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Conjugate Convex Lyapunov Functions for Dual Linear
Differential Inclusions

Rafal Goebel, Andrew R. Teel, Tingshu Hu, and Zongli Lin

Abstract—Tools from convex analysis are used to show how stability
properties and Lyapunov inequalities translate when passing from a linear
differential inclusion (LDI) to its dual. In particular, it is proved that a
convex, positive definite function is a Lyapunov function for an LDI if
and only if its convex conjugate is a Lyapunov function for the LDIs dual.
Examples show how such duality effectively doubles the number of tools
available for assessing stability of LDIs.

Index Terms—Convex conjugate functions, duality, linear differential in-
clusions (LDIs), Lyapunov functions.

I. INTRODUCTION

Duality is a firmly established concept in linear systems theory. For
example, a linear system _x(t) = Ax(t) is exponentially stable if and
only if its dual system _�(t) = AT �(t) is. One way to verify this re-
lationship is through Lyapunov inequalities. A symmetric and posi-
tive–definite matrixP verifies the stability of the first system ifATP+
PA < 0. This is equivalent to AP�1 + P�1AT < 0, which shows
that P�1 establishes stability of the second system.

Not coincidentally, the function � 7! (1=2)� � P�1� is the conju-
gate function (in the sense of convex analysis) of the function x 7!
(1=2)x � Px. In this note, we use the convex conjugacy of general, not
necessarily quadratic, convex functions to study the relationship be-
tween and Lyapunov functions for a linear differential inclusion

_x(t) 2 co fAig
m

i=1
x(t) (1)

and its dual

_�(t) 2 co AT

i

m

i=1

�(t): (2)
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In (1) and (2), “co” stands for the convex hull (of the finite set of ma-
trices). By a solution to (1) on [0;1)we mean a locally absolutely con-
tinuous function x(�) such that _x(t) is an element of cofAig

m

i=1x(t)
for almost all t; similarly, for (2).

Since the codification of the absolute stability problem (see, for ex-
ample, [1]), researchers have looked for Lyapunov functions to guar-
antee exponential stability and/or input–output properties for systems
that can be modeled as switching among a (possibly infinite) family of
linear systems. The classical circle criterion gives necessary and suffi-
cient condition for the existence of a quadratic Lyapunov function that
certifies exponential stability in the absolute stability problem. How-
ever, it is well known that a system can be absolutely stable without
the existence of a quadratic Lyapunov function; see, for example, [2].
In [3], it is noted that a convex, homogeneous of degree two Lyapunov
function always exists for an exponentially stable linear differential in-
clusion (LDI). In [4], it is shown furthermore that a Lyapunov function
canalwaysbe taken tobe smooth. Identifying favorable classesof poten-
tial Lyapunov functions is a key step toward computationally tractable
stability analysis. In [5]–[7], the authors consider homogeneous poly-
nomial Lyapunov functions and provide linear matrix inequality (LMI)
conditions for exponential stability. In [8], a bilinear matrix condition
verifying whether a pointwise maximum of a family of quadratic func-
tions forms a Lyapunov function is outlined; see also [9].

In this note, we apply several well-established (in convex analysis)
techniques to shed new light on stability of LDIs. Our main result (The-
orem 4.1) shows that a convex function is a Lyapunov function for the
LDI (1) if and only if the convex conjugate of that function is a Lya-
punov function for the dual LDI (2). In particular, we recover a result
by Barabanov [10] that (1) is exponentially stable if and only if (2) is
exponentially stable. Based on the conjugacy of Lyapunov functions,
we formulate in Corollary 4.5 a sufficient condition for stability of (1).
This condition relies on the class of functions conjugate to those given
by a maximum of quadratic functions. In this sense, it is “dual” to the
sufficient condition proposed in [8], which we state for completeness
in Corollary 4.4. The two conditions may lead to different stability esti-
mates. In such case, one then chooses the better one; see Example 5.3. A
more direct benefit of the equivalence of stability of the dual LDIs is that
any previously designed method to verify stability of an LDI, say that
in [7], can be applied to its dual LDI, in order to establish stability of the
original one. This may lead to surprising improvements; see Example
5.2. Further benefits of the theory developed here are illustrated in [11],
where stability regions of saturated linear systems are estimated.

