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Continuous Time Linear Quadratic Regulator
With Control Constraints via Convex Duality

Rafal Goebel and Maxim Subbotin

Abstract—A continuous time infinite horizon linear quadratic regulator
with input constraints is studied. Optimality conditions, both in the open
loop and feedback form, and continuity and differentiability properties of
the optimal value function and of the optimal feedback are shown. Argu-
ments rely on basic ideas of convex conjugacy, and in particular, use a dual
optimal control problem.

Index Terms—Convex conjugacy, dual optimal control problem, input
constraints, linear-quadratic regulator, nonlinear feedback.

I. INTRODUCTION

Despite its role in construction of stabilizing feedbacks, the contin-
uous time constrained linear quadratic regulator problem has not, to
our knowledge, seen a thorough analysis that included open-loop and
feedback optimality conditions, regularity analysis of the optimal value
function, its Hamilton–Jacobi description, and a characterization of its
gradient via a Hamiltonian system. We provide it here, focusing on a
problem with input constraints only.

Our analysis of the continuous time linear quadratic regulator with
control constraints (CLQR) benefits from two techniques previously
used (but not simultaneously) to study this, and other optimal control
problems on infinite time horizon: duality and reduction to a finite time
horizon.

The use of dual convex optimal control problems was proposed in [1]
and [2], and first applied to the infinite time horizon case in [3]; see also
[4] and [5]. Under some strict convexity assumptions not compatible
with control applications, [3] gave open-loop optimality conditions and
a characterization of the gradient of the value function in terms of the
Hamiltonian system. The extension in [6] to the control setting gave
only local results.

With no reference to duality, open-loop optimality conditions,
transversality conditions at infinity, and regularity of the optimal value
function and of optimal policies for convex problems have seen treat-
ment in theoretical economics, see [7]–[10]. These works often use
barrier functions rather than hard constraints, assume nonnegativity of
the state (representing the capital), or place interiority conditions on
the control; these are not compatible with CLQR. Problems closely
related to CLQR were analyzed in [11], and [12] (which dealt with
nonnegative controls) via some convex analysis tools, but not duality.
Most of the mentioned works, and the general open-loop necessary
conditions in [13], do not address feedback at all.

When 0 is in the interior of the feasible control set, near the origin
CLQR is just the classical linear quadratic regulator, the theory of
which is well-known; see [14]. Relying on the Principle of Optimality,
one can then restate CLQR as a finite time horizon problem with
quadratic terminal cost. This is often done in receding horizon con-
trol (see [15] and the references therein) and in direct approaches to
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computation of the optimal feedback, most of which focus on discrete
time problems. A distinguishing feature of discrete time is that, for both
finite and infinite horizon problems, the value function is piecewise
quadratic and the optimal feedback is piecewise affine. This allows for
their efficient computation, see [16] and [17]. The recent work of [18],
in continuous time but for a finite horizon, explicitly finds the optimal
feedback via an offline computation, and observes the differentiability
of the value function and continuity and piecewise differentiability of
the feedback, based on sensitivity analysis for parametric optimization
(see [19]).

In this note, we study CLQR in the duality framework as proposed
by [3] and with the dual control problem as suggested by [2] while
also taking advantage, when necessary, of the reduction to a finite time
horizon. We choose to work “from scratch” rather than relying on some
general duality results for control problems on finite or infinite time
horizons (see [5], [20], and [21]) or on parametric optimization. For the
most part, we base our work on few results from convex analysis, and
a single application of the (finite time horizon) Maximum Principle.

II. PRELIMINARIES AND THE DUAL PROBLEM

The continuous time infinite horizon linear quadratic regulator with
control constraints (CLQR) is the following problem: Minimize

1

2

+1

0

y(t)TQy(t) + u(t)TRu(t)dt (1)

subject to linear dynamics

_x(t) = Ax(t) +Bu(t); x(0) = �

y(t) = Cx(t)
(2)

and a constraint on the input

u(t) 2 U; for all t 2 [0;+1): (3)

Here, the state x : [0;+1) ! IRn is locally absolutely continuous,
y : [0;+1)! IRm is the output, and the minimization is carried out
over all locally integrable controls u : [0;+1) ! IRk . The optimal
value function V : IRn ! [0;+1] is the infimum of (1) subject to
(2), (3), parameterized by the initial condition � 2 IRn. Throughout
the note, we assume the following.

