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1 Introduction

Over the last decade, multiple approaches have emerged for constructing (dis-
continuous, in general) state feedback stabilizers for asymptotically controllable
nonlinear systems. In [4], a feedback was constructed using locally Lipschitz
control Lyapunov functions and nonsmooth calculus. The paper [1] introduced
the notion of a patchy feedback, a state feedback that is constant on patches of
the state space and gives the closed-loop vector field certain “inward pointing”
properties on the boundary of a patch. Furthermore, [1] showed that every
asymptotically controllable nonlinear system admits a stabilizing patchy feed-
back. In both [4] and [1], the authors showed that the resulting feedbacks are
robust to small additive disturbances. In [2], it was shown that the patchy feed-
backs of [1] are robust, in the semiglobal practical sense, to measurement noise
of small variation. However, robustness to general measurement noise could not
be expected in general without modifications of the feedbacks of [4] and [1].

In [12] and [3], the feedback ideas in [4] were implemented, to guarantee some
robustness to measurement noise, with sample and hold. Such implementation,
where the control is held constant using a timer variable that is reset at each
sampling instant, makes the resulting feedback hybrid. An alternative hybrid
feedback idea is found in the notion of hysteresis switching. In the context of
robust stabilization of nonlinear control systems, this approach was pursued
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initially in [7, 8], using the patchy feedbacks of [1] as the supporting idea. In
particular, robust stabilization of any asymptotically controllable nonlinear sys-
tem was achieved in [8]. As general results on the robustness of asymptotic
stability for hybrid systems were not available at the time, the robustness had
to be established directly.

In [6], various regularity properties of general hybrid systems were estab-
lished and robustness of stability was tied to some basic properties of the sys-
tem’s data. The work in [9] (see also [10]) adapted such results to nonlinear
systems in closed loop with hybrid patchy feedbacks, and in particular, showed
that any hybrid patchy feedback that is strongly regular (in the terminology of
the current paper, see Definition 2.1 below) is robust with respect to external
disturbances, actuator error, and measurement noise. Also in [9], a stabilizing
and strongly regular hybrid patchy feedback was constructed from a stabilizing
(not hybrid) patchy feedback, which exists for asymptotically controllable non-
linear systems according to [1]. Examples of hybrid patchy feedbacks, including
those that robustly stabilize nonlinear systems that do not admit robustly sta-
bilizing nonhybrid feedbacks (say, Artstein’s circles, Brockett’s integrator) can
be found in [10, 9, 5].

In this note, we consider general asymptotically controllable nonlinear sys-
tems and give a direct construction of a stabilizing hybrid patchy feedback that
is strongly regular. To an extent, we rely on the ideas of [1] and [9], but avoid
the intermediate construction of a patchy vector field. As a result, we avoid
the analysis needed in [1] to show the robustness of the patchy vector field to
external disturbance – such robustness comes “for free”, along with robustness
to measurement noise, from the structure of the hybrid feedback and results
of [9]. Since hybrid feedback is our goal, weaker properties are required from
the objects corresponding to patches of [1] – here, the vector fields need not be
“inward-pointing” – and as a result, the construction is somewhat simpler.

2 Preliminaries

For an open set Õ ⊂ Rn and a compact set A ⊂ Õ, consider a set of feasible
controls U ⊂ Rm, a function f : Õ × U → Rn and a nonlinear control system

ẋ(t) = f(x(t), u(t)), u(t) ∈ U, for all t ≥ 0. (1)

In what follows, we write O for Õ \ A.

Definition 2.1 A hybrid patchy feedback consists of

• a set Q

• for each q ∈ Q,

– sets Cq ⊂ O and Dq ⊂ O,

– a function kq : Cq → U ,
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– a set-valued mapping Gq : Dq →→ Q.

