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Abstract

Motivated by questions in stability theory for hybrid dynamical systems, we establish some fundamental properties of the set
of solutions to such systems. Using the notion of a hybrid time domain and general results on set and graphical convergence,
we establish under weak regularity and local boundedness assumptions that the set of solutions is sequentially compact and
“upper semicontinuous” with respect to initial conditions and system perturbations. The general facts are then used to establish
several results for the behavior of hybrid systems that have asymptotically stable compact sets. These results parallel what is
already known for differential inclusions and difference inclusions. For example, the basin of attraction for a compact attractor
is (relatively) open, the attractivity is uniform from compact subsets of the basin of attraction, and asymptotic stability is
robust with respect to small perturbations.
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1 Introduction

The development of effective nonlinear control algo-
rithms requires a clear understanding of stability and
its robustness in nonlinear systems. For differential
equations, this theory is well established and nicely
summarized in the textbook Khalil (2002), for example.
For discontinuous and/or switching systems, the theory
is more recent and not yet complete.

Over the last decade, important pieces in the puzzle of
stability theory for differential inclusions have been in-
serted. With the early work of Kurzweil (1956) for con-
tinuous differential equations as its precursor, Clarke,
Ledyaev, and Stern (1998) established the existence of
smooth Lyapunov functions for asymptotically stable
differential inclusions. In the process, they showed that
asymptotic stability for inclusions is a robust prop-
erty. (This result was related to robust stabilization in
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Ledyaev and Sontag (1999). Additional results related
to those in Clarke, Ledyaev, and Stern (1998) are in
Bacciotti and Rosier (2001) and Teel and Praly (2000).
For discrete-time “difference inclusions” see Kellett and
Teel (2004a).) Around the same time, Ryan (1998) es-
tablished a general invariance principle for differential
inclusions, extending the seminal work of Krasovskii
(1963) and LaSalle and Lefschetz (1961); LaSalle (1967).
In addition, Artstein and Vigodner (1996); Artstein
(1999) provided novel singular perturbation and aver-
aging results. See also Teel, Moreau, and Nesic (2003).

The purpose of this paper is to provide some of the tools
that will allow the mentioned results to be extended to
hybrid systems: systems where the state flows accord-
ing to a differential equation or inclusion and also jumps
according to a difference equation or inclusion. (Control
engineering motivation for considering such systems will
be given in Section 2.) In differential inclusions theory,
the main facts from which (robust) stability results fol-
low are that sets of solutions are 1) sequentially compact
under mild growth conditions (in particular, the limit of
solutions is a solution), and 2) “upper semicontinuous”
with respect to initial conditions and system perturba-
tions (meaning that every perturbed solution is close, in
an appropriate sense, to some unperturbed solution).
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One of the first obstructions to address when considering
such results for hybrid systems is the fact that the ordi-
nary time domain may be insufficient to describe the evo-
lution of the state of a hybrid system. There have been
several characterizations of potentially suitable hybrid
time domains given in the literature. We point to Tav-
ernini (1987), Michel and Hu (1999), Lygeros, Johans-
son, Sastry, and Egerstedt (1999), and van der Schaft
and Schumacher (2000) for particular examples. Most
recently, the concurrent conference papers by Collins
(2004) and the authors et al. Goebel, Hespanha, Teel,
Cai, and Sanfelice (2004) have proposed treating the
number of jumps as an independent variable and param-
eterizing the state of a hybrid system by (t, j) – that is,
x(t, j) is the state at time t and after j jumps. In Goebel,
Hespanha, Teel, Cai, and Sanfelice (2004), the motiva-
tion for such parameterization was that it allows for the
use of graphical convergence concepts to solutions of hy-
brid systems. Such convergence, and other tools of set-
valued analysis, are well-developed; see Rockafellar and
Wets (1998), or Aubin and Cellina (1984) for applica-
tions to differential inclusions theory. The need to use
such nonclassical analysis tools is quite strong in hybrid
systems, as, for example, the standard concepts like uni-
form convergence are not well-suited to handle discon-
tinuous solutions.

Earlier results on the continuity of hybrid solutions with
respect to initial conditions include those by Tavernini
(1987), Broucke and Arapostathis (2002), and Lygeros,
Johansson, Simić, Zhang, and Sastry (2003). These
give, respectively: continuity near “regular states” un-
der strong continuity properties of the data; existence of
continuous selections from sets of solutions when Zeno
behaviors are excluded; and continuity of solutions un-
der a uniqueness assumption. In related work, Johans-
son, Egerstedt, Lygeros, and Sastry (1999) examine the
limit of hybrid solutions as certain regularizing param-
eters converge to zero, while Chellaboina, Bhat, and
Haddad (2003) give conditions for “quasi-continuous
dependence” in state-dependent impulsive dynamical
systems. See also Aubin, Lygeros, Quincampoix, Sas-
try, and Seube (2002). Additionally, the work of Collins
(2004), which is restricted to hybrid systems with a
compact state space, contains a statement about the
upper semicontinuity of a map from initial conditions
to jump values that are possible after a given number
of jumps. In our work, we have no uniqueness assump-
tions, permit Zeno behaviors, and allow a noncompact
state space. The regularity assumptions in our work,
here and in Goebel, Hespanha, Teel, Cai, and Sanfelice
(2004), extend those in Collins (2004) beyond compact
state spaces, and appear to be the weakest possible for
the results reported here. For example, from the differ-
ential inclusions describing the continuous evolution of
the hybrid system we do not require more than what is
needed for upper semicontinuity of solutions when no
discrete behaviors are present; similarly for the differ-
ence inclusions describing the jumps.

In the results that follow, we establish that the solu-
tion set for hybrid inclusions satisfying basic conditions
is sequentially compact (Theorem 4.4) and upper semi-
continuous (Corollaries 4.8 and 5.5). As applications, we
prove under a mild existence assumption that the basin
of attraction for a compact attractor in a hybrid system
is relatively open, that the convergence to the attractor is
uniform over compact subsets of the basin of attraction,
and that asymptotic stability is semiglobally practically
robust with respect to perturbations. Further results, on
a general LaSalle-like invariance principle and the con-
struction of smooth Lyapunov functions for asymptoti-
cally stable hybrid systems, drawing upon the founda-
tion established here, can be found in Sanfelice, Goebel,
and Teel (2005) and Cai, Teel, and Goebel (2005).

The paper is organized as follows. Hybrid inclusions and
the solution concept are described in Section 2. Also
there, some control engineering justification for consid-
ering hybrid inclusions is presented. Prerequisites from
set-valued analysis are in Section 3. In Section 4, graph-
ical convergence is used to study semicontinuity and
closeness properties of sets of solutions to hybrid inclu-
sions. Section 5 extends some of these results to allow
perturbations. The main results in these two sections
are Theorem 4.4, which address sequential compactness
of the sets of solutions to a nominal hybrid system, and
Theorem 5.1, which describes the limits of solutions to a
hybrid system with decreasing perturbations. Applica-
tions to stability theory of hybrid systems are in Section
6. Here, the main results are Theorems 6.5 and 6.6, giv-
ing a KLL-bound on solutions to an asymptotically sta-
ble hybrid system, and describing how the bound, and so
the stability, is affected by perturbations to the system.

2 Hybrid Inclusions

2.1 Solution description

We write R≥0 for [0, +∞) and N for {0, 1, 2, ...}. We call
a subset S ⊂ R≥0 × N a compact hybrid time domain if

S =
J−1⋃

j=0

([tj , tj+1], j)

for some finite sequence of times 0 = t0 ≤ t1 ≤ t2 ... ≤
tJ . We say S is a hybrid time domain if for all (T, J) ∈ S,

S ∩ ([0, T ]× {0, 1, ...J})

is a compact hybrid domain; equivalently, if S is a union
of a finite or infinite sequence of intervals [tj , tj+1]×{j},
with the “last” interval possibly of the form [tj , T ) with
T finite or T = +∞. Hybrid time domains were pro-
posed in Collins (2004) and Goebel, Hespanha, Teel, Cai,
and Sanfelice (2004). They are essentially equivalent to
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“hybrid time trajectories” of Lygeros, Johansson, Sas-
try, and Egerstedt (1999), Aubin, Lygeros, Quincam-
poix, Sastry, and Seube (2002), and Lygeros, Johansson,
Simić, Zhang, and Sastry (2003), but give a more promi-
nent role to the “discrete” variable j.

On each hybrid domain there is a natural ordering of
points: (t, j) � (t′, j′) if t + j ≤ t′ + j′. Equivalently,
t ≤ t′ and j ≤ j′, and furthermore, an obvious meaning
can be given to (t, j) ≺ (t′, j′). Points from two different
hybrid time domains need not be comparable.

A hybrid arc will be a function defined on a hybrid time
domain. More specifically, by a hybrid arc we will under-
stand a pair consisting of a hybrid time domain dom x
and a function x : dom x → R

n such that x(t, j) is locally
absolutely continuous in t for a fixed j and (t, j) ∈ dom x.
We will not mention domx explicitly, but always assume
that given a hybrid arc x, the set dom x is exactly the set
on which x is defined. Alternatively, one could think of
a hybrid arc as a set-valued mapping from R≥0 × N (or
R≥0×R≥0) to R

n whose domain is a hybrid time domain
(for a set-valued mapping M , the domain domM is the
set of arguments for which the value is nonempty). Ad-
ditionally, one would then assume that x is single-valued
on dom x, and absolutely continuous as before.

A sample solution of a hybrid system (corresponding to
the height in the Bouncing Ball example, see for example
Lygeros, Johansson, Simić, Zhang, and Sastry (2003))
in the hybrid coordinates is shown in Figure 1.
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Fig. 1. Solution of a hybrid system in hybrid coordinates

The state of a hybrid system is often given by a “contin-
uous” variable and “discrete” one. We will not explicitly
distinguish between the two. The set of potential val-
ues of the discrete variable, often consisting of descrip-
tive elements like “off” or “on”, can be identified with a
subset of integers. This leads to more compact notation.
As long as the discrete variable has finite or countable
range, no issues arise in understanding the continuity of
mappings describing the behavior of the variable.