Assumption 2.1: (Standing Assumption):
i) Matrices Q and R are symmetric and positive definite.

ii) The pair (A;B) is controllable. The pair (A;C) is observable.
iii) The set U is closed, convex, and 0 2 int U .
For the unconstrained problem (1), (2), V (�) = (1=2)�TP�, where

P is the unique symmetric and positive definite solution of the Riccati
equation, and the optimal feedback is linear: given the state x, the op-
timal control is �R�1BTPx; see [14].

In presence of the constraint (3), V is a positive definite convex func-
tion that may have infinite values: V (�) = +1 if no feasible process
exists. (We call a pairx(�),u(�) admissible if it satisfies (2), (3), and fea-
sible if additionally the cost (1) is finite.) There exists a neighborhood
N of 0 on which V (�) = (1=2)�TP�; in fact, one can takeN = fx 2
IRnj�TP� � rg where r is small enough so that �R�1BTP� 2 U
for all � 2 N . (Such r exists since 0 2 int U .) In general, V (�) �
(1=2)�TP�. Any feasible process is such that x(t)! 0 as t! +1.
Indeed, V (x(t)) �

+1

t
y(s)TQy(s) + u(s)TRu(s)ds by the defi-

nition of V , the integral tends to 0 as t ! 1 as the process has finite
cost, and thus x(t)TPx(t) ! 0 as t ! 1. The effective domain
of V , i.e. the set dom V = f� 2 IRnjV (�) < +1g, is open. In-
deed, let x(�), u(�) be any feasible process with x(0) = � and let t
be such that x(t) 2 int N , where N is the neighborhood mentioned

0018-9286/$25.00 © 2007 IEEE



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 5, MAY 2007 887

above. Then for any �0 sufficiently close to �, the solution x0(�) with
x0(0) = �0 generated by u(t) on [0; t] is such that x0(t) 2 N . Using
the unconstrained linear control from then on leads to a feasible process
for �. Lower semicontinuity of V , and the existence of optimal pro-
cesses for CLQR can be shown via standard arguments that involve
picking weakly convergent subsequences from bounded in L2[0;1)
sequences of controls (see [22, Th. 1.3]), ensuring that the limit satisfies
the constraints (see the example following [22, Th. 1.6]), and relying
on lower semicontinuity of continuous convex functionals with respect
to weak convergence, see the Corollary to [22, Th. 1.6]. Finally, since
any convex function that is finite on an open set is continuous on that
set, V is continuous on dom V .

In defining a dual problem to CLQR, we will use the concept of
a convex conjugate function. For a proper, lower semicontinuous and
convex f : IRn ! (�1;+1], its convex conjugate f� : IRn !

(�1;+1] is defined by

f�(p) = sup
x2IR

pTx � f(x) :

It is a proper, lower semicontinuous and convex function itself, and
(f�)� = f (the conjugacy gives a one to one correspondence be-
tween convex functions and their conjugates). For example, for f(x) =
(1=2)xTMx for a symmetric and positive definite matrix M , we have
f�(p) = (1=2)pTM�1p. Another example will be provided by the
function � defined by (6). The standard reference for this, and other
convex analysis material we use, is [23].

Following [2] and [3], the dual problem to CLQR is the following
optimal control problem: Minimize

+1

0

� (q(t)) +
1

2
w(t)TQ�1w(t)dt (4)

subject to

_p(t) = �AT p(t)� CTw(t); p(0) = �

q(t) = BT p(t)
(5)

where p : [0;+1) ! IRn is a locally absolutely continuous arc de-
scribing the dual state, q : [0;+1) ! IRk is the dual output, and
the minimization is carried out over all locally integrable (dual) con-
trol functions w : [0;1)! IRm. In (4), the function � : IRk ! IR is
the convex conjugate of the function given by (1=2)uTRu for u 2 U
and by +1 for u 62 U . That is

�(q) = sup
u2U

qTu�
1

2
uTRu : (6)

This function is finite-valued everywhere, convex, nonnegative,
bounded above by (1=2)qTR�1q, and equal to (1=2)qTR�1q on a
neighborhood of 0. It is also differentiable, with r� Lipschitz contin-
uous. Furthermore, if U is polyhedral, � is piecewise linear-quadratic;
see [24, Ex. 11.18].