II. CONVEX ANALYSIS PRELIMINARIES

Convex conjugacy and some other tools of convex analysis we use
here seem not to have been used in stability analysis, except possibly
for situations when operations on quadratic functions are considered
(see, for example, [8] and [12]). To make these tools more accessible,
we informally present the basic background material, and conclude the
section by showing how considering the pointwise maximum of several
not necessarily quadratic functions or the convex hull of a nonconvex
Lyapunov function can be used in constructing convex Lyapunov func-
tions. The standard reference for the convex analysis material we sum-
marize here is [13].

Given any function f : IRn ! IR, its conjugate function is defined,
for � 2 IRn by

f�(�) = sup
x2IR

f� � x� f(x)g :

This function is always convex and lower semicontinuous (but possibly
infinite-valued). If f itself is convex, then the conjugate of f� is the
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function f . That is, (f�)�(x) = sup�2IR fx � � � f�(�)g = f(x).
This fact is fundamental to many arguments involving duality. Basic
examples are as follows.

C2 � For a symmetric and positive–definite matrix P

f(x) =
1

2
x � Px () f�(�) =

1

2
� � P�1�: (3)

C2 � For any p > 1, q > 1, with (1=p) + (1=q) = 1

f(x) =
1

p
(kxkp)

p () f�(�) =
1

q
(k�kq)

q : (4)

A more elaborate example is presented in Section III. If f is convex,
positive definite, and positively homogeneous of degree p > 1 (that is,
f(�x) = �pf(x) for � � 0), then

i) f�(�) is finite for every � 2 IRn;
ii) f� is convex, positive definite, and positively homogeneous

of degree q > 1 where 1=p+ 1=q = 1;
iii) if

�

p
(kxkp)

p � f(x) �
�

p
(kxkp)

p

for some � > 0, � > 0 (such constants exist for any contin-
uous, positively homogeneous of degree p and positive def-
inite function), then

�1�q

q
(k�kq)

q � f�(�) �
�1�q

q
(k�kq)

q :

For example, positive homogeneity of f� can be verified directly
from the definition

f�(��) = sup
x
f(��) � x� f(x)g

=�q sup
x

� �
x

�q�1
�

f(x)

�q

=�q sup
x

� �
x

�q�1
� f

x

�q=p

=�q sup
x
f� � x� f(x)g

=�qf�(�):

The bounds for f�(�) follow from (4) and the fact that conjugacy re-
verses inequalities. Note that, since (f�)� = f , the property of f�

described in ii) is in fact equivalent to the same property of f . Simi-
larly, the bounds on f in iii) are equivalent to those on f�.

A subgradient of a convex function f : IRn ! IR at x is a vector
v 2 IRn such that

f(x0) � f(x) + v � (x0 � x) 8 x0 2 IRn

and the subdifferential @f(x) is the set of all subgradients at x. This set
is always nonempty, and consists of one point if and only if f is differ-
entiable at x (and then the unique point is rf(x)). A key relationship
between @f and @f� is

� 2 @f(x) () x 2 @f�(�):

This immediately leads to the following observation: for any posi-
tive–definite f , f�

@f(x) � Ax < 0 8 x 6= 0

() @f�(�) � AT � < 0 8 � 6= 0:

(The inequality @f(x) � Ax < 0 should be understood as � � Ax < 0
for all � 2 @f(x).) Indeed, suppose the condition on the left holds.
Pick any � 6= 0, and any x 2 @f�(�). Then, x 6= 0, since 0 2 @f�(�)
would imply that � minimizes f�. Thus x � AT � = � � Ax < 0, since
x 2 @f�(�) is equivalent to � 2 @f(x).

Given any function g : IRn ! IR, its convex hull cog is the greatest
convex function bounded above by g. Under mild assumptions, for ex-
ample when g� is finite everywhere (this always holds if g is positively
homogeneous of degree p > 1 and positive definite), we have

cog(x) = min

n+1

k=1

�kg(xk) j

n+1

k=1

�kxk = x (5)

where the minimum is taken over all xk’s and �k such that
(�1; �2; . . . ; �n+1) 2 �n+1. Here, and in what follows, for any nat-
ural number r, �r = (�1; �2; . . . ; �r) j

r
k=1 �k = 1; �k � 0 .