A hybrid system H will be given on a state space O by
set-valued mappings F and G describing, respectively,

the continuous and the discrete evolutions, and sets C
and D where these evolutions may occur. A hybrid arc
x : dom x 7→ O is a solution to the hybrid system H if
x(0, 0) ∈ C ∪ D and:

(S1) for all j ∈ N and almost all t such that (t, j) ∈
domx,

x(t, j) ∈ C, ẋ(t, j) ∈ F (x(t, j)); (1)

(S2) for all (t, j) ∈ dom x such that (t, j + 1) ∈ dom x,

x(t, j) ∈ D, x(t, j + 1) ∈ G(x(t, j)). (2)

In (S1), the “almost all” refers to one-dimensional
Lebesgue measure on domx ∩ ([0,∞) × {j}). The fun-
damental conditions on H that will enable us to show,
among other things, that an appropriately understood
limit of solutions to H is itself a solution, are:

(A0) O ⊂ R
n is an open set.

(A1) C and D are relatively closed sets in O.
(A2) F : O →→ R

n is outer semicontinuous and locally
bounded, and F (x) is nonempty and convex for all
x ∈ C.

(A3) G : O →→ O is outer semicontinuous and G(x) is
nonempty for all x ∈ D.

The set C is relatively closed in O if C = O ∩ C, where
C is the closure of C; similarly for D. The (set-valued)
mapping F is outer semicontinuous if for all x ∈ O and
all sequences xi → x, yi ∈ F (xi) such that yi → y, we
have y ∈ F (x). It is locally bounded if for any compact
K ⊂ O there exists m > 0 such that F (K) ⊂ mB, where
B denotes the closed unit ball. Alternative descriptions of
outer semicontinuity are mentioned at the end of Section
3. Here, we note that in presence of local boundedness,
it entails compactness of images of F and G.

A solution to H is called maximal if it cannot be ex-
tended (i.e. it is not a truncation of another solution),
and complete if its domain is unbounded. Complete so-
lutions are maximal and any solution can be extended
to a maximal one. In our framework, a solution is Zeno
if it is complete and dom x is bounded in the t-direction.

2.2 Control engineering justification

The control engineering motivation for set-valued right-
hand sides, even in purely continuous-time or discrete-
time systems, comes primarily from two sources: 1) us-
ing feedback control laws that are not continuous, and
2) accounting for uncertainty and/or multiple operating
scenarios through an ensemble of solutions.

In the case of discontinuous feedback control, it has been
argued starting at least from Hermes (1967) and contin-
uing with Coron and Rosier (1994) that Filippov and/or
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Krasovskii’s notion of solution for discontinuous differ-
ential equations, which correspond to the solutions of a
differential inclusion with right-hand side satisfying as-
sumption (A2), are appropriate for capturing the pos-
sible closed-loop system behavior in the presence of ar-
bitrarily small measurement noise. Similar observations
have been made recently for discrete-time systems, espe-
cially in the context of model predictive control. See Kel-
lett and Teel (2004a), Grimm, Messina, Tuna, and Teel
(2004), Messina, Tuna, and Teel (2005). For asymptoti-
cally null controllable continuous-time systems, it is not
possible in general to achieve asymptotic stabilization
that is robust to measurement noise when using (discon-
tinuous) continuous-time state feedback (see, for exam-
ple, Ledyaev and Sontag (1999)). This is the case even
though it is possible to achieve robustness with respect
to additive disturbances (see Clarke, Ledyaev, Sontag,
and Subbotin (1997) or Ancona and Bressan (1999).) In
order to establish robustness to measurement noise, the
approaches in Sontag (1999), Clarke, Ledyaev, Rifford,
and Stern (2000), Kellett and Teel (2004b), and Prieur
and Astolfi (2003) resort to hybrid feedback. Typically,
the hybrid nature corresponded to sample and hold con-
trol. An exception is the approach taken in Prieur and
Astolfi (2003) where hysteresis switching is used.

In the case of uncertain or varying systems, a typical
class of systems to consider is linear differential (or dif-
ference) inclusions. These are often used to model time-
varying linear systems with arbitrary variations within
a class, linear systems in feedback with a time-varying
nonlinearity described by a linear sector condition, etc.

In Goebel, Hespanha, Teel, Cai, and Sanfelice (2004) we
used several examples to show that, from a concern for
robustness, only relatively closed flow sets and jump sets
should be used. This is in contrast to what is considered,
for example, in Chellaboina, Bhat, and Haddad (2003)
for state-dependent impulsive dynamical systems where
these sets (being complements of one another) can not
both be closed. Here, we discuss examples of hybrid in-
clusions that are related to control design.

Example 2.1 (Networked control systems, and sample
and hold control). The networked control systems con-
sidered in Walsh, Ye, and Bushnell (2002) (see also Nesic
and Teel (2004)), with the time between consecutive up-
dates in the interval [ε, T ] where ε > 0 to rule out Zeno
solutions and the maximum allowable transfer interval
T ≥ ε, can be modeled as a hybrid system

ξ̇ = f(ξ, u), u̇ = g(ξ, u), τ̇ = 1

(ξ, u, τ) ∈ R
n × R

` × [0, T ];

ξ+ = ξ, u+ = h(ξ, u), τ+ = 0

(ξ, u, τ) ∈ R
n × R

` × R≥ε .

The rule u+ = h(ξ, u) is called the “protocol” of the net-

worked control system. It often only depends on u and
not on ξ. Sometimes it also depends on the jump num-
ber, which can be easily incorporated into the model
with a jump counter k+ = k+1. At points where h is dis-
continuous, it should be replaced by its set-valued reg-

ularization H(ξ, u) =
⋂

δ>0 h((ξ, u) + δB). When H is
multi-valued, this regularization introduces extra solu-
tions that can be generated, to arbitrary precision, with
arbitrarily small measurement noise e, i.e. by replacing
h(ξ, u) in the system above with h(ξ + e1, u + e2). Even
when the protocol is continuous and f and g are locally
Lipschitz, when T > ε the solutions will not be unique.
Instead, the model captures all of the solutions that cor-
respond to transmitting anywhere between ε and T sec-
onds after the previous transmission. In the special case
where g(ξ, u) = 0, h is independent of u, and ε = T ,
the model corresponds to applying the state feedback
control u = h(ξ) using a sample and hold mechanism
with sampling period T > 0. Then, the solutions are
unique (if f is locally Lipschitz and H is single valued)
even though the flow and the jump sets overlap at points
where τ = T . Indeed, the rule τ̇ = 1 and the flow con-
straint τ ∈ [0, T ] make it impossible to flow when τ = T .

Example 2.2 (Hysteresis switching control). Let Q be
a finite index set (a subset of the integers) and fq(ξ),
q ∈ Q be a family of continuous vector fields defined on
the relatively closed sets Xq ⊂ O ⊂ R

n. These may cor-
respond to different feedbacks on different regions of the
state space. To enable a hysteresis switching algorithm
between control laws, one can assume that there exist rel-
atively closed sets Kq ⊂ int Xq such that ∪q∈QKq = O.
Then, the set-valued map ξ 7→ G(ξ) := {q ∈ Q | ξ ∈ Kq}
satisfies (A3). (Outer semicontinuity follows from the
graph of G, given by ∪q∈QKq × {q}, being relatively
closed in O×R; see the comment after (3).) The system

where the trajectories flow according to ξ̇ = fq(ξ) when
ξ ∈ Xq and q can be switched to satisfy ξ ∈ Kq when
the boundary of Xq is reached can be modelled by

ξ̇ = fq(ξ), q̇ = 0 (ξ, q) ∈ C;

ξ+ = ξ, q+ ∈ G(ξ) (ξ, q) ∈ D.

with C = ∪q∈QXq×{q}, D = ∪q∈Q(O∩Rn \ Xq)×{q}.
Solutions exist, but need not be unique (even if fq’s are
locally Lipschitz) both due to G(ξ) being not single-
valued and to potential existence of points (ξ, q) ∈ D

from which flow ξ̇ = fq(ξ), ξ ∈ Xq is possible. Bounded
Zeno solutions are not possible, as Kq ⊂ int Xq .

Example 2.3 (Dwell-time switching). Let Q be a finite
index set not containing zero and let ξ 7→ fq(ξ), q ∈ Q be
a family of continuous vector fields. Consider modeling
the set of trajectories for which each period of arbitrary
switching lasts no longer than T before it is interrupted
by a period of at least τD on which q is fixed. Such
class of switching signals is motivated and considered in
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Hespanha (2004). This set of trajectories is captured by

ξ̇ ∈ F (ξ), τ̇ = 1 q = 0, τ ≤ T ;

ξ̇ = fq(ξ), τ̇ = 1 q 6= 0;

q+ ∈ Q, τ+ = 0 q = 0;

q+ ∈ Q ∪ {0} , τ+ = 0 q 6= 0, τ ≥ τD;

where F (ξ) is the convex hull of
⋃

q∈Q fq(ξ). Solutions to

ξ̇ ∈ F (ξ) include those generated by arbitrary switching

between q’s in ξ̇ = fq(ξ) and their limits.

2.3 Basic existence result

An elementary existence result and basic properties of
maximal solutions of H are summarized below. Most
were stated, for a similar setting, by Aubin, Lygeros,
Quincampoix, Sastry, and Seube (2002); we include
them for completeness of presentation. The set TC(x),
the tangent cone to C at x ∈ C, is the set of all v ∈ R

n

for which there exist real numbers αi ↘ 0 and vectors
vi → v such that for i = 1, 2, ..., x+αivi ∈ C; see Aubin
(1991) or Chapter 6, Rockafellar and Wets (1998).