Example 2.2: (Standard Saturation): In case of standard saturation
of single-input systems (where U = [�1; 1]) and with R = 1, one
obtains �(q) = �q � (1=2) if q < �1, �(q) = (1=2)q2 if �1 � q �
1, and �(q) = q � (1=2) if 1 < q. Then, r� is exactly the standard
saturation function.

The optimal value function W : IRn 7! [0;+1) for the dual
problem is the infimum of (4) subject to (5), parameterized by the ini-
tial condition �.W is a positive definite, finite everywhere, and convex
(and hence continuous). Also,W is quadratic near 0, optimal processes
exist, and for each dual feasible process we have p(t) ! 0. (We call
a pair p(�), w(�) dual admissible if it satisfies (5) and dual feasible if
additionally, it has finite cost, i.e. (4) is finite.)

Example 2.3: (Duality in the Unconstrained Case): The value func-
tion for the unconstrained linear quadratic regulator (1), (2) is given by
Vu(�) = (1=2)�TP�, where P is the unique symmetric and positive
definite solution of the Riccati equation

PA+ ATP � CTQC + PBR�1BTP = 0: (7)

This is equivalent to

�P�1AT � AP�1 �BR�1BT + P�1CTQCP�1 = 0:

Just as (7) corresponds to the problem (1), (2), the equivalent version
corresponds to a dual linear quadratic regulator (4), (5) with �(q) =
(1=2)qTR�1q. The function Wu(�) = (1=2)�TP�1� is the value
function for this problem. Indeed, as (5) is stabilizable and detectable,
the matrix describing the value function is the unique positive definite
solution of the second equation above. In particular, the value functions
Vu, Wu are convex functions conjugate to each other.

III. MAIN RESULTS

To shorten the notation, we will use a subscript to denote time depen-
dence. Instead of x(t) we write xt, etc. The discussion below, leading
up to one of our main results, Theorem 3.1, also shows motivation for
considering the dual problem in the form (4), (5).

For all y, w, we have that

1

2
yTQy +

1

2
wTQ�1w � yTw (8)

and this is an equality if and only if w maximizes yTw �

(1=2)wTQ�1w, equivalently, if w = Qy. One observes this by
rewriting (8) as yTQy � yTw � (1=2)wTQ�1w. Similarly, for all
u 2 U , q

1

2
uTRu+ �(q) � uT q (9)

and this holds as an equality if and only if q maximizes uT q � �(q),
equivalently, if u = r�(q). Furthermore, by the definition (6) of �,
the equality in (9), rewritten as �(q) = uT q� (1=2)uTRu, shows that
u maximizes uT q � (1=2)uTRu over the set U . (Cf. [23, Theorem
23.5].)

Consider any admissible process (xt; ut) and any dual admissible
process (pt; wt). Then

d

dt
(xTt pt) = (Axt +But)

Tpt + xTt (�A
T pt � CTwt)

=uTt B
T pt � (Cxt)

Twt

:

Combining this, (8) with y = �Cxt, (9), and the discussion following
(9), gives

1

2
xTt C

TQCxt +
1

2
uTt Rut + �(BT pt) +

1

2
wTt Q

�1wt

�
d

dt
xTt pt : (10)

Now, (10) turns into an equality if and only if ut = r�(BT pt), which
is equivalent to

ut maximizes uTBT pt �
1

2
uTRu over u 2 U (11)

and if wt = �QCxt, which is equivalent to

wt maximizes � wTCxt �
1

2
wTQ�1w: (12)
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Integrating (10) yields: for any feasible (xt; ut) and dual feasible
(pt; wt)

�

0

1

2
xTt C

TQCxt +
1

2
uTt Rutdt

+

�

0

�(BT pt) + l
1

2
wT
t Q

�1wtdt � xT� p� � �T � (13)

and this holds as an equality if and only if (xt; ut) and (pt; wt) satisfy
(11) and (12) on [0; � ].