If cog(x) = n+1
k=1 �kg(xk) then cog(xk) = g(xk) at each xk

with nonzero �k. Furthermore, if g is differentiable at each such
xk , then rcog(x) = rg(xk) for each such k (in particular, cog is
differentiable at x).

Now, consider convex functions hj : IRn ! IR, j = 1; 2; . . . ; l,
and define

h(x) = max
j=1;2;...;l

hj(x): (6)

The level sets of h are intersections of the level sets of all hi’s.
The conjugate function h� is the convex hull of the function
g(�) = minj=1;2;...;l h

�
j (�). If each hj (and then also h�j ) is positively

homogeneous of degree greater than 1, then the level sets of h� are
the convex hulls of (the smallest convex sets containing) the level sets
of all h�j ’s.
Lemma 2.1: Consider a positive–definite function h given by (6).

Then, the implication

h(x) = hj(x)) @hj(x) � Ax � �hj(x) (7)

holds at each x 2 IRn if and only if @h(x) � Ax � �h(x) for all
x 2 IRn.

Proof: Fix x and let j1; j2; . . . ; js be the set of all indices
for which hj (x) = h(x). In particular, the assumption implies
that @hj (x) � Ax � �h(x) for k = 1; 2; . . . ; s. The subdif-
ferential @h(x) is the convex hull of the union of @hj (x). More
precisely, for r = minfn + 1; sg, given any � 2 @h(x), there exist
�1; �2; . . . ; �r with �k 2 @hj (x) and (�1; �2; . . . ; �r) 2 �r such
that r

k=1 �k�j = �. Since, for each k, we have �k �Ax � �h(x),
multiplying these inequalities by �k and summing them over
k = 1; 2; . . . ; s yields � � Ax � �h(x).

Finally, we note that “convexifying” any Lyapunov function (for a
linear system or an LDI) leads to another Lyapunov function. In fact,
the “convexified” function can be a Lyapunov function even if the Lya-
punov inequality involving the original function fails at many points. In
particular, the convex hull of two quadratic functions can be a Lyapunov
function even if the minimum of these quadratics is not. Consequently,
using the minimum as a Lyapunov function may lead to suboptimal
stability estimates. This is verified to an extent by the examples in [9].
Proposition 2.2: For a function W : IRn ! IR, let V = co W .

Suppose W is differentiable at every point x with W (x) = V (x) and
at such points rW (x) � Ax � �W (x) for a given matrix A and
 � 0. Suppose thatW � is finite everywhere. Then, V is differentiable
and, for all x, rV (x) � Ax � �V (x).

Proof: The finiteness of W � guarantees that V can be de-
scribed through (5). Thus, given any x and any representation
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V (x) = n+1
k=1 �kW (xk), we have rV (x) = rW (xk) and

V (xk) = W (xk) for any k with nonzero �k . For such k’s, by
assumption we have W (xk) � �W (xk). It follows that (with the
sum taken over k’s with nonzero �k)

rV (x) � Ax =rV (x) � A (��kxk) = ��krV (x) � Axk

=��krW (xk) � Axk � ��k (�W (xk))

=�V (x):

III. COMPOSITE QUADRATIC/CONVEX HULL FUNCTION

For positive definite symmetric Qj , j = 1; 2; . . . ; l, consider

q(x) = max
j=1;2;...;l

1

2
x �Qjx: (8)

It turns out that the conjugate of q, which is the convex hull of the
pointwise minimum of the functions � 7! (1=2)� �Q�1

j �, is the same
as the composite quadratic function used in [12] for stability analysis.
Indeed

max
�2�

l

j=1

�j
1

2
x �Qjx = max

�2�

1

2
x �

l

j=1

�jQj x

since the maximum of a linear function of � over a simplex is attained
at one of the vertices. Consequently

q�(�) = sup
x2IR

� � x� max
�2�

1

2
x �

l

j=1

�jQj x

= sup
x2IR

min
�2�

� � x�
1

2
x �

l

j=1

�jQj x

= min
�2�

sup
x2IR

� � x�
1

2
x �

l

j=1

�jQj x :

Switching sup and min is possible, since the function in the brackets
above is concave in x, convex in , and the minimum is taken over a
compact set; see, for example, [13, Cor. 37.3.2]. Now, calculating the
conjugate of a quadratic function yields

q�(�) = min
�2�

1

2
� �

l

j=1

�jQj

�1

�: (9)

This is exactly the composite quadratic function of [12]. An alternate
expression for q� can be derived from (5).