Proposition 2.4 Assume (A0)-(A2). If x0 ∈ D or
the following condition holds:

(VC) x0 ∈ C and for some neighborhood U of x0, for all
x′ ∈ U ∩ C, TC(x′) ∩ F (x′) 6= ∅,

then there exists a solution x to H with x(0, 0) = x0 and
domx 6= (0, 0). If (VC) holds for all x0 ∈ C \ D, then
for any maximal solution x at least one of the following
statements is true:

(i) x is complete;
(ii) x eventually leaves every compact subset of O: for

any compact K ⊂ O, there exists (T, J) ∈ dom x
such that for all (t, j) ∈ dom x with (T, J) ≺ (t, j),
x(t, j) 6∈ K;

(iii) for some (T, J) ∈ dom x, (T, J) 6= (0, 0), we have
x(T, J) 6∈ C ∪ D.

The case (iii) above does not occur if additionally

(VD) for all x0 ∈ D, G(x0) ⊂ C ∪ D.

Proof. If x0 ∈ D, then the arc x(0, 0) = x0, x(0, 1) = z
with any z ∈ G(x0) provides the desired solution. Oth-
erwise, there exists ε > 0 and an absolutely continu-
ous z : [0, ε] 7→ U ∩ C satisfying ẋ(t) ∈ F (z(t)) for al-
most all t ∈ [0, ε], see Theorem 3.3.2 in Aubin (1991).
Then the desired solution to H is provided by x given
by x(t, 0) := z(t).

If x is maximal and domx is bounded and closed (so that
the supremum (T, J) of dom x is in domx, i.e. x(T, J)

is defined), then x(T, J) 6∈ C ∪ D, as otherwise x could
be extended. Consequently, a maximal solution x with
x(t, j) ∈ C∪D for all (t, j) ∈ dom x that is not complete
must satisfy ([T − ε, T ), J) ∈ domx for some ε > 0,
but (T, J) 6∈ dom x. Then the truncation of x to [T −
ε, T )×{J} can be identified with a maximal solution to
the ẋ(t) ∈ F (x(t)), and as such, can not be contained
in any compact subset of O, Theorem 2, § 7, Filippov
(1988). The last property, by local boundedness of F ,
implies that x eventually leaves any compact subset of
O. Otherwise, for some compact K and ti → T we have
x(ti) ∈ K. Pick ρ > 0 such that K + ρB ⊂ O, and
let m = maxx∈(K+ρB)∩C ‖F (x)‖. Then for each i and
t < ti + ρ/m, x(t) ∈ K + ρB. As ti → T , this implies
that for all t close enough to T , x(t) ∈ K + ρB, and thus
x is contained in a compact subset of O.

The viability condition for the continuous evolution,
(VC), is automatically satisfied at each point in the
interior of C. Thus, if C ∪ D = O, (VC) holds for all
x0 ∈ C \ D (as C \ D = O \ D, and the latter set is
open). Consequently, if C ∪D = O, for all x0 ∈ O there
exists a nontrivial solution x with x(0, 0) = x0 and (VD)
is automatically satisfied. Also note that condition (iii)
above implies that (T, J) is the “last” element of dom x,
in other words, for all (t, j) ∈ dom x, (t, j) � (T, J). The
meaning of the last conclusion of Proposition 2.4 is that
the only way a solution can leave C ∪ D is via a jump.

3 Preliminaries – Set Convergence

Consider a sequence {Si}∞i=1 of subsets of R
n. The outer

limit of the sequence, denoted lim supi→∞ Si, is the set of
all x ∈ R

n for which there exists a subsequence {Sik
}∞k=1

and points xik
∈ Sik

, k = 1, 2, ... such that xik
→ x.

The inner limit of the sequence, denoted lim inf i→∞ Si,
is the set of all x ∈ R

n for which there exist points
xi ∈ Si, i = 1, 2, ... such that xi → x. The limit of
the sequence exists if the outer and inner limits agree,
and then limi→∞ Si = lim supi→∞ Si = lim inf i→∞ Si.
The inner and outer limits of {Si}∞i=1 always exist, are
closed (Proposition 4.4, Rockafellar and Wets (1998))
but may be empty. If the outer limit is empty (and then
the inner limit and the limit are also empty), we say
that the sequence escapes to the horizon; this can be
equivalently described as: for all ρ > 0 there exists i0
such that for all i > i0, Si ∩ ρB = ∅.

Example 3.1 (converging intervals).Let Si = [ai, bi] ⊂
R. The limit of Si’s exists if and only if the sequences of
ai’s and bi’s converge (to finite or infinite limits). Then,
limi→∞ Si = [limi→∞ ai, limi→∞ bi] if the latter two
limits are finite (otherwise the infinite “endpoints” are
not in the limit). In general, the inner limit is the inter-
val with endpoints a = lim supi→∞ ai, b = lim inf i→∞ bi

if a ≤ b; otherwise it is empty. The outer limit need not
be an interval; for example if S2i−1 = [1, 2], S2i = [3, 4],
then lim supi→∞ Si = [1, 2] ∪ [3, 4].
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Example 3.2 (perturbations of a set). Consider a
closed S ⊂ R

n and a locally bounded α : R
n 7→ R≥0. Let

Sα = {x ∈ R
n | x + α(x)B ∩ S 6= ∅}.

Such set perturbations appear in robustness analysis,
see Section 5. The sets Sδα (defined with δα(x) in place
of α(x)) converge to S as δ ↘ 0. Indeed, note that
limδ↘0 Sδα exists since Sδα’s are nonincreasing as δ de-
creases (Exercise 4.3, Rockafellar and Wets (1998)), and
also S ⊂ limδ↘0 Sδα. Now suppose x 6∈ S. By local
boundedness of α, there exists a neighborhood U of x
such that for all small enough δ, and all x′ ∈ U , x′ 6∈ Sδα.
Thus, lim supδ↘0 Sδα ⊂ S. Since the limit exists, it must
equal S. We note that unless α is constant, Sα differs
from the “set-inflation”

⋃
x∈S x+α(x)B, in fact no inclu-

sions between the two perturbations are valid in general.

Set convergence enjoys a certain uniformity property,
which applies to unbounded sets if appropriate trunca-
tions are considered. This is formally stated as follows

Theorem 3.3 (Rockafellar and Wets (1998), Theorem
4.10]) For any sequence of sets {Si}∞i=1 and a closed set
S, limi→∞ Si = S if and only if for all ε > 0 and ρ > 0,
there exists i0 ∈ N such that S ∩ ρB ⊂ Si + εB and
Si ∩ ρB ⊂ S + εB for all i > i0.

As an immediate consequence of this fact, one can show
that arcs eventually get close to their omega limits.

Example 3.4 (Omega limit of a hybrid arc). Let x :
domx 7→ R

n be a complete hybrid arc. The omega limit
of x, denoted Ω(x), is the set of all accumulation points
of x(t, j) as t + j → +∞. Equivalently,

Ω(x) = lim sup
i→∞

Si where Si = {x(t, j) | t + j ≥ i}.

By a general property of set limits, Ω(x) is closed. When
x is bounded, sets Si do not escape to the horizon, and
thus Ω(x) 6= ∅. Also then, from Theorem 3.3, one ob-
tains: for all ε > 0 there exists mε such that for all
(t, j) ∈ domx with t + j ≥ mε, x(t, j) ∈ Ω(x) + εB.

The bounds in Theorem 3.3 lead to distance-like quan-
tities describing set convergence. That is, Si’s converge
to S if and only if for each sufficiently large ρ, the infi-
mum of all ε’s satisfying the bounds tends to 0 as i → ∞.
Other set distance concepts, including an integrated set
distance (describing set convergence via a single quan-
tity), are discussed in Chapter 4 of Rockafellar and Wets
(1998). When applied to graphs of hybrid arcs, such
distances are related to the Skorokhod metric used in
Broucke and Arapostathis (2002) and Collins (2004). 1

1 The Skorokhod topology was originally designed to ana-
lyze convergence of stochastic processes, which can be often

We now show that the limit of a convergent (with respect
to set convergence) sequence of hybrid time domains is
itself a hybrid time domain.

Lemma 3.5 Let {Si}∞i=1 be a convergent sequence of hy-
brid time domains. Then S := limi→∞ Si is a hybrid time
domain. If also each Si is unbounded, then so is S.

Proof. Directly from the definition of set convergence,
limi→∞ Si = S if and only if for all J ∈ N, SJ

i :=
Si ∩ (R≥0 × {J}) converge to SJ := S ∩ (R≥0 × {J}).
Thus, each SJ is a closed interval (possibly empty, con-
sisting of one point, or unbounded to the right). If SJ+1

is nonempty, then so is SJ . Indeed, the right endpoints
of SJ

i agree with left endpoints of SJ+1
i , and the latter

converge to the left endpoint of SJ+1. This is enough to
conclude that S is a hybrid time domain.

Now let Kr = ({r} × {0, 1, ..., r}) ∪ ([0, r] × {r}) and
note that a hybrid time domain S is unbounded if and
only if for every r ∈ N, Kr ∩ S is nonempty (similarly
for Si’s). Suppose S is bounded, so that for some r ∈ N,
S ⊂ [0, r] × {0, 1, ..., r}. If limi→∞ Si = S, then from
Theorem 3.3, for all sufficiently large i,

Si ∩ K2r ⊂ (Si ∩ [0, 2r] × {0, 1, ..., 2r}) ∩ K2r

⊂ ([0, r + 1/2]× {0, 1, ..., r}) ∩ K2r = ∅

This contradicts the unboundedness of Si’s.

For our purposes, another important property of set con-
vergence is that, much like for real numbers, a sequence
of sets either diverges or has a convergent subsequence.

Theorem 3.6 (Rockafellar and Wets (1998), Theorem
4.18) Every sequence {Si}∞i=1 of nonempty subsets of R

n

either escapes to the horizon or has a subsequence con-
verging to a nonempty set S.