Before stating the open-loop optimality conditions, we need to intro-
duce the following objects. The (maximized) Hamiltonian associated
with CLQR is

H(x; p) = pTAx �
1

2
xTCTQCx+ �(BT p): (14)

The Hamiltonian differential system _xt = rpH(xt; pt), _pt =
�rxH(xt; pt) takes the form

_xt = Axt +Br�(BT pt) _pt = �AT pt + CTQCxt: (15)

Theorem 3.1: (Open Loop Optimality):
a) If a feasible process (�xt; �ut) is optimal for CLQR then there

exists an arc �pt such that (11) and (15) hold and �pt ! 0 as t!
1. On the other hand, if for some admissible process (�xt; �ut),
there exists an arc �pt such that (11), (15), and limt!1 �xTt �pt = 0
hold, then (�xt; �ut) is optimal for CLQR.

b) If a dual feasible process (�pt; �wt) is optimal for the dual problem
(4), (5) then there exists an arc �xt such that (12) and (15) hold
and �xt ! 0 as t ! 1. On the other hand, if for some dual
admissible process (�pt; �wt), there exists an arc �xt such that (12),
(15) hold and limt!1 �xTt �pt = 0, then (�pt; �wt) is optimal for
the dual problem (4), (5).

Proof: We show a), the proof of b) is similar. We show sufficiency
first. Given an arc �pt as assumed, let �wt = QC�xt, and let � ! 1
in (13) (noting that (13) holds as an equality for (�xt; �ut), (�pt; �wt)) to
obtain

1

0

1

2
�xTt C

TQC�xt +
1

2
�uTt R�utdt

+

1

0

�(BT �pt) +
1

2
�wT
t Q

�1 �wtdt = ��T �: (16)

In particular, this implies that (�xt; �ut) has finite cost. On the other hand,
for any other feasible process (xt; ut) (and, hence, such that xt ! 0
as t ! 1) we also have xTt �pt ! 0, and then letting � ! 1 in (13)
yields

1

0

1

2
xTt C

TQCxt +
1

2
uTt Rutdt

+

1

0

�(BT �pt) +
1

2
�wT
t Q

�1 �wtdt � ��T �: (17)

This combined with (16) implies that (�xt; �ut) is optimal.
Necessity is shown via reduction of the infinite horizon problem to

a finite horizon formulation. For an optimal process (�xt; �ut), and so a
process with a finite cost, we know that �xt ! 0 as t!1. Thus, there
exists � � 0 such that for all t � � , �xt is in the neighborhood of the

origin on which V (�) = (1=2)�TP�, �ut = �R�1BTP �xt 2 U , and
r�(�BTP �xt) = �R�1BTP �xt. Optimality of (�xt; �ut) dictates that
(�xt; �ut) restricted to [0; � ] minimizes

�

0

1

2
xTt C

TQCxt +
1

2
uTt Rutdt+

1

2
xT� Px�

where P is the solution to the Riccati equation for the unconstrained
regulator. The Maximum Principle (see, for example, [25, Th. 44])
yields the existence of �pt on [0; � ] such that (11) and (15) hold on this
time interval, and �p� = �P �x� . On [�;1), (�xt; �ut) is optimal for the
unconstrained problem, and �pt can be extended to [0;1) by setting
�pt = �P �xt [on [�;1), the second equation in (15) is a consequence
of the Riccati equation (7)].

The adjoint arc �pt, verifying optimality of (�xt; �ut) for CLQR is
optimal (together with �wt = QC�xt) for the dual problem (and its op-
timality can be verified by xt). We add that if one knows that a candi-
date for a minimum in CLQR, say (xt; ut), is such that xt is bounded
(which is the case if (xt; ut) has finite cost), then the existence of �pt
as described in the necessary conditions in a) of Theorem 3.1 is also
sufficient for optimality. Indeed, if xt is bounded, then �pt ! 0 implies
xTt �pt ! 0 as t!1. We now show that W (�) = V �(��), or equiv-
alently, V (�) = W �(��).

Theorem 3.2: (Value Function Conjugacy): The (equivalent to each
other) formulas hold:

W (�) = sup
x2IR

��Tx� V (x)

V (�) = sup
p2IR

��T p�W (p) : (18)

The first supremum is attained for every �, the second is attained for
every � 2 dom V .