The dual description of (9) leads to an alternate way to study its
properties. For example, the function q is strongly convex with constant
�, where � > 0 is any constant smaller than every eigenvalue of Qj ,
j = 1; 2; . . . ; l. (Strong convexity means that q(x) � (1=2)�kxk2 is
convex.) This is equivalent to q� being differentiable and rq� being
Lipschitz continuous with constant 1=�.

Numerical examples in Section V illustrate the use of both q and q�

in stability analysis.

IV. LYAPUNOV INEQUALITIES

The subdifferential mappings of a pair of conjugate convex functions
are inverses of one another. A more precise relationship exists for pos-
itively homogeneous functions. We use it to show that the conjugate of
a Lyapunov function for a linear system is a Lyapunov function for the
dual system.

Theorem 4.1: Let V : IRn ! IR be a convex, positive definite,
positively homogeneous of degree p > 1 function, and let A be any
matrix. Then, the condition

@V (x) � Ax � �pV (x); for all x 2 IRn (10)

is equivalent to

@V �(�) � AT � � �qV �(�); for all � 2 IRn: (11)

Proof: First, we argue that V (x) = 1=p and � 2 @V (x) if and
only if V �(�) = 1=q and x 2 @V �(�). The subdifferential inclusions
are equivalent; thus we only need to show that V (x) = 1=p and � 2
@V (x) imply V �(�) = 1=q. Since � 2 @V (x), it follows that x maxi-
mizes x0 7! � �x0�V (x0), and so V �(�) = � �x�V (x) = � �x�1=p.
Furthermore, � = 1 maximizes the function � 7! � � �x � V (�x) =
� � �x � �p=p over � � 0. The derivative being 0 at � = 1 yields
� � x = 1. Thus, V �(�) = 1 � 1=p.

Now note that, by positive homogeneity of V , inequality (10) is
equivalent to

@V (x) � Ax � �; for all x s:t: V (x) =
1

p
: (12)

Indeed, fix x0 6= 0, so V (x0) 6= 0. Let s = (pV (x0))1=p and x = x0=s.
Then, V (x) = 1=p, while

@V (x) =
1

sp�1
@V (x0):

Thus, (12) becomes (1=sp�1)@V (x0) � Ax0=s � � for all x0 6= 0
which is exactly (10). Similarly, (11) is equivalent to

@V �(�) � A� � �; for all � s:t: V (�) =
1

q
: (13)

Now, (12) means that � � Ax � � for any element � of @V (x)
with V (x) = 1=p. By what we have shown at the beginning of the
proof, such x and � can be equivalently characterized by x 2 @V �(�),
V �(�) = 1=q. Thus (12) is equivalent to (13).

When V (and automatically V �) is positively homogeneous of de-
gree 2, the coefficients p and q in (10) and (11) are the same. Such
functions naturally appear in stability analysis of LDIs. Suppose that
the origin of (1) is asymptotically stable [which is equivalent to expo-
nential stability, that is, for some c � 1 and decay rate � > 0

kx(t)k � ckx(0)ke��t

for all solutions to (1)]. Then, as was shown in [3], then there exist
 > 0 and a convex, positive–definite, and homogeneous of degree 2
function, such that

@V (x) � Ax � �2V (x); for all x 2 IRn (14)

for all A 2 co fAig
m
i=1. In Example 4.3, we write down one possible

Lyapunov function, for which we actually have  = �, that is,  in
(14) is exactly the decay rate.
Corollary 4.2: The origin of (1) is exponentially stable (with decay

rate �) if and only if (2) is exponentially stable (with decay rate �).1

An immediate practical consequence of this corollary is that to verify
exponential stability of (1) with a particular computational method, one
can also apply that same method to transpose matrices. This can dra-
matically improve the results, as we illustrate in Example 5.2.