Set convergence can be used to give sequential defini-
tions of continuity of set-valued mappings. A mapping
M : R

n →→ R
m is outer semicontinuous at x if for all

sequences xi → x, yi ∈ M(xi) with yi → y, we have
y ∈ M(x); equivalently, if for all sequences xi → x we
have lim supi→∞ M(xi) ⊂ M(x). Inner semicontinuity
and continuity can also be defined, see Chapter 5 in
Rockafellar and Wets (1998). The mapping M is outer
semicontinuous on R

n if and only if the graph of M :

gphM := {(x, y) ∈ R
n × R

m | y ∈ M(x)} (3)

is closed (Theorem 5.7 in Rockafellar and Wets (1998)).
Our assumptions can also be phrased in terms of graphs:

represented by right-continuous functions having left lim-
its. See Pollard (1984) for a general discussion, or Kisynski
(1990) for comparison of convergence in Skorokhod topology
and graph convergence in Hausdorff distance.
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F : O →→ R
n is outer semicontinuous if gphF , equal to

{(x, y) | x ∈ O, y ∈ F (x)}, is relatively closed in O×R
n.

Outer semicontinuous mappings have closed values. If
the mapping is also locally bounded, the values are
compact. For locally bounded set-valued mappings with
closed values, outer semicontinuity agrees with what is
often referred to as upper semicontinuity: for any ε > 0
there exists δ > 0 such that for all x′ with ‖x′ − x‖ < δ,
M(x′) ⊂ M(x) + εB. This need not be true in general.

Set convergence gives rise to a nonclassical concept of
convergence of functions and set-valued mappings. A se-
quence {Mi}∞i=1 of set-valued mappings converges graph-
ically to a set-valued mapping M if limi→∞ gph Mi =
gphM . See Chapter 5 in Rockafellar and Wets (1998) for
more details, here we note that graphical convergence
can treat mappings with different domains (in fact, do-
mains need not even overlap).

Graphical convergence of solutions to differential inclu-
sions, with different domains, is the topic of the prelimi-
nary result below. In the result, we do not explicitly men-
tion sets constraining the flow of solutions. When such
sets are present, it is sufficient to consider truncations of
F and Fi’s to C and Ci’s. The proof is in the Appendix.

Lemma 3.7 Assume that

(i) F : O →→ R
n is a outer semicontinuous, locally

bounded, and convex-valued mapping with domF
relatively closed in O;

(ii) the sequence of mappings {Fi}∞i=1 is locally uni-
formly bounded on O and its graphical outer limit
F0 satisfies F0(x) ⊂ F (x) for all x ∈ 0;

(iii) for i = 1, 2, ..., xi : [ai, bi] → O is an absolutely
continuous function satisfying ẋi(t) ∈ Fi(xi(t)) for
almost all t ∈ [ai, bi];

(iv) ai’s and bi’s converge, respectively, to a and b, while
xi’s converge graphically to x.

Then

(a) If xi’s are uniformly bounded with respect to O then
x is an absolutely continuous function on [a, b] sat-
isfying ẋ(t) ∈ F (x(t)) for almost all t ∈ [a, b].

(b) If xi’s are not uniformly bounded with respect to O,
but xi(ai) → x0 ∈ O, then a < b and for some
T ∈ (a, b] we have that x is absolutely continuous on
[a, T ′] for all T ′ < T , ẋ(t) ∈ F (x(t)) for almost all
t ∈ [a, T ) (which entails x(t) ∈ O for all t ∈ [a, T ))
and x(t) leaves every compact subset of O as t ↗ T .

4 Graphical convergence of hybrid arcs

Part of our motivation to use graphical convergence is
the difficulties encountered when treating hybrid sys-
tems with classical convergence notions.

Example 4.1 Consider a hybrid system on O = R, with
C = R, F (x) = 1 for all x ∈ C, D = {1}, and G(1) = 2.
For ε ≤ 1, a particular solution xε with xε(0, 0) = ε
is: domxε = [0, 1 − ε] × {0} ∪ [1 − ε,∞) × {1} and
xε(t, 0) = t+ε for t ∈ [0, 1−ε], xε(t, 1) = t+ε+1 for t ∈
[1−ε,∞). As ε → 0, xε converge graphically to x0 (even
though dom xε 6= domx0 for ε 6= 0). If solutions were
considered in the more standard sense of left continuous
functions of time, the objects corresponding to xε would
be yε : R≥0 → R given by yε(t) = t + ε for t ∈ [0, 1− ε),
yε(t) = t+ε+1 for t ∈ [1−ε,∞). As ε ↗ 0, yε converge
pointwise to y0. As ε ↘ 0, while yε converge pointwise,
the limit is not left, but right continuous. Also note that
for ε 6= ε′ near 0, supt∈[0,2] |yε(t) − yε′(t)| = 1, and thus
yε do not converge uniformly as ε → 0.

For various relationships between pointwise, uniform,
and graphical convergences consult Chapter 5 of Rock-
afellar and Wets (1998).

We will usually be interested in graphical convergence of
hybrid arcs subject to some boundedness assumptions.
We will say that a sequence of hybrid arcs xi : dom xi 7→
R

n is locally eventually bounded with respect to O if

for any m > 0, there exists i0 > 0 and a compact set
K ⊂ O such that for all i > i0, all (t, j) ∈ domxi with
t + j < m, xi(t, j) ∈ K.

If a locally eventually bounded with respect to O se-
quence converges graphically to an arc x, then in partic-
ular x(t, j) ∈ O for all (t, j) ∈ dom x.

In what follows, we will use a closeness concept related to
graphical convergence, that does not require that jumps
of “close” solutions occur at the same time (recall Ex-
ample 4.1). One can say though that the times of j-th
jumps of two close solutions do not differ by much, and,
if there are no jumps for either solution near a partic-
ular time, solutions are close to each other there in the
standard uniform sense. We will say that hybrid arcs
x : dom x → R

n, y : dom y → R
n are (T, K, ε)-close if:

(a) for all (t, j) ∈ dom x with t ≤ T , j ≤ K there exists
s such that (s, j) ∈ dom y, |t − s| < ε, and

‖x(t, j) − y(s, j)‖ < ε,

(b) for all (t, j) ∈ dom y with t ≤ T , j ≤ K there exists
s such that (s, j) ∈ dom x, |t − s| < ε, and

‖y(t, j) − x(s, j)‖ < ε.

Lemma 4.2 Consider a sequence of hybrid arcs xi :
domxi 7→ R

n that is locally eventually bounded, and a
hybrid arc x : dom x 7→ R

n. The sequence {xi}∞i=1 con-
verges graphically to x if and only if for all (T, K) ∈
R≥0 × N and ε > 0, there exists i0 ∈ N such that, for all
i > i0 the hybrid arcs x and xi are (T, K, ε)-close.
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This is a translation of the uniformity in set convergence,
as stated in Theorem 3.3, to graphical convergence; see
also Exercise 5.34 in Rockafellar and Wets (1998). Con-
ditions (a) and (b) above do not restrict (t, j) to those
for which, respectively, x(t, j) ∈ ρB or xi(t, j) ∈ ρB

(compare to Theorem 3.3). Thus, these conditions imply
those required for graphical convergence (as stated in
5.34 in Rockafellar and Wets (1998)). On the other hand,
local eventual boundedness of a graphically convergent
sequence implies that the limit is locally bounded and
the restrictions on x(t, j) can be omitted.

The closedness, outer semicontinuity, and boundedness
properties of the data of H guarantee that the graphical
limit of solutions to H, if it exists, is itself a solution.

Lemma 4.3 Assume (A0)-(A3). Let xi : domxi 7→ R
n,

i = 1, 2, ... be solutions to H. Suppose that the sequence
{xi}∞i=1 is locally eventually bounded with respect to O
and converges graphically to a set-valued mapping x :
R≥0 × N 7→ R

n. Then dom x is a hybrid time domain
and x is a solution to H.

Proof. Let P be the projection of R≥0 × N × R
n

onto R≥0 × N, so that dom xi = P (gph xi), dom x =
P (gphx). We first claim that P (limi→∞ gphxi) =
limi→∞ P (gph xi) (Theorem 4.26 in Rockafellar and
Wets (1998) subsumes this, we give a direct argument).
Directly from the definitions,

P ( lim
i→∞

gphxi) = P (lim inf
i→∞

gph xi) ⊂ lim inf
i→∞

P (gph xi).

On the other hand, fix any (t, j) ∈ lim supi→∞ P (gph xi)
and let (tik

, jik
) ∈ dom xik

converge to (t, j). As xi’s are
locally eventually bounded, there exists a subsequence
(which we do not relabel) such that xik

(tik
, jik

) con-
verges. The limit is an element of x(t, j), which, in par-
ticular, implies that (t, j) ∈ P (gph x). Consequently

lim sup
i→∞

P (gphxi) ⊂ P (gph x) = P ( lim
i→∞

gph xi).

The two inclusions displayed above prove the claim.
Lemma 3.5 implies that domx is a hybrid time domain.

It is immediate, from local eventual boundedness of xi’s,
that for all (t, j) ∈ dom x, x(t, j) ⊂ O (we have not
shown yet that x is single-valued on dom x). Further-
more, by relative closedness of C and D, x(0, 0) ⊂ C∪D.

For any J such that domJ x := domx∩(R≥0×{J}) 6= ∅,
let xJ be the truncation of x to domJ x (similarly, let xJ

i

be truncations of xi to domJ xi := dom xi∩(R≥0×{J})).
From the definition of set convergence, xJ is the graph-
ical limit of xJ

i . Lemma 3.7, used with Fi = F , shows
that xJ is single-valued, absolutely continuous, and sat-
isfies the second inclusion in (1) a.e. (when domJ x equals

[t, t]×{J}, this just means that x(t, J) is a singleton). For

the first inclusion in (1), note that for (t, J) ∈ domJ x,
x(t, J) is a limit of xi(ti, J) for some ti → t, while
xi(ti, J) are all in a compact subset of O. As C is rel-
atively closed, x(t, J) ∈ C. Arguments just presented
show that x is a hybrid arc, and that it satisfies (S1).