Proof: The formulas are equivalent by [23, Th. 12.2]. Inequality
(13) implies that for all �, �, V (�)+W (�) � ��T �. For a given �, let
(�pt; �wt) be the optimal process for the dual problem, �xt an adjoint arc
as guaranteed by Theorem 3.1 b), finally define �ut via (11). For such
processes, (13) turns into an equality and together leads to (16). This,
together with (17), implies that (�xt; �ut) is optimal for CLQR with the
initial condition �, and (16) turns to V (�)+W (�) = ��T �. Combined
with V (�) + W (�) � ��T �, this yields W (�) = maxx2IR f�� �
x � V (x)g. Symmetric arguments show that the second supremum is
attained when V (�) <1.

Lemma 3.3: (Strict Convexity): V is strictly convex on dom V . W
is strictly convex.

Proof: We only show the statement for W . Strict convexity of
a function f is the property that (1 � �)f(z0) + �f(z00) > f((1 �
�)z0 + �z00) unless z0 = z00 . (This is present, for example, for any
positive definite quadratic function.) Pick any �0, �00 and let (p0t; w

0
t),

(p00t ; w
0
t0) be respective optimal processes. If w0t 6== w00t , since Q�1 is

positive definite and � is convex, we have

(1� �)W (�0) + �W (�00) > W (1� �)�0 + ��00 : (19)

Previously, we used the fact that a convex combination of optimal pro-
cesses for �0, �00 is feasible for (1��)�0+��00 . Similarly, (19) occurs if
�BT p0t 6= �BT p00t for large t (since close to the origin, � is a positive
definite quadratic). However, if BT p0t = BT p00t for all large enough t
andw0t = w00t , then observability of (�AT ; BT ) implies that p00 = p000 .
Thus W is strictly convex.

The equivalence of strict convexity of a convex function and of (ap-
propriately understood) differentiability of its conjugate, see [23, Th.
26.3], shows the following corollary. (Continuous differentiability is
automatic for differentiable convex functions; see [23, Th. 25.5].)
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Corollary 3.4: (Differentiability of Value Functions): V is continu-
ously differentiable at every point of dom V and krV (xi)k ! +1

for any sequence of points xi 2 dom V converging to a point not in
dom V . W is continuously differentiable.

Corollary 3.5: (Hamiltonian System): The following are equivalent.
a) � = �rV (�).
b) � = �rW (�).
c) There exist arcs xt, pt on [0;+1), from �, �, such that (15) holds

and (xt; pt) ! (0; 0).
Proof: Equivalence of a) and (b) is a general property of convex

functions. Also, either a) or b) is equivalent to V (�)+W (�) = ��T �,
and implies that V (�) is finite. Then optimal processes (xt; ut),
(pt; wt) lead to an equality in (13) what implies that xt, pt satisfy
(15) (and each converges to 0). On the other hand, if c) holds then
(13) turns to an equality with ut given by (11) and wt given by (12).
But this implies that (xt; ut), (pt; wt) are optimal for, respectively,
CLQR and the dual. Then, (13) turns to V (�) + W (�) = ��T �,
what implies a) and b).

Suppose xt and pt satisfy (15). Then, (d=dt)H(xt; pt) = 0, were
H is the Hamiltonian (14). (The equality can be verified directly.) If
� = �rV (�) then (xt; pt) ! (0; 0). Since H(0; 0) = 0 and H is
continuous, it must be thatH(xt; pt) = 0 for all t. In light of Corollary
3.5, we obtain the following.

Corollary 3.6: (Hamilton-Jacobi Equations): For all x 2 dom V ,
H(x;�rV (x)) = 0. For all p 2 IRn, H(�rW (p); p) = 0.

In fact, V and W are the unique convex functions solving the
Hamilton-Jacobi equations above; see [5]. The said equations make it
easy to find V for one-dimensional problems.

Example 3.7: (Lack of Piecewise Quadratic Structure): Consider
minimizing (1=2)

1

0
x2(t) + u2(t)dt subject to _x(t) = u(t) and

u(t) 2 [�1; 1]. The Hamiltonian is H(x; p) = �(1=2)x2 + ��(p),
where �� is the function described in Example 2.2. Since by convexity
of V , rV is a nondecreasing function, we obtain that V (x) equals
�(1=2)(x2 + 1) if x < �1, x if �1 � x � 1, and (1=2)(x2 + 1) if
x > 1. Note that rV —and not V —is piecewise quadratic.

