α(x)IB ⊂ W (yi) + α(xi)IB + 2εIB

⊂ W (xi) + 2εIB ⊂W (x) + 3εIB.

Hence W (F (x))+α(x)IB ⊂W (x)+3εIB, and because ε is arbitrary and W (x) is closed,
W (F (x)) + α(x)IB ⊂W (x). This verifies (a).

If (ii) was false, there would exist a compact K ⊂ domW \ A, points xi ∈ K,
x′i ∈ xi + 1

i IB, y′i ∈ F (x′i), and yi ∈ y′i + 1
i IB so that W (yi) + 1

2α(xi) 6⊂ W (xi). K

is compact and F is locally bounded, so one can extract convergent subsequences, not
relabeled, so that xi → x ∈ K, yi → y ∈ F (x), and, by continuity of W and α, so

that W (y) + 1
2α(x) 6⊂ intW (x). Here, intW (x) is the interior of W (x). Because x 6∈ A,

α(x) > 0 and W (y) + 1
2α(x) 6⊂ intW (x) contradicts (4). This proves (b).

Thanks to Lemma 4.4, F can be replaced by F , and so one can assume that F

satisfies Assumption 2.8. PAS of the compact set A implies asymptotic stability, by
Proposition 2.6, and BPA = BA. Then, Assumption 2.8 ensures that the asymptotic

stability is robust; see [12, Theorem 7.21] or [22, Theorem 2.8]. That is, there exists
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a continuous and positive definite ρ0 : BPA → [0,∞) such that A is asymptotically

stable for x+ ∈ Fρ0
(x), with Fρ0

constructed from ρ0 as in (10). Let V : BPA → [0,∞)
be a smooth Lyapunov function verifying asymptotic stability of A for x+ ∈ Fρ0

(x);

it exists thanks to [22, Theorem 2.7]. For i ∈ N, set Ki = {x ∈ BPA | 1/(i + 1) ≤
V (x) ≤ 1/i}. Then, let δi > 0 be such that δi ≤ minx∈Ki

ρ0(x) and such that (15)

holds for all x ∈ Ki. Let ρ : BPA → [0,∞) be a continuous function such that ρ ≤ ρ0

and ρ(x) ≤ min{δ1, δ2, . . . , δi} for all x ∈ Ki. Then, for every x ∈ A ∪
⋃∞

i=1Ki, every
y′ ∈ F (x+ ρ(x)IB), and every y ∈ y′ + ρ(y′)IB,

W (y) +
1

2
α(x)IB ⊂W (x). (16)

Indeed, if x ∈ Ki then y′ ∈ A or y′ ∈ Kj with j ≥ i, because sublevel sets of V are

forward invariant for x+ ∈ Fρ0
(x) and so for x+ ∈ Fρ(x). If y′ ∈ Kj then ρ(y′) ≤ δi by

construction, while if y′ ∈ A then ρ(y′) = 0. Then, (15) with δi in place of δ implies

(16). If x ∈ A, then ρ(x) = 0, y′ = x, and (16) holds.
Having W (Fρ(x))+ 1

2αIB ⊂W (x) on a neighborhood of A where V (x) ≤ 1 gives that

A is locally PAS for (9). Because A is also asymptotically stable for (9), with basin of
attraction BPA, Proposition 2.6 ensures that A is PAS for (9), with basin of pointwise
attraction equal to BPA. In short, A is robustly PAS for (9).

Combining Theorem 4.3 with Theorem 3.3 yields the following consequence, which

applies in particular when the dynamics are given by a continuous function.

Corollary 4.5. Suppose that F in (1) satisfies Assumption 2.8 and is continuous. If a
nonempty and compact set A ⊂ Rn is pointwise asymptotically stable for (1) then A is

robustly pointwise asymptotically stable for (1).

5. Conclusions

The paper has shown that pointwise asymptotic stability of a closed set for a continu-
ous difference inclusion is equivalent to the existence of a continuous set-valued Lyapunov

function, and when the set is compact, the existence of such a set-valued Lyapunov func-
tion is equivalent to robustness of pointwise asymptotic stability. In particular, pointwise

asymptotic stability of a compact set is robust for continuous dynamics. An interesting
theoretical question is how to define a set-valued Lyapunov function for continuous-time
dynamics given by a differential equation or inclusion, and whether similar robustness

results are possible. A practical issue to be addresses is whether the robustness results
can help in the analysis and design of consensus algorithms.
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