We now turn to condition (S2). Pick any (t, j) ∈ dom x
so that (t, j + 1) ∈ dom x. Then (t, j, x(t, j)) =
limi→∞(t′i, j, xi(t

′
i, j)) for some sequence (t′i, j) ∈

domxi, while for another sequence (t′′i , j + 1) ∈ dom xi,
(t, j+1, x(t, j+1)) = limi→∞(t′′i , j+1, xi(t

′′
i , j+1)). The

properties of hybrid time domains imply that for some ti

with t′i ≤ ti ≤ t′′i both (ti, j) and (ti, j+1) are in dom xi,
and thus xi(ti, j) ∈ D and xi(ti, j + 1) ∈ G(xi(ti, j)).
Also, as xi’s are locally eventually bounded and x is
single valued (we showed this in the previous para-
graph), we must have limi→∞ xi(ti, j) = x(t, j),
limi→∞ xi(ti, j + 1), while limi→∞ ti = t. This, outer
semicontinuity of G, and relative closedness of D, leads
immediately to (2). Thus x satisfies (S2).

Theorem 3.6 applied to graphs shows that under mild
growth conditions, from any sequence of set-valued map-
pings one can pick a graphically convergent subsequence
(Theorem 5.36, Rockafellar and Wets (1998)). In partic-
ular, this can be applied to solutions of a hybrid system.
The result of this, which we state below, can be viewed as
the main result of this section. It will turn out to be the
key tool in proving the results of Section 6, we add that
it is also fundamental for studying invariance of certain
sets; see Sanfelice, Goebel, and Teel (2005).

Theorem 4.4 (sequential compactness) Assume
(A0)-(A3). Let xi : domxi 7→ R

n, i = 1, 2, . . ., be a
locally eventually bounded with respect to O sequence of
solutions to H. Then there exists a subsequence of xi’s
graphically converging to a solution of H. Such a limiting
solution is complete if each xi is complete, or more gen-
erally, if no subsequence of xi’s has uniformly bounded
domains (i.e. for any m > 0, there exists im ∈ N such
that for all i > im, there exists (t, j) ∈ dom xi with
t + j > m).

Proof. As xi(0, 0) are uniformly bounded, Theorem 3.6
implies that there is a subsequence of xi’s (which we do
not relabel) for which the graphs converge (to a graph
of some set-valued mapping x). Local boundedness of
xi’s with respect to O and Lemma 4.3 imply that x is a
solution of H. If each xi is complete, the completeness
of x follows from the last statement of Lemma 3.5. If no
subsequence of xi is bounded, unboundedness of dom x
(and so, completeness of x) follows from the arguments
in the second part of the proof of Lemma 3.5.

Completeness of the graphical limit of a sequence of so-
lutions to H can be also guaranteed if these solutions are
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maximal, local existence of solutions can be guaranteed,
and solutions to not leave C ∪D. The precise statement
is given below, we will rely on it in Proposition 6.4. In
particular, the result below says that if C ∪ D = O, the
limit of a graphically convergent and locally eventually
bounded sequence of maximal solutions is complete.

Lemma 4.5 Assume (A0)-(A3), that (VD) of Proposi-
tion 2.4 holds, and that (VC) of Proposition 2.4 holds for
any x0 ∈ C \ D. Then the graphical limit x of a graphi-
cally convergent and locally eventually bounded sequence
of maximal solutions xi to H is complete.

Proof. Suppose that x is not complete. By the last con-
clusion of Theorem 4.4, some subsequence of xi’s has
uniformly bounded domains. By local eventual bound-
edness, all but a finite number of elements of this subse-
quence are uniformly bounded with respect to O. But as
(VD) holds, and (VC) holds for x0 ∈ C \D, each of the
elements of the subsequence (except a finite number of
them) must eventually leave any compact subset of O;
see (ii) in Proposition 2.4. This contradicts the uniform
boundedness.

Recall that a solution to the hybrid system is complete if
its domain is unbounded. The hybrid system H is called
forward complete at x0 if every maximal solution to H
from x0 is complete. In what follows, we will write S(x0)
to denote the set of all maximal solutions to H originat-
ing at x0, and S(K) for all those originating in a set K.

Note that so far we have not required any growth con-
ditions on G; local boundedness was only required of F .
In what follows, we need a related condition on G:

(A4) G : O →→ O is locally bounded.

In light of outer semicontinuity of G : O →→ O, local
boundedness is in fact equivalent to local boundedness
with respect to O: for any compact subset K ⊂ O, there
exists a compact K ′ ⊂ O such that G(K) ⊂ K ′. Note
that (A4) automatically holds if (VD) of Proposition 2.4
holds and both C and D are compact.

Theorem 4.6 (completeness and boundedness)
Assume (A0)-(A4). Suppose H is forward complete at
each x0 ∈ K for some compact set K ⊂ O. Then for
any (T, J) ∈ R≥0 × N there exists δ > 0 and a compact
subset K ′ ⊂ O such that any xδ ∈ S(K + δB) satisfies
xδ(t, j) ∈ K ′ for all (t, j) ∈ dom xδ, (t, j) � (T, J).

Proof. If the conclusion does not hold, then there exists
a sequence of solutions {xi}∞i=1 with xi(0, 0) converging
to x0 ∈ K and a point (T, J) such that truncations of
xi to [0, T ]×{0, 1, ...J} are not uniformly bounded with
respect to O. From now on, let xi’s be those truncations,
and note that by passing to a subsequence, we can as-
sume that xi’s converge graphically. We will argue that

the graphical limit (or its further truncation) is a solu-
tion to H which is maximal, but not complete.

Let domj xi := dom xi ∩ (R≥0 × {j}) ⊂ [0, T ] × {j}.
There exists the smallest j ≤ J such that xi(·, j) on

domj xi are not uniformly bounded with respect to O.
Then xi’s truncated to [0, T ] × {0, 1, ...j − 1} are uni-
formly bounded, and by Lemma 4.3, x truncated to
[0, T ] × {0, 1, ...j − 1} is a solution to H. Let ti → t be

the time coordinates of left endpoints of domj xi. Then
xi(ti, j)’s are uniformly bounded with respect to O (and
thus converge to x(t, j) ∈ O). Indeed, if j = 0 then ti = 0
and xi(ti, j) → x0. If j > 0, xi(ti, j − 1) are uniformly
bounded with respect to O, and by (A4), so are xi(ti, j) ∈
G(xi(ti, j−1)). Passing to a subsequence of xi’s, we can

assume that intervals domj xi =: [ai, bi]×{j} and points
xi(ti, j) converge to, respectively, [a, b] and x(t, j). Ap-
plying Lemma 3.7 yields that for some T ∈ (a, b], x(·, j)
satisfies the differential inclusion on [a, T ) and leaves any
compact subset of O as t ↗ T . This leads to a maximal
but not complete solution to H from x0.

Corollary 4.7 Assume (A0)-(A4). Suppose H is for-
ward complete at each x0 ∈ K, for some compact set
K. Then for all (T, J) ∈ R≥0 × N, the reachable set
reachT,J (K) is compact, where

reachT,J (K) := {x(t, j) | x ∈ S(K), (t, j) � (T, J)} .

Proof. Any sequence of points in reachT,J (K) can be
written as xi(ti, ji) with xi ∈ S(x0

i ), x0
i ∈ K, (ti, ji) �

(T, J). Without changing the indices, we pass to a sub-
sequence so that x0

i → x0 ∈ K. By Theorem 4.6, the
sequence of xi’s truncated to [0, ti] × {0, 1, ..ji} is uni-
formly bounded, and by Theorem 4.4, we can pick from
it a graphically convergent subsequence, with the limit
denoted x. This subsequence can be picked so that (ti, ji)
converge, say to (t, j). Now, x(t, j) = limi→∞ xi(ti, ji)
and thus x(t, j) ∈ reachT,J (K).

The next result says that under some forward complete-
ness assumptions, a solution starting close to a compact
set K stays close, on compact subsets of its domain, to
some solution starting in K.

Corollary 4.8 Assume (A0)-(A4). Suppose that H is
forward complete at every x0 ∈ K for some compact set
K. For any ε > 0 and (T, J) ∈ R≥0 × N there exists
δ > 0 with the following property: for any solution xδ ∈
S(K+δB) there exists a solution x to H with x(0, 0) ∈ K
such that xδ and x are (T, J, ε)-close.

Proof. If the conclusion is false, there exist ε > 0,
(T, J) ∈ R≥0 × N, and a sequence of solutions xi with
xi(0, 0) converging to K such that, for each i, no solution
x ∈ S(K) is (T, K, ε)-close to xi. The sequence of xi’s is
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locally eventually bounded with respect to O by Theo-
rem 4.6 and has a graphically convergent subsequence,
the limit x̄ of which is a solution, see Theorem 4.4, and
of course x̄(0, 0) ∈ K. Conclusions of Lemma 4.2 applied
to this subsequence and x̄ yield a contradiction.

Note that if above one additionally assumes that (VD),
and for all x0 ∈ C \D, (VC) of Proposition 2.4 hold (as
in Lemma 4.5), then the solution x can be guaranteed
to be complete (equivalently, maximal: x ∈ S(K)).

To conclude this section, we mention a result by Collins
(2004). Here, it can be derived from Theorem 4.4. See
also Theorem 6.7. Following Collins (2004), we say that a
given set of solutions to H is uniformly non-Zeno if there
exist T > 0 and J ∈ N so that for any solution in that
set, in any time period of length T , at most J jumps can
occur. More specifically, if (t, j), (t′, j′) ∈ domx, then
|t − t′| ≤ T implies |j − j′| ≤ J . (Note though under
such an assumption, multiple instantaneous jumps can
still occur.) Forward invariance of K means that any
x ∈ S(K) is such that x(t, j) ∈ K for all (t, j) ∈ domx.

Corollary 4.9 Assume (A0)-(A4). Let K ⊂ O be a
compact set that is forward invariant. Then either the
set S(K) is uniformly non-Zeno or there exists an in-
stantaneous Zeno solution (a complete solution x with
domx = {0} × N) starting in K.