Theorem 3.8: (Feedback Optimality):
a) The process (�xt; �ut) is optimal for CLQR if and only if �x0 =

�, _�xt = A�xt + B�ut and �ut maximizes �uTBTrV (�xt) �

(1=2)uTRu over all u 2 U .
b) The process (�pt; �wt) is optimal for the dual problem (4), (5) if

and only if �p0 = �, _��
t
= �AT �pt � CT �wt and �wt maximizes

�wTCrW (pt)� (1=2)wTQ�1w over all w 2 IRn.
The maximum conditions can be written as �ut = r�(�BTrV (�xt))

and �wt = �QCrW (�pt).
Proof: If (�xt; �ut) is optimal, then by Theorem 3.1 there exists �pt

such that �xt, �pt satisfy (15) and �pt ! 0. Since by optimality, �xt ! 0,
Corollary 3.5 implies that �p0 = �rV (�x0). But the existence of �xt,
�pt as described also implies that there exist a convergent to (0,0) solu-
tion to (15) from the point (�x� ; �p� ), for any � � 0. (Indeed, one just
considers the truncation of arcs �xt and �pt to [�;1).) Then, Corollary
3.5 yields �p� = �rV (�x� ). This and (11) show that the desired for-
mula for �ut holds. Now, suppose �ut maximizes �uTBTrV (�xt) �

(1=2)uTRu, equivalently, �ut = r�(�BTrV (�xt)). Near any point
where V (�xt) is finite, rV is bounded. As r� is continuous, �ut is lo-
cally bounded and, hence, �xt is locally Lipschitz. By convexity, V is
also locally Lipschitz (where finite), and thus t 7! V (x(t)) is locally
Lipschitz. Consequently, (d=dt)V (�xt) = rV (�xt)

T _�xt almost every-
where, which, by the first Hamilton–Jacobi equation in Corollary 3.6,
becomes

d

dt
V (�xt) = �

1

2
�xtC

TQC�xt �
1

2
�uTt R�ut: (20)

Thus, �xt ! 0 as t ! 1. Integrating yields V (�) = V (�x� ) +

(1=2)
�

0
�xTt C

TQC�xt + �uTt R�utdt. Letting � ! 1 and noting that
V (�x� )! 0, implies optimality. Proof of b) is similar.

Most of the results stated so far hold for more general convex optimal
control problems (see [5] and [26]) but there they require a less direct
approach. Here, further use of the quadratic structure of V near 0 and
a result of [21] lead to stronger regularity of V .

Theorem 3.9: (Locally Lipschitz Gradients): The mappingsrV , re-
spectively, rW , are locally Lipschitz continuous on dom V , respec-
tively, on IRn.

Proof: We show the statement for rV . Pick a compact subset
K � dom V . Convergence to 0 of optimal arcs for CLQR is uniform
from compact sets and thus there exists t0 such that, for all t > t0
and any � 2 K , the optimal process (xt; ut) for V (�) satisfies ut 2
int U . Thus, on K , V is the minimum of t

0
(1=2)xTt C

TQCxt +

(1=2)uTt Rutdt + (1=2)xTt Pxt . The terminal cost and the Hamil-
tonian (14) of this problem are differentiable with globally Lipschitz
gradients. Now, [21, Th. 3.3] states that so is the value function of this
problem (the Lipschitz constant may depend on t0). But this value func-
tion, on K , equals V .

A stronger statement can be made about rW . First, as a contin-
uous time counterpart of a discrete time result [27, Lemma 3], one
can show that the function f : IRn 7! IR given by f(�) = V (�) �
Vu(�), where Vu(�) = (1=2)�TP� is the solution to the unconstrained
linear-quadratic regulator (recall Example 2.3), is positive definite and
convex. Thus, V (�) = f(�) + 12�TP� and

W (�) = inf
s2IR

f�(s) +
1

2
(� � s)TP�1(� � s)

see [24, Th. 11.23(a), Prop. 12.60]. In particular,rW is Lipschitz con-
tinuous with the constant K , where K�1 is the smallest eigenvalue of
P .