1A similar result for discrete time systems, stated by Barabanov [14], can be
shown directly via the definition of the conjugate convex function; see [15].
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Example 4.3: Suppose that the LDI (1) is exponentially stable with
decay rate �. One way to construct a Lyapunov function verifying this
is to consider

V (x0) =
1

2
sup kx(t)k2e2�� (15)

where the supremum is taken over all solutions to (1) with x(0) = x0
and all t � 0. It is a convex, positive–definite, and homogeneous of
degree-2 function. The conjugate function V � turns out to be V �(�) =
(1=2)co inf e�2��k�(t)k2 with the infimum taken over all t � 0 and
all solutions to _�(t) 2 co �AT

i

m

i=1
�. Theorem 4.1 states that this is

a Lyapunov function for the dual LDI (2).
Lemma 2.1 and its dual interpretation lead to practical conditions for

stability of LDIs, with Lyapunov functions given by (8) or (9).
Corollary 4.4: Suppose that there exist positive–definite and

symmetric matrices Q1; Q2; . . . ; Ql and numbers �ijk � 0 for
i = 1; 2; . . . ;m and j; k = 1; 2; . . . ; l such that

AT
i Qj +QjAi �

l

k=1

�ijk(Qk �Qj)� 2Qj (16)

for all i = 1; 2; . . . ; m and j = 1; 2; . . . ; l. Then

@V (x) �Ax � �2V (x) 8 x 2 IRn; A 2 cofAig
m
i=1 (17)

where V is the maximum of quadratic functions x 7! (1=2)x �Qjx.
Proof: Since �ijk � 0, the inequality (16) implies that for any x

with x �Qkx � x �Qjx for all k = 1; 2; . . . l, it holds that

x � (AT
i Qj +QjAi)x � �2x �Qjx:

Invoking Lemma 2.1 with hj(x) = (1=2)x �Qjx finishes the proof.
Corollary 4.5: Suppose that there exist positive definite and

symmetric matrices R1; R2; . . . ; Rl and numbers �ijk � 0 for
i = 1; 2; . . . ;m and j; k = 1; 2; . . . ; l such that

R�1j AT
i + AiR

�1

j �

l

k=1

�ijk(R
�1

k �R�1j )� 2R�1j (18)

for all i = 1; 2; . . . ; m and j = 1; 2; . . . ; l. Then

@V (x) �Ax � �2V (x) 8 x 2 IRn; A 2 cofAig
m
i=1 (19)

where V is the convex hull of quadratic functions x 7! (1=2)x � Rjx.
Proof: By Corollary 4.4, (18) implies that

@V �(�) � AT � � �2V �(�) 8 � 2 IRn; A 2 cofAig
m
i=1

with V � being the maximum of quadratic functions � 7! (1=2)� �
R�1j �. This is equivalent to the desired conclusion, by Theorem 4.1.

We note that the existence of solutions to the bilinear matrix inequal-
ities in Corollary 4.4 is not equivalent to the existence of solutions to
the inequalities in Corollary 4.5. This is expected, as the existence is
only sufficient for the max function and the convex hull function to
be Lyapunov functions. Existence of solutions is necessary only when
l = 2, see [8, p. 73]. Even then, there may exist a Lyapunov function
for a particular LDI, given by a convex hull (of two quadratics), but
not one given by a maximum. Consequently, numerical tests based on
Corollaries 4.4 and 4.5, carried out with the same l, may yield different
results. See Example 5.3.

Now, consider a control system

_x 2 co [A B ]
i

m

i=1

x

u
(20)

and its dual system with output

_�

z
2 co

AT

BT

i

m

i=1

�: (21)

We say (20) is stabilizable by linear feedback (switched linear feed-
back) if there exists K (m matrices Ki) such that the origin of the
system

_x 2 co fAi +BiKg
m

i=1
x

(respectively, the origin of the system

_x 2 co fAi +BiKig
m

i=1
x)

is exponentially stable. The system (21) is stabilizable by linear output
injection (switched linear output injection) if there existsL (mmatrices
Li) such that the origin for

_� 2 co AT
i + LBT

i

m

i=1
�

(the origin for

_� 2 co AT
i + LiB

T
i

m

i=1
�)

is exponentially stable.
Corollary 5.6: System (20) is stabilizable by linear feedback (re-

spectively, switched linear feedback) if and only if the system (21) is
stabilizable by linear (respectively, switched linear) output injection.