5 Perturbations of hybrid systems

Below, we consider a sequence of hybrid systems Hi

given by sets Ci, Di and mappings Fi : O →→ R
n, Gi :

O →→ O on the open set O. Since we do not require ex-
istence or outer semicontinuity from the solutions to Hi

as studied for H, in Sections 2, 3, we do not need the
properties corresponding to (A1)-(A4) to hold for Hi.
We do assume the following:

(C1) Sequences of sets {Ci}∞i=1, {Di}∞i=1 are such that

(
lim sup

i→∞

Ci

)
∩ O ⊂ C,

(
lim sup

i→∞

Di

)
∩ O ⊂ D.

(C2) Sequences of set-valued mappings {Fi}∞i=1,
{Gi}∞i=1 are such that

F0(x) ⊂ F (x), G0(x) ⊂ G(x)

for all x ∈ O, where F0, G0 denote the outer graph-
ical limits of Fi’s, Gi’s.

(C3) The sequence {Fi}∞i=1 is locally eventually
bounded: for any compact set K ⊂ O there exists
m > 0 such that for any i = 1, 2, ... Fi(K) ⊂ mB.

The outer graphical limit of {Fi}∞i=1 is the mapping
F0 such that gph F0 = lim supi→∞ gph Fi. Assumption

(C1) holds, in particular, when the sequences of Ci’s and
Di’s converge, and C = O∩ limi→∞ Ci, and similarly for
D. An analogous statement can be made about (C2).

If we assume that each Fi is convex-valued (or more gen-
erally, connected-valued), then (C3) follows from (C2)
and local boundedness of F as assumed in (A3); see
Corollary 4.12 and Exercise 5.34 in Rockafellar and Wets
(1998). Condition (C3) can be thought of as an exten-
sion of (A3) to sequences of hybrid systems, while (C4),
which we formulate and rely on later, extends (A4).

Theorem 5.1 (solutions under perturbations)
Assume (A0)-(A4) and (C1)-(C3). Let xi : dom xi 7→
R

n be a solution to a hybrid system Hi, i = 1, 2, ....
Suppose that the sequence {xi}∞i=1 is locally eventually
bounded with respect to O and its graphical limit x exists.
Then x is a solution to H.

Proof. The proof is essentially the same as that of
Lemma 4.3. One just invokes Lemma 3.7 not with a
constant sequence, but with the sequence {Fi}∞i=1, and
instead of relying on outer semicontinuity of G and
closedness of C and D, one relies on the definitions of
graphical and set convergence, and on (C1), (C2).

(C4) The sequence {Gi}∞i=1 is locally eventually
bounded with respect to O: for any compact set
K ⊂ O there exists a compact K ′ ⊂ O such that
for any i = 1, 2, ..., Gi(K) ⊂ K ′.

Below, Si(x
0) is the set of maximal solutions to Hi from

x0; later in this section Sδ(x
0) has a similar meaning.

Corollary 5.2 Assume (A0)-(A4) and (C1)-(C4). Sup-
pose H is forward complete at x0. Then, for any (T, J) ∈
R≥0 ×N there exists δ > 0, i0 > 0, and a compact subset
K ⊂ O such that for all i > i0, any x ∈ Si(x

0 + δB) sat-
isfies x(t, j) ∈ K for all (t, j) ∈ dom x, (t, j) � (T, J).

Proof. If the conclusion is false, there exists (T, J) and
xi ∈ Si(x

0
i ) with x0

i → x0, truncations of which to
[0, T ] × {0, 1, ...J} are not uniformly bounded with re-
spect to O. Now one proceeds as in the proof of Theorem
4.6, to construct, via Theorem 5.1, a solution x ∈ S(x0)
which is not complete (a contradiction). The extra as-
sumption (C3) replaces the one on local boundedness
of G with respect to E, and is used to show that if
xi(ti, j−1) are uniformly bounded then so are xi(ti, j) ∈
Gi(x(ti, j − 1)). Also, Lemma 3.7 is invoked not with a
constant sequence, but with the sequence {Fi}∞i=1.

Robustness analysis of H calls for consideration of per-
turbations Hδ. These can be often understood as given
on O by sets Cδ , Dδ, and mappings Fδ, Gδ , for a contin-
uously varying parameter δ > 0. We will say that per-
turbations Hδ have the convergence property if
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(CP) for any sequence 1 > δ1 > δ2 > ... > 0 converg-
ing to 0, sequences {Ci}∞i=1, {Di}∞i=1 and {Fi}∞i=1,
{Gi}∞i=1 satisfy assumptions (C1), (C2), (C3), and
(C4), where for each i = 1, 2, ..., Ci = Cδi

, similarly
for Di, Fi, Gi.

A particular kind of perturbations appears in converse
Lyapunov theory for differential and difference inclusion,
see Clarke, Ledyaev, and Stern (1998), Teel and Praly
(2000), Kellett and Teel (2004a).

Example 5.3 (“outer perturbations”). Let α : O 7→
R≥0 be a continuous function such that, for all x ∈ O
we have x + α(x)B ⊂ O. Then, one considers systems
Hδ on O, given for δ ∈ (0, 1) by the sets Cδ , Dδ (we
discussed similar perturbations in Example 3.2), and the
mappings Fδ : O →→ R

n, Gδ : O →→ O given by

Cδ = {x ∈ O | x + δα(x)B ∩ C 6= ∅},
Dδ = {x ∈ O | x + δα(x)B ∩ D 6= ∅},

Fδ(x) = conF (x + δα(x)B) + δα(x)B,

Gδ(x) = {y | y ∈ η + δα(η)B, η ∈ G (x + δα(x)B)} .

Above, conS denotes the convex hull of a set S. Obvi-
ously, Fδ is convex-valued. It can be verified that Fδ is
nonempty-valued on Cδ, similarly for Gδ on Dδ.

Theorem 5.4 Assume (A1)-(A4). The perturbations of
Example 5.3 have the convergence property (CP).

Proof. Pick any decreasing sequence of δi’s, converging
to 0, and construct sequences of sets and mappings as
needed in the convergence property. Convergence of Ci’s,
Di’s follows from Example 3.2. As graphs of Fi’s, Gi’s
are decreasing, the graphical limits exist, and moreover
gphF ⊂ limi→∞ gph Fi, gphG ⊂ limi→∞ gph Gi.

Suppose (x, y) ∈ limi→∞ gph Fi and x ∈ O. There exist
xi, yi such that xi → x, yi → y, and yi ∈ conF (xi +
δiα(xi)B)+δiα(xi)B. Thus, yi =

∑n
k=0 λk

i yk
i +δiα(xi)B,

where λk
i ≥ 0,

∑n
k=0 λk

i = 1, and yk
i ∈ F (xk

i ) where

xk
i ∈ xi + δiα(xi)B. For each k = 0, 1, ..n, xk

i ’s converge
to x, and by local boundedness of F , yk

i ’s are bounded.
Passing to subsequences, so that for yk

i ’s converge to
some yk ∈ F (x), while λk

i ’s converge to some λk’s in
the simplex, we get y =

∑n
k=0 λkyk ∈ F (x), as F (x) is

convex. Thus (x, y) ∈ gphF .

Now say (x, y) ∈ limi→∞ gph Gδ with x ∈ O. There exist
xi, yi such that xi → x, yi → y, and yi ∈ ηi + δiα(ηi)B
while ηi ∈ G(xi +δiα(xi)B). By local boundedness of G,
we can pick a subsequence of ηi’s converging to some η,
and η ∈ G(x). But the limit of yi’s must be the same, so
y = η. This shows (x, y) ∈ gphG.

These arguments show (C1) and (C2). The discussion
following the statement of (C3) implies that condition

is satisfied. We now argue that (C4) holds. If it did not,
there would exist x ∈ O and sequences xi → x, yi ∈
Gi(xi) such that the sequence {yi}∞i=1 was not uniformly
bounded with respect to O. Now yi ∈ Gi(xi) means that
yi ∈ ηi + δiα(ηi)B while ηi ∈ G(xi + δiα(xi)B). Since
xi + δiα(xi) are eventually contained in an arbitrarily
small neighborhood of x, and G is locally bounded with
respect to O, ηi’s are bounded with respect to O. Using
local boundedness of α again we obtain that yi’s are
bounded with respect to O. This is a contradiction.

Continuity of α is not essential for the above arguments,
local boundedness is sufficient. Continuity implies that
the outer perturbations actually satisfy (A1)-(A4).

Corollary 5.5 Assume (A0)-(A4) (for the system H)
and (C1)-(C4). Suppose that H is forward complete at
every x0 ⊂ K for some compact set K. Assume that
perturbations Hδ have the convergence property (CP).
Then, for any ε > 0 and (T, J) ∈ R≥0 × N there exists
δ∗ > 0 with the following property: for any δ ∈ (0, δ∗]
and any xδ ∈ Sδ(K + δB) there exists a solution x to H
with x(0, 0) ∈ K such that xδ and x are (T, J, ε)-close.

Proof. If the conclusion is false, then there exist ε > 0;
(T, J) ∈ R≥0 × N, a sequence of systems Hi given by
Ci, Di, Fi, and Gi as in Theorem 5.4, and a sequence
xi ∈ Si(x

0
i ) with x0

i → x0 for some x0 ∈ K such that, for
each i, no solution x to H with x(0, 0) = x0 is (T, K, ε)-
close to xi. Without loss of generality, we can suppose
that for each i, domxi ⊂ [0, T ]×{0, 1, ...J}. By Lemma
5.2, all sufficiently large xi’s are uniformly bounded on
[0, T ]×{0, 1, ...J}, and a subsequence of them converges
to some x ∈ S(x0), by Theorem 5.1. Lemma 4.2 applied
to this subsequence and x yields a contradiction.