IV. COMPUTATION

Theorem 3.8 and Corollary 3.5 suggest a procedure for computing
the optimal feedback for CLQR. Given the state x, the optimal control
is r�(BT p), where p is such that there exist a solution xt, pt to (15),
originating at (x; p) and converging to (0,0). As near (0,0) we have p =
�Px, integrating (15) backwards from points of the form (x;�Px)
leads to values of the adjoint arc p corresponding to any state in domV .
Thus, the idea is as follows.

1) Find the matrix P by solving the Riccati equation (7), and the
corresponding optimal feedback matrix for the unconstrained
problem Fu = �R�1BTP .

2) Find a neighborhood N of 0 so that for all � 2 N one has Fu� 2
U and such that N is invariant under _x = (A +BFu)x.

3) For eachx on the boundary ofN , find the solution of the backward
Hamiltonian system

_x(t) = �Ax(t)�Br� BT p(t)

_p(t) =AT p(t)� CTQCx(t) (21)

on [0;+1), originating from (x;�Px).
Some comments are in order. On the set N of step 2), the optimal

feedback for CLQR is the linear feedback Fu. For single-input sys-
tems, if U = [�1; 1] and R = 1, one can choose N = fxjxTPx �
(BTPB)�1g. In fact, this set is the largest ellipse given by P that
meets the condition that Fux 2 U for all x 2 N . The (backwards)
Hamiltonian system (21) involvesr�. As � is given by (6),r� can be
found without computing � itself (see [24, Ex. 11.18])

r�(q) = argmax
u

qTu�
1

2
uTRuju 2 U : (22)
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Fig. 1. Double integrator: Optimal trajectories.

This formula simplifies in important special cases. For single input sys-
tems and the standard saturation (that is, U = [�1; 1]), and when R =
1,r� is the standard saturation function. That is,r�(q) = �(q) = �1
if q < �1, q if �1 � q � 1, and 1 if 1 < q. A similar formula holds
whenever R = r is a scalar and U is a closed interval [u

�

; u+]; then
r�r;U (q) equals r�1u

�

if q < u
�

, r�1q if u
�

� q � u+, r�1u+ if
u+ < q. For multiple input cases, when R = diagfr1; r2; . . . ; rkg is
diagonal and U = U1 � U2 � . . . � Uk is a product of intervals, we
have �R;U (q) = �r ;U (q1) + �r ;U (q2) + . . . + �r ;U (qk). Then,
r�R;U can be found coordinatewise.

Finally, as the optimal feedback for CLQR is continuous (and V is
a smooth Lyapunov function), any sufficiently good approximation of
the optimal feedback, that can be obtained via implementation of the
procedure outlined above, is also stabilizing. This reflects the general

Fig. 2. Double integrator: Response to large grid and the small grid.

principles on the robustness of stability; see [28, Ch. 9.1] and [29, Prop.
3.1].

V. NUMERICAL EXAMPLES

Example 5.1: (Double Integrator): We consider Q = 1, R = 0:1,
u(t) 2 [�1; 1], and

_x(t) =
0 1

0 0
x(t) +

0

1
u(t) y(t) = [1 0]x(t)

as motivated by the computation in [30]. We calculate the feed-
back using the algorithm in Section IV. Solving the Riccati

equation (7) yields P =
0:795 0:316

0:316 0:256
. Initial points xi(0),

i = 1; 2; . . . ; 72 are chosen on the boundary of the invariant ellipse
N = fx 2 IR2jxTPx � 0:0398g. Solutions to (21), starting at
(xi(0);�Pxi(0)) are calculated on [0; T ] with T = 10 s. First,
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Fig. 3. Unstable system: Optimal trajectories and optimal value function.

we use �T = 0:005 s as the sampling period, and store the points
(xi(j�T ); pi(j�T )) for i = 1; 2; . . . ; 72, j = 0; 1; . . . ; 2000. The
corresponding trajectories xi(t) are shown in Fig. 1, first showing
them on [�3; 3] � [�3; 3] (the darker shade indicates the “strip” in
the plane where the control is not saturated), then showing the whole
region the trajectories fill out. Fig. 1 also shows the trajectory starting
at x(0) = (1;�2:5) for the closed-loop system.