A hybrid patchy feedback is regular if Q ⊂ Znq for some nq, and for each q ∈ Q,
Cq and Dq are relatively closed subsets of O, kq is continuous, Gq is outer
semicontinuous and locally bounded on O 1, and Gq(x) is nonempty for all x ∈
Dq. It is strongly regular if it is regular, {Cq}q∈Q form a locally finite covering
of O, Gq are locally bounded uniformly in q, and for all q ∈ Q, Cq ∪Dq = O.

In closed loop with the nonlinear system (1), a hybrid patchy feedback as in
Definition 2.1 leads to a hybrid system

ẋ = Fq(x) if x ∈ Cq,

q+ ∈ Gq(x) if x ∈ Dq,
(2)

on the state space O ×Q, where for each q ∈ Q, Fq(x) := f(x, kq(x)). 2 3

Following [6], we now make the concept of a solution to (2) precise. A
subset S ⊂ R≥0 × N is a compact hybrid time domain if S =

⋃J−1
j=0 ([tj , tj+1], j)

for some finite sequence of times 0 = t0 ≤ t1 ≤ t2 ... ≤ tJ . S is a hybrid time
domain if for all (T, J) ∈ S, S ∩ ([0, T ]× {0, 1, ...J}) is a compact hybrid
domain; equivalently, if S is a union of a finite or infinite sequence of intervals
[tj , tj+1] × {j}, with the last interval, if it exists, possibly of the form [tj , T )
with T finite or T = +∞. We write supt(S) for the supremum of all t such that
(t, j) ∈ S for some j.

A solution to the hybrid system (2) consists of: a nonempty hybrid time
domain S, a function x : S → O such that x(t, j) is locally absolutely continuous
in t for a fixed j and constant in j for a fixed t where (t, j) ∈ S, and a function
q : S → Q such that q(t, j) is constant in t for a fixed j where (t, j) ∈ S, meeting
the following conditions: x(0, 0) ∈ Cq(0,0) ∪Dq(0,0) and

(S1) for all j ∈ N and almost all t such that (t, j) ∈ S,

ẋ(t, j) = Fq(t,j)(x(t, j)), x(t, j) ∈ Cq(t,j);

(S2) for all (t, j) ∈ S such that (t, j + 1) ∈ S,

q(t, j + 1) ∈ Gq(t,j)(x(t, j)), x(t, j) ∈ Dq(t,j).

1For these, and other concepts related to set-valued mappings, we point the reader to [11].
2We use the term hybrid patchy feedback, rather than just hybrid feedback, both to relate

it to the patchy feedback of [1] and because hybrid feedback with different structure can be
used for purposes of robust stabilization. In particular, the sample and hold implementation
of the state feedback u = κ(x) results in a hybrid system ẋ = f(x, u), τ̇ = 1 if τ ∈ [0, T ),
u+ = κ(x), τ+ = 0 if τ = T . This represents that the state is sampled every T units of
time, after each sampling the control u is computed based on the feedback κ, and in between
sampling times, the computed constant control is applied. The variable τ is the timer.

3The phrase “hybrid patchy feedback” was used previously in [8]. The feedback constructed
there fits the current definition of a hybrid patchy feedback.
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Given a solution to (2) we will usually not mention the hybrid time domain
explicitly, but will identify the solution by (x, q), and when needed, refer to the
associated domain by dom(x, q).

The set A is stable for the hybrid system (2) if for any ε > 0 there exists
δ > 0 such that any solution (x, q) to (2) with distA(x(0, 0)) ≤ δ satisfies
distA(x(t, j)) ≤ ε for all (t, j) ∈ dom(x, q). The set A is globally attractive for
the hybrid system (2) if for any (x0, q0) ∈ O ×Q there exists a solution to (2)
with x(0, 0) = x0, q(0, 0) = q0 and for any maximal solution (x, q) to (2) we have
distA(x(t, j)) → 0 as t → supt(dom(x, q)). Finally, A is globally asymptotically
stable for (2) if it is both stable and globally attractive.