Example 5.6 (Temporal regularization). Given a hy-
brid system H on O, with F nonempty and convex val-
ued on O (not just on C), consider an augmented system

H̃δ with state space Õ = O ×R and variable x̃ = (x, τ):

C̃δ = (C × R≥0) ∪ (O × [0, δ]), D̃δ = D × R≥δ,

F̃ (x̃) = F (x) × {1}, G̃(x̃) = G(x) × {0},

Similar augmented systems with δ > 0 were considered
in Johansson, Egerstedt, Lygeros, and Sastry (1999) to
eliminate Zeno behavior. Indeed, when δ > 0 jumps are
separated by at least δ amount of time. When δ = 0, the
behavior of the x component of the solution is exactly
that of H. Such a temporal regularization has the con-
vergence property (CP). Thus, the conclusions of Theo-
rem 5.5 are valid. In turn, the x component of each solu-
tion to the regularized system is close to some solution
of H on compact hybrid time domains.
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6 Applications to stability: compact attractors

For a hybrid system H = (F, G, C, D) with state space
O, a compact set A ⊂ O is called stable if for each ε > 0
there exists δ > 0 such that for each x0 ∈ (A + δB) ∩
(C∪D), each solution x ∈ S(x0) is complete and satisfies
|x(t, j)|A ≤ ε for all (t, j) ∈ domx (here and in what
follows, |x|A denotes the distance from A to x). It is
called attractive if there exists µ > 0 such that, for each
x0 ∈ (A + µB)∩(C∪D), each x ∈ S(x0) is complete and
satisfies limt+j→∞ |x(t, j)|A = 0. 2 The set of points
from which solutions are complete and converge to A is
called the basin of attraction for A and is denoted BA.
The set A is called locally asymptotically stable if it
is both stable and attractive, and uniformly attractive
from the compact set K ⊂ O if for each x0 ∈ K each
x ∈ S(x0) is complete and for each ε > 0 there exists m
such that x ∈ S(K) and t + j ≥ m imply |x(t, j)|A ≤ ε.

From now on, we assume (A0) through (A4). Other as-
sumptions will be made when needed. Propositions 6.1
– 6.4 when specialized to differential or difference inclu-
sions, have appeared recently in Clarke, Ledyaev, and
Stern (1998), Teel and Praly (2000), Kellett and Teel
(2004a), and Kellett (2002).

Proposition 6.1 If a compact set A is forward invari-
ant and uniformly attractive from a compact set contain-
ing a neighborhood of A in C ∪ D then it is stable, and
hence locally asymptotically stable.

Proof. Let ε > 0 be given. Using the uniform attrac-
tivity, let µ > 0 and m be such that for each x0 ∈
(A + µB) ∩ (C ∪ D), each x ∈ S(x0) is complete and
t + j ≥ m implies |x(t, j)|A ≤ ε. Next, using forward
invariance and Corollary 4.8, let δ ∈ (0, µ) be such that
x0 ∈ (A + δB)∩(C∪D) implies that, for each x ∈ S(x0),
|x(t, j)|A ≤ ε for all t + j ≤ m. It now follows that
for each x0 ∈ (A + δB) ∩ (C ∪ D) and each x ∈ S(x0),
|x(t, j)|A ≤ ε for all (t, j) ∈ dom x. Thus, A is stable.

Proposition 6.2 A locally asymptotically stable com-
pact set A ⊂ O is uniformly attractive from each compact
set K ⊂ BA.

Proof. Assume otherwise. Then for some ε > 0, m > 0,
and a sequence of complete xi ∈ S(K), some (ti, ji) ∈
domxi with ti+ji > m satisfies |xi(ti, ji)|A > ε. By The-
orem 4.6 and forward completeness of H on K, the se-
quence of xi’s is locally eventually bounded. By Theorem
4.4, we can assume it converges graphically to a complete
x ∈ S(K). By stability of A, there exists δ > 0 such that
|xi(t, j)|A > δ for all (t, j) ∈ dom xi with (t, j) � (ti, ji),

2 In the definitions of stability and attractivity, the condi-
tion that x

0
∈ C ∪ D can be omitted, as by definition, solu-

tions of the hybrid system have initial points in C ∪ D.

i = 1, 2, . . .. This implies that ‖x(t, j)‖A ≥ δ for all
(t, j) ∈ dom x, which contradicts x(0, 0) ∈ BA.

Proposition 6.3 Let A ⊂ O be compact and locally
asymptotically stable, and let K ⊂ BA be compact. Then

A ∪
⋃

(T,J)∈R≥0×N

reachT,J(K) (4)

is a compact subset of BA.

Proof. Any sequence of points in (4) either has a sub-
sequence that approaches A (from which a convergent
sequence with the limit in A can be picked by compact-
ness of A) or is contained in reachT,J(K) for some T, J ,
by Proposition 6.2. But reachT,J is compact by Corol-
lary 4.7, and this leads to compactness of (4).

Based on the compactness of the reachable set, and The-
orem 4.4, we observe that given a compact subset K of
the basin of attraction, either times between jumps are
uniformly bounded below by τ > 0 over all trajectories
originating in K, or for some trajectory there exist mul-
tiple instantaneous jumps. Consequently, in our setting,
existence of a uniform bound over all trajectories, and
existence of a bound dependent on trajectory, are equiv-
alent. This may not be the case in other frameworks (see
for example Ye, Michel, and Hou (1998) for different con-
verse Lyapunov theorems for the two cases).

Proposition 6.4 Assume that (VD) of Proposition 2.4
holds, and that (VC) of Proposition 2.4 holds for any
x0 ∈ C \D. Then, for any attractive compact set A ⊂ O,
its basin of attraction BA is open relative to C ∪ D.

Proof. Assume otherwise, that for some x0 ∈ BA there
exist maximal solutions xi to H, each of which is either
not complete or does not converge to A, and such that
xi(0, 0) → x0. If xi is not complete, then by Proposition
2.4 it eventually leaves any compact subset of O, and
thus it does not converge to A. Hence, we can assume
that each of xi’s does not converge to A. By Theorem
4.6 and forward completeness of H at x0, the sequence of
xi’s is locally eventually bounded. By Theorem 4.4, we
can assume it converges graphically to a solution x. By
Lemma 4.5, x is complete. Lastly, by attractivity of A,
there exists µ > 0 such that |xi(t, j)|A > µ for all (t, j) ∈
domxi, all i = 1, 2, . . .. This implies that |x(t, j)|A ≥ µ
for all (t, j), which contradicts x(0, 0) = x0 ∈ BA.

A function β : R≥0 × R≥0 × N → R≥0 belongs to class-
KLL if it is continuous, β(·, t, j) is 0 at 0 and nonde-
creasing, β(s, ·, j) and β(s, t, ·) are nonincreasing and
converge to 0 as arguments increase to ∞. A function
ω : U → R≥0 is a proper indicator of a compact A ⊂ U
with respect to an open U if it is continuous, positive
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definite with respect to A, and such that ω(x) → ∞ as
x → ∂U (boundary of U) or ‖x‖ → ∞.

The proof of Theorem 6.5 follows that of Proposition 3
in Teel and Praly (2000), while the proof of Theorem
6.6 uses some ideas of the proof of Theorem 1 in Teel,
Moreau, and Nesic (2003).

Theorem 6.5 (KLL-bound) Suppose that the basin of
attraction BA of a compact set A ⊂ O is open relative
to C ∪ D. Let U ⊂ O be any open set such that BA =
(C ∪ D) ∩ U . For each proper indicator ω : U → R≥0 of
A with respect to U there exists β ∈ KLL such that, for
all solutions starting in BA,

ω(x(t, j)) ≤ β(ω(x(0, 0)), t, j) ∀(t, j) ∈ dom x . (5)

Proof. Given ω, define α : R≥0 × R≥0 → R≥0 by

α(r, s) := sup{ω(x(t, j)) | ω(x(0, 0)) ≤ r, t + j ≥ s},

with the supremum taken over all solutions x to H and
(t, j) ∈ domx. By Proposition 6.3, α(r, s) is finite for all
(r, s). By definition of α, we have

ω(x(t, j)) ≤ α(ω(0, 0), t + j)

for all solutions x with x(0, 0) ∈ BA, all (t, j) ∈ dom x.
Also, α(r, s) is nondecreasing in r and nonincreasing in
s. By stability of A, limr↘0 α(r, s) = 0 for all s, while by
continuity and growth properties of ω (in particular, by
compactness of {z ∈ BA | ω(z) ≤ r}) and uniform con-
vergence as stated in Proposition 6.2, lims→∞ α(r, s) = 0
for all r. Thus, α has the properties normally required
of KL functions except continuity. There does exist a
function γ : R≥0×R≥0 → R≥0 that has these properties
and is continuous, and moreover α(r, s) ≤ γ(r, s) for all
r, s ∈ R≥0; see for example Remark 3 in Teel and Praly
(2000). Now, let

β(r, t, j) := γ(r, t + j).

This function has the required properties.

Theorem 6.6 (KLL-bound under perturbations)
Suppose that the basin of attraction BA of a compact set
A ⊂ O is open relative to C ∪ D, U ⊂ O is any open
set such that BA = (C ∪ D) ∩ U , and ω : U → R≥0 is a
proper indicator of A with respect to U , and β ∈ KLL is
such that, for all solutions starting in BA, (5) holds. As-
sume that the family of perturbed systems Hδ, δ ∈ (0, 1),
has the convergence property (CP) of the previous sec-
tion. Then, for each compact set K ⊂ BA and each ε > 0
there exists δ∗ > 0 such that for each δ ∈ (0, δ∗], the
solutions xδ of Hδ from K satisfy, for all (t, j) ∈ dom xδ,

ω(xδ(t, j)) ≤ β(ω(xδ(0, 0)), t, j) + ε . (6)

Proof. As ω is continuous, for each compact K there
exists m > 0 such that K ⊂ {x ∈ BA | ω(x) ≤ m}. The
latter set is also compact by the growth properties of ω.
Fix ε > 0 and m > ε. Pick T > 0, J > 0 large enough
so that β(m, t, j) ≤ ε/2 when either t ≥ T or j ≥ J . We
claim that there exists δ∗ > 0 such that for all δ ∈ (0, δ∗],
all solutions xδ to Hδ with ω(xδ(0, 0)) ≤ m satisfy

ω(xδ(t, j)) ≤ β(ω(xδ(0, 0)), t, j) + ε/2 (7)

for all (t, j) ∈ dom xδ with t ≤ 2T , j ≤ 2J . This implies
ω(xδ(t, j)) ≤ ε for all (t, j) ∈ domx with t ≤ 2T , j ≤ 2J
but either t ≥ T or j ≥ J . Using this fact recursively
and relying on m > ε shows that ω(xδ(t, j)) ≤ ε when
t ≥ T or j ≥ J . This, and (7), shows (6).