Given the stored grid and a state x 62 N , the control u(x) is found
as �(R�1BT pi(j�T )), where (xi(j�T ); pi(j�T )) is the grid point
with xi(j�T ) closest to x. For x 2 N , linear feedback �R�1BTPx
is used. The response of the system, from x(0) = (1;�2:5), and the
corresponding control sequence (sample time is � = 0:25 s) is in Fig. 2.
The response is essentially the same as in [30]. To (significantly) reduce
the number of stored points, we repeated the computation on the same
interval [0, 10] s, but with �T = 0:5 sec: and j = 0; 1; . . . ; 20.

The sparser grid is shown on Fig. 2, together with the response for
x(0) = (1;�2:5). (The response, for this and other initial points, is
very similar to that resulting from the denser grid.)

Example 5.2: (Unstable System): Consider the system

_x(t) =
1 1

�1 0
x(t) +

1

0
u(t) y(t) = x(t) (23)

with Q = I , R = 1, and u(t) 2 [�1; 1]. As A is not semi-stable,
dom V is not the whole plane: there exist initial conditions that can
not be driven to 0 with a constrained control. Thus, no matter how
large T is chosen, the x-trajectories of (21) will not fill out arbitrarily
chosen compact sets. In Fig. 3 we show the trajectories obtained with
T = 8 s, �T = 0:005 s, i = 1; 2; . . . ; 72 and j = 0; 1; . . . ; 1600.
Fig. 3 also shows the closed-loop system trajectory starting at x(0) =
(0:5; 1). We also calculated the approximate values of V at the grid
points. This is possible via the formula (20) for the time derivative of
V along optimal trajectories: The third step of the algorithm is altered,
by solving the following equation (which results from reversing time
in (20), and substituting �(BT p(t)) for the optimal control):

d

dt
V (x(t))=

1

2
x(t)CTQCx(t) +

1

2
� BT p(t)

T

R� BT p(t)

along with the backward Hamiltonian system (21) and storing the
values of V (x(t)) along those of (x(t); p(t)). The initial points are
taken to be (xi(0);�Pxi(0); (1=2)xi(0)

TPxi(0)).
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A Lyapunov Proof of an Improved Maximum Allowable
Transfer Interval for Networked Control Systems

Daniele Carnevale, Andrew R. Teel, and Dragan Nešić

Abstract—Simple Lyapunov proofs are given for an improved (relative
to previous results that have appeared in the literature) bound on the
maximum allowable transfer interval to guarantee global asymptotic or
exponential stability in networked control systems and also for semiglobal
practical asymptotic stability with respect to the length of the maximum
allowable transfer interval.

Index Terms—Lyapunov, networked control, nonlinear, stability.

I. INTRODUCTION

A networked control system (NCS) is composed of multiple feed-
back control loops that share a serial communication channel. This ar-
chitecture promotes ease of maintenance, greater flexibility, and low
cost, weight and volume. On the other hand, if the communication is
substantially delayed or infrequent, the architecture can degrade the
overall system performance significantly. Results on the analysis of an
NCS include [1]–[5]. In an NCS, the delay and frequency of communi-
cation between sensors and actuators in a given loop is determined by a
combination of the channel’s limitations and the transmission protocol
used. Various protocols have been proposed in the literature, including
the “round robin” (RR) and “try-once-discard” (TOD) protocols dis-
cussed in [1] and [2]. When the individual loops in an NCS are designed
assuming perfect communication, the stability of the NCS is largely de-
termined by the transmission protocol used and by the so-called “max-
imum allowable transfer interval” (MATI), i.e., the maximum allow-
able time between any two transmissions in the network. Following [1]
and [2], we consider the problem of characterizing the length of the
MATI for a given protocol to ensure uniform global asymptotic or ex-
ponential stability.

In [4], the authors were able to improve on the initial MATI bounds
given in [1] and [2] by efficiently summarizing the properties of proto-
cols through Lyapunov functions and characterizing the effect of trans-
mission errors through Lp gains. They established uniform asymptotic
or exponential stability and input–output stability when the MATI 2
[0; �MATI] with

�MATI �
1

L
ln 1 +

1� �



L
+ �

(1)

where � 2 [0; 1) characterized the contraction of the protocol’s
Lyapunov function at transmission times while L > 0 described its
expansion between transmission times, and 
 > 0 captured the effect
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