By an admissible perturbation radius we will understand any continuous func-
tion ρ : O → R>0 such that x + ρ(x)IB ⊂ O for all x ∈ O. (Here and in what
follows, IB is the closed unit ball in Rn.) We will say that A is robustly globally
asymptotically stable for (2) if there exists an admissible perturbation radius ρ
such that, for the hybrid system

ẋ ∈ F ρ
q (x) if x ∈ Cρ

q ,
q+ ∈ Gρ

q(x) if x ∈ Dρ
q ,

(3)

with the data

F ρ
q (x) := con Fq((x + ρ(x)IB) ∩ Cq) + ρ(x)IB

Gρ
q(x) := Gq((x + ρ(x)IB) ∩Dq),

Cρ
q := {x ∈ O | (x + ρ(x)IB) ∩ Cq 6= ∅},

Dρ
q := {x ∈ O | (x + ρ(x)IB) ∩Dq 6= ∅},

(4)

the set A is globally asymptotically stable. (Above, conFq stands for the point-
wise closed convex hull of Fq.) Such robustness can be understood as robustness
to autonomous perturbations. When nonautonomous perturbations are consid-
ered, the very issue of the existence of solutions to the perturbed hybrid system
is more delicate; see [9, Example 5.8]. However, given a hybrid patchy feed-
back that leads to A being robustly globally asymptotically stable in the sense
described above, a minor modification of the feedback guarantees existence of
solutions under nonautonomous perturbations; see [9, Section V.C].

3 Main result

We call a control u : [0, T ] → U piecewise constant if for some 0 = t0 < t1 <
t2 < · · · < tP = T , u(t) is constant for t ∈ (ti−1, ti), i = 1, 2, . . . , P .

Theorem 3.1 Suppose that the function x 7→ f(x, u) is continuous and solu-
tions to ẋ(t) = f(x(t), u) are unique for each u ∈ U . Suppose furthermore that
the nonlinear control system (1) is such that
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(a) for each ξ ∈ O and γ > 0 there exists Tξ > 0 and a piecewise constant
uξ : [0, Tξ] → U such that the trajectory xξ to (1) with u replaced by uξ

exists on [0, Tξ] and distA(xξ(Tξ)) < γ;

(b) for any ε > 0 there exists δ > 0 such that for any ξ ∈ O with distA(ξ) < δ
and any γ > 0 one can find uξ as in (a) and an associated Tξ > 0 so that
the resulting trajectory xξ is such that distA(xξ(t)) < ε for all t ∈ [0, Tξ].

Then, there exists a strongly regular hybrid patchy feedback on O with kq con-
stant for each q ∈ Q that renders A asymptotically stable on O for the system
(1).

We prove this result in Section 4. Here, we first note that assumptions
(a) and (b) of Theorem 3.1 are met if (1) is asymptotically controllable to A;
that is, for each ξ ∈ O, there exists a measurable and locally bounded uξ :
[0,∞) → U such that the resulting trajectory to (1) satisfies distA(xξ(t)) → 0
as t → ∞, and if for any ε > 0 there exists δ > 0 such that for ξ ∈ O with
distA(ξ) < δ, the said control uξ can be found so that distA(xξ(t)) < ε for all
t ≥ 0, and when f is sufficiently regular to guarantee that the solutions to (1)
are unique if measurable and locally bounded controls are applied. We add that
the assumptions (a) and (b) are stated exactly in the form that will be used in
the construction of the stabilizing feedback.