To see the claim, suppose otherwise: that there exists a
sequence xi of solutions toHδi

, δi ↘ 0 with ω(xi(0, 0)) ≤
m and points (ti, ji) ∈ dom xi with ti ≤ 2T , ji ≤ 2J so
that (7) does not hold, i.e.

ω(xi(ti, ji)) > β(ω(xi(0, 0)), ti, ji) + ε/2.

Since ω(xi(0, 0)) ≤ m implies that points xi(0, 0) ∈ Ci∪
Di all lay in some compact subset of U , one can assume
that they converge to some point in U∩(C∪D) = BA. At
this point, H is forward complete. Relying on Theorem
5.1 and Corollary 5.2, one can extract a graphically con-
vergent, to a solution x of H, subsequence of xi’s. Now,
extracting a convergent, to some (t, j), subsequence of
(ti, ji)’s, and using continuity of β and ω shows that (5)
is violated by x at (t, j). This is a contradiction.

Theorem 6.6 does not address the existence of solutions
to perturbed systems Hδ . Under our assumptions, not
much can be said about this, as we do not assume any
regularity of Cδ , Dδ, Fδ , and Gδ . When Hδ is the “outer
perturbation” of H as in Example 5.3, then the data for
Hδ satisfies (A1), (A2), (A3), and if furthermore C∪D =
O, and consequently Cδ ∪Dδ = O, then solutions to Hδ

do exist for any initial point in O. However, even then
the existence of solutions to a system with exogenous
inputs ẋ ∈ F (x + e) if x + e ∈ C and x+ ∈ G(x + e) if
x + e ∈ D, for example to H under measurement error,
remains problematic. We do not pursue this topic here.

The following result is inspired by and relies on the result
of Collins (2004) (see Corollary 4.9).

Theorem 6.7 Under the assumptions of Theorem 6.6,
if the hybrid system H has no instantaneous Zeno solu-
tions in BA, then for each compact set K ⊂ BA, there
exists δ∗ > 0 such that all solutions of Hδ starting in K
are uniformly non-Zeno for all δ ∈ (0, δ∗].

Proof. Suppose otherwise, that there exist solutions
xi ∈ S1/i(K) and points (ti, ji), (t

′
i, j

′
i) ∈ domxi with

(ti, ji) � (t′i, j
′
i) and t′i−ti ≤ 1/i and j′i−ji ≥ i. For each
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i define a solution x′
i toH1/i by x′

i(t, j) = xi(t+ti, j+ji).
As x′

i(0, 0) = xi(ti, ji), we can find ω and β as in Theo-
rem 6.6 so that ω(x′

i(0, 0)) ≤ β(ω(xi(0, 0)), 0, 0) + ε for
all large enough i. As xi(0, 0) ∈ K, ω(x′

i(0, 0)) ≤ m for
some m > 0 and large enough i’s. As in the last part of
the proof of Theorem 6.6, we can assume that xi’s are
locally eventually bounded and converge graphically to
a solution x to H. As (t′i − ti, j

′
i − ji) ∈ domx′

i, x is com-
plete and instantaneous Zeno. This is a contradiction.

Example 6.8 (Temporal regularization for a stabiliz-
ing controller that produces Zeno solutions). Consider
controlling the state x1 of an integrator using an ac-
tuator, with state x2, that can decrease at a constant
rate (normalized to minus one) and can be reset in the
positive direction instantaneously. The flow equation is
ẋ1 = x2, ẋ2 = −1. With kr > kc ≥ 2, η ∈ [0, 1), we con-
sider the flow set C :=

{
x : x1 ≥ 0 or x2 ≥

√
−kcx1

}
,

the jump set D := R2\C and the reset rule

x+
2 = max {0,−ηx2} +

√
−krx1.

One can verify that {x : x1 ≥ 0} is forward invariant,
that trajectories reach this set in finite time, and within
this set the solutions are the same as those of the bounc-
ing ball example (see, for example, Lygeros, Johansson,
Simić, Zhang, and Sastry (2003)) with g = 1. In partic-
ular, the origin is forward invariant (the only solution
from the origin is the constant instantaneous Zeno so-
lution) and the origin is uniformly attractive. Thus, by
Proposition 6.1, the origin is globally asymptotically sta-
ble. To eliminate the said instantaneous Zeno solution,

we use a temporal regularization with the flow set C̃δ

and D̃δ as in Example 5.6 for δ ≥ 0, and additional dy-
namics τ̇ = 1 − τ , τ+ = 0. We note that the set R≥0 is
forward invariant for τ , independently of δ ≥ 0. When
δ = 0, the x component of the solution is exactly the
solution without the temporal regularization and τ con-
verges uniformly to the interval [0, 1]. Thus, the compact
set A := {(x, τ) : ‖x‖ = 0 , τ ∈ [0, 1]} is asymptotically
stable when δ = 0 with basin of attraction R

2 × R≥0.
By Theorem 6.5, with z = (x, τ) and ω(z) given by
‖x‖ + max {0, δ − 1}, there exists β ∈ KLL such that,

ω(z(t, j)) ≤ β(ω(z(0, 0)), t, j)

for each solution to the system. According to Theorem
6.6 and the remark that follows it, for each ε > 0 and
compact set K ⊂ R

2×R≥0 there exists δ∗ > 0 such that

the solutions of the hybrid system H̃δ, δ ∈ (0, δ∗], satisfy

ω(zδ(t, j)) ≤ β(ω(zδ(0, 0)), t, j) + ε.

In particular, for τ(0, 0) ∈ [0, 1],

‖xδ(t, j)‖ ≤ β(‖xδ(0, 0)‖, t, j) + ε.

7 Conclusions

We have proposed a novel framework for the modeling
and analysis of hybrid systems, and established elemen-
tary properties – in particular, sequential compactness
– of the sets of solutions to such systems, also in the
presence of perturbations. We have applied these results
to the study of basic properties of asymptotically stable
hybrid systems, and to the question of how the said sta-
bility behaves under perturbations. These developments
confirm that in a right framework, and with an appro-
priate notions of a solution to a hybrid system and of
convergence of solutions, many results that have proved
fundamental in the study of continuous time (or discrete
time) systems can be extended to a hybrid setting.

We view the results of this paper not as a complete body
of work, but rather, as a foundation upon which many
further investigations can be built. Already, some of the
results have been applied to very important problems in
control theory. More specifically:

• Working with hybrid systems in the framework sub-
suming that of the current paper, Sanfelice, Goebel,
and Teel (2005) established several invariance prin-
ciples and related detectability and invariance to
asymptotic stability. For such results, Lemma 4.3 and
Theorem 4.4 were the key tool.

• In Cai, Teel, and Goebel (2005), the existence of
smooth Lyapunov functions for hybrid systems was
tied to the robustness of asymptotic stability, and
sufficient conditions for the latter were given. To a
large extent, it was Theorem 5.1 and Corollary 5.5
that made such results possible.

• The existence of a hybrid feedback that stabilizes any
given asymptotically controllable nonlinear system,
robustly to measurement noise, actuator error, and
external disturbances, was shown in Prieur, Goebel,
and Teel (2005). This required versions of Theorems
6.5 and 6.6, and Lemma 4.3.

Many other issues related to hybrid controllers and hy-
brid systems await solutions. We do believe that the
framework and the results of this paper will make some
of the solutions possible.

8 Appendix: proof of Lemma 3.7

We first show (a). If a < b, we can assume that [ai, bi] =
[a, b] for all i. (Otherwise, one considers x̃i : [a, b] → R

n

given by x̃i(t) = xi

(
b−t
b−aai + t−a

b−abi

)
and F̃i = bi−ai

b−a Fi.)

By boundedness assumptions on xi’s and Fi’s, arcs xi

are Lipschitz continuous (with the same constant). This
in particular implies that x is single-valued, xi’s con-
verge pointwise to x, and also, that from every sequence
of ẋi’s, we can pick a weakly convergent (in L1[a, b]) sub-
sequence (Dunford-Pettis Theorem). Boundedness and
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Lipschitz continuity of xi’s implies that the first inclu-
sion below holds for some ρ > 0, while the second holds
for all ε > 0, all i > iε by Theorem 3.3: for a.a. t ∈ [a, b],

(xi(t), ẋi(t)) ∈ gphFi ∩ ρB ⊂ gphF + εB.

Now, the Convergence Theorem of Aubin and Cellina
(1984) concludes that ẋ(t) ∈ F (x(t)) for almost all t ∈
[a, b]. If a = b, uniform Lipschitz continuity of xi’s easily
leads to x(a) being a singleton.

To see (b), let T be the minimum of all τ ’s for which there
exist ti ∈ [ai, bi] with ti → τ and limi→∞ xi(ti) 6∈ O (at
least one such τ ≤ b exists, as xi’s are not uniformly
bounded with respect to O). Pick ε > 0, L > 0 so that
1+‖Fi(x)‖ ≤ L for all i, all x with x ∈ x0+2εB. As for all
large enough i, xi(ai) ∈ x0+εB, we have xi(t) ∈ x0+2εB

for all t ∈ [ai, ai + ε/L]. Thus a < T . By (a), for any
a < T ′ < T the arc x is absolutely continuous on [a, T ′],
and ẋ(t) ∈ F (x(t)) a.e. on [a, T ). If x does not eventually
leave a given compact K ⊂ O, then by arguments as in
the last paragraph of the proof of Proposition 2.4, show
that x(t) is contained in some compact K ′ ⊂ O, for all
t ∈ [a, T ). This contradicts the definition of T .
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