V. NUMERICAL EXAMPLES

In this section, we illustrate the main points of this note through
numerical examples. Example 5.1 is a reminder that the use of non-
quadratic functions can improve stability estimates over those obtained
with quadratic functions. We show this using the max function, but the
same conclusion can be made based on homogeneous polynomial func-
tions of Example 5.2. Furthermore, Example 5.1 suggests that consid-
ering a broad enough class of potential Lyapunov functions can im-
prove stability estimates over those computed via specialized analyt-
ical approaches. Examples 5.2 and 5.3 illustrate the benefits of duality.
Example 5.2 uses homogeneous polynomial functions, and implicitly
(through conjugacy) finds a Lyapunov function homogeneous of degree
4/3. Example 5.3 shows that using the maximum of quadratic functions
and the convex hull of the same number of quadratics can lead to dif-
ferent stability estimates.

In Examples 5.1 and 5.3, we rely on the bilinear matrix inequalities
of Corollaries 4.4 or 4.5 to show that the max function q given by (8)
or the convex hull function q� given by (9) verifies stability of certain
LDIs. In solving the matrix inequalities, we rely on algorithms based on
a path-following method in [16]. For related work on solution methods,
see also [17] and [18].
Example 5.1: In [4], an LDI given by cofA1; A2g with

A1 =
�1 �1

1 �1
A2 =

�1 �a
1

a
�1
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Fig. 1. Vector fields and invariant level sets.

and a > 1 was used to show that the existence of a common quadratic
Lyapunov function is not necessary for exponential stability of the LDI.
The maximal a ensuring existence of such a function was found to
be aq = 3 +

p
8 = 5:8284, while the LDI was shown, via a phase

plane method not leading to a Lyapunov function, to be stable for all
a 2 [1; 10]. (As pointed out in [4], the analytical method is highly
unlikely to be feasible for general systems.)

With q� formed by two quadratics (l = 2), the maximal a is 8.11.
With l = 3, the maximal a is 8.95. The three matrices (corresponding
to R�1j in Corollary 4.5) determined under a = 8:95 are as follows:

26:1802 �0:0273

�0:0273 2:9146

16:5961 3:0303

3:0303 3:6388

32:5579 �3:0335

�3:0335 1:8518
:

Corresponding ellipsoids (points xwith x �Rjx = 1) and the boundary
of their convex hull (points xwith q�(x) = 1) are in the upper two plots
of Fig. 1. Also plotted there are directions of _x = A1x (left) and that
of _x = A2x (right) along the boundary of the convex hull. Lower plots
of Fig. 1 are the ellipsoids x � R�1j x = 1 and their intersection, along
with the direction of _y = AT

1 y and _y = AT
2 (a)y along the boundary

of the intersection.
We add that using seven quadratic functions (l = 7) verifies that the

LDI is stable for a up to 10.108, and thus improves on the analytical
estimate in [4]. For further details, see [15].
Example 5.2: The following third-order LDI was discussed in [7].

For the matrices

A1 =

0 1 0

0 0 1

�1 �2 �4

M =

�2 0 �1

1 �10 3

3 �4 2

let A2(a) = A1 + aM with a > 0, and consider the LDI with the
state matrix belonging to the set cofA1; A2(a)g. The maximal a that
ensures the existence of a common quadratic function is aq = 1:9042.
The maximal a that ensures the existence of a common fourth-order ho-
mogeneous Lyapunov function was found in [7] to be ah = 75:1071.

By Corollary 4.2, exponential stability of the LDI is equivalent to that
of the dual LDI described by cofAT

1 ; A2(a)
T g. For this dual system,

we used the method from [7] to determine a parameter range of a over
which a common fourth-order homogeneous Lyapunov function ex-
ists. It turns out that there is no upper bound for a. Let AT

m1 be the
augmented matrix for AT

1 and Am2(a)
T be the augmented matrix for

A2(a)
T . Let L(�) be the matrix containing auxiliary parameters (see

[7, p. 1032]). Then, for each a > 0, there exist a symmetric posi-
tive–definite matrix Q = IR6�6 and parameters �; � 2 IR6 such that

QA
T
m1 +Am1Q+ L(�) ��0:0606Q

QAm2(a)
T + Am2(a)Q+ L(�) ��0:0606Q:

No numerical problem arises even for a = 1020.
We point out that the existence of a 4-th order homogeneous polyno-

mial Lyapunov function for the dual LDI implies, by Theorem 4.1, the
existence of a Lyapunov function for the original LDI, homogeneous
of degree 4/3.
Example 5.3: We analyzed the LDI of Example 5.2, and its dual

LDI, using the max function q and the convex hull function q� with
l = 2. Stability of the original LDI can be verified with q� for a up to
441. For a = 441, there exist Q1 > 0 and Q2 > 0 satisfying

Q1A
T
1 +A1Q1 < 5:008(Q2 �Q1)

Q2A
T
1 +A1Q2 < 0

Q1A
T
2 +A2Q1 < 0

Q2A
T
2 +A2Q2 < 2708:9(Q1 �Q2):

The same algorithm used for the dual LDI (equivalently, relying on q
for the original LDI) shows that there is no upper bound for a. Actually,
for each a > 0, there exist Q1; Q2 > 0 and �ij � 0 such that

QjAi + A
T
i Qj < �ij(Qk �Qj)� 0:0530Qj

for i; j; k = 1; 2, j 6= k. We tested a up to 1020 and no numerical
issues occur. For a = 108, �11 = 3:5473, �12 = 0, �21 = 87614,
�22 = 7:4699 � 108.
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This suggests that, for the case of l = 2, q “performs better” than q�

in the stability analysis of the original LDI. However, duality implies
that for the inclusion _� 2 cofAT

1 ; A
T

2 (a)g, the reverse is true: q� “per-
forms better” than q.

VI. CONCLUSION

In this note, we established a one-to-one relationship between
convex positively homogeneous Lyapunov functions verifying the
asymptotic stability of a linear differential inclusion and such Lya-
punov functions verifying the asymptotic stability of a dual linear
differential inclusion. As a consequence, the asymptotic stability of an
LDI turns out to be equivalent to the asymptotic stability of the dual
LDI. Based on this equivalence, and on the operations of pointwise
maximization or forming a convex hull of a family of functions,
we showed how Lyapunov functions for LDIs can be constructed.
Through numerical examples, we illustrated how applying known
numerical techniques to a dual LDI may improve stability estimates for
the original LDI. Further examples, a method for verifying instability
of an LDI, and a discussion of duality of dissipativity properties, can
be found in [15] and [19]. Similar results are possible in discrete time;
see [15].
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Combined Stabilizing Strategies for
Switched Linear Systems

Zhendong Sun

Abstract—For a class of switched linear systems, we propose a switching
strategy that combines time-driven switching with event-driven switching.
This switching strategy not only makes the switched systems stable, but
also reduces the switching frequency in contrast with the existing switching
laws. In addition, the switching law is robust against (time-varying and non-
linear) system perturbations. We prove that, under this switching law, the
perturbed systems are bounded for bounded perturbations, convergent for
convergent perturbations, and exponentially convergent for exponentially
convergent perturbations. For switched linear systems with measured out-
puts, we also develop an observer-based switching strategy which robustly
stabilizes the perturbed systems.

Index Terms—Dwell time, observer-based switching, robustness, stabi-
lization, state-feedback switching, switched systems.

I. INTRODUCTION

In this note, we address the stability issues for switched linear sys-
tems. As a switched system consists of a number of subsystems and
a rule that orchestrates the switching among them, the stability theory
of these systems mainly investigates two topics: guaranteed stability
under certain classes of switching rules, and the stabilizability of un-
stable systems via switching. While much effort has been devoted to
establishing analysis tools, such as multiple Lyapunov-like functions
approach [1], [7] and linear matrix inequality approach [9], only a few
papers addressed the constructive design mechanisms of deriving sta-
bilizing switching laws for switched unstable systems. Among these,
stabilization of second-order switched linear systems was addressed
in detail [4], [17]; in [16], it was proved that the existence of a stable
convex combination of the subsystems can lead to an elegant construc-
tion of a stabilizing switching signal; and a constructive scheme was
presented for a class of switched linear control systems [14], [15].

An important issue for switching design is to reduce the switching
frequency to an acceptable level. Taking digital networks for example,
the digital data must be transferred in real time and this sets a data rate
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