Second, let us explain the significance of the properties (regularity and strong
regularity) of the stabilizing hybrid patchy feedback whose existence is claimed
in Theorem 3.1. If the feedback is regular and f is continuous (in both variables)
then the resulting closed-loop hybrid system (2) has the properties required by
[6] in developing the robust stability theory for hybrid systems. In particular,
for such hybrid systems, appropriately understood limits of solutions are still
solutions, and solutions from points near a reference point are close (again, in
appropriate sense) to some solution from the reference point. Such properties
guarantee that asymptotic stability of compact sets is always robust; see [6].
Technically, the robustness results of [6] is not applicable here, since we are
talking about stability of A × Q, which need not be compact, and f is not
continuous in (x, u). However, for such setting, if the hybrid feedback is not
only regular, but strongly regular and kq is constant for each q ∈ Q, robustness
of stability again comes for “free”, thanks to [9, Theorem 4.3]. Consequently:

Corollary 3.2 Under the assumptions of Theorem 3.1, there exists a strongly
regular hybrid patchy feedback on O that renders A globally robustly asymptoti-
cally stable on O for the system (1).

4 Stabilizing hybrid feedback

We now prove Theorem 3.1. In Section 4.1 a hybrid patchy feedback is con-
structed, in Section 4.2 basic properties of the feedback and of the resulting
closed-loop hybrid system are described, and in Section 4.3 they are employed
to conclude asymptotic stability of the closed loop.
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A proper indicator of A with respect to O is any continuous function ω :
O → [0,∞) such that ω(ξi) → 0 if ξi → A, while ω(ξi) →∞ if either ξi converge
to a boundary point of O not contained in A or |ξi| → ∞. Note that for any
0 < r ≤ r′, the set {ξ ∈ O | r ≤ ω(ξ) ≤ r′} is compact.

4.1 Construction

Let ω : O → [0,∞) be any proper indicator of A with respect to O. Pick any
r0 > 0. Using assumption (b), find r1 > 0 such that r1 < r0/2 and for each
ξ ∈ O with ω(ξ) ≤ r1 a piecewise constant uξ : [0, Tξ] → U as in assumption
(a) can be found (with any γ > 0) so that the resulting trajectory xξ satisfies
ω(x(t)) < r0 for all t ∈ [0, Tξ].

Fix ξ ∈ R0 := {ξ ∈ O | r1 ≤ ω(ξ) ≤ r0}. Find a piecewise constant uξ :
[0, Tξ] → U such that the resulting trajectory xξ satisfies ω(x(Tξ)) < r1 while
for all t ∈ [0, Tξ], ω(x(t)) > r1/2. Let uξ be given by uξ(t) = um

ξ ∈ U when
t ∈ (tm−1

ξ , tmξ ), where

0 = t0ξ < t1ξ < t2ξ < · · · < t
Mξ−1
ξ < t

Mξ

ξ = Tξ.

For a point η and a control value u ∈ U , let φ(η, u, t) be the trajectory of
(1) with constant control u starting at η evaluated at time t (so in particular,
φ(η, u, 0) = η). For a set S, a control u ∈ U , and an interval [a, b], we write
φ(S, u, [a, b]) for

⋃
η∈S

⋃
t∈[a,b] φ(η, u, t).

Continuity of f and the uniqueness of solutions assumption imply continuous
dependence of solutions on initial conditions. In particular, for any t′ ∈ [0, Tξ]
and any µ > 0 there exists µ′ > 0 (which can be chosen arbitrarily small) so
that any solution to ẋ(t) = f(x(t), uξ(t)) with x(0) ∈ xξ(t′) + µ′IB is such that
x(t) ∈ xξ(t′+ t)+µIB for all t ∈ [0, Tξ − t′]. Consequently, one can pick εm

ξ > 0,
δm
ξ > εm

ξ , m = 0, 1, . . . ,Mξ − 1 so that the sets

φ
(
xξ(tm−1

ξ ) + δm−1
ξ IB, um

ξ , [0, tmξ − tm−1
ξ ]

)
are bounded (and thus compact), and such that

φ
(
xξ(tmξ ) + δm

ξ IB, um+1
ξ , tm+1

ξ − tmξ

)
⊂ int

(
xξ(tm+1

ξ ) + εm+1
ξ IB

)
,

inf ω
(
φ

(
xξ(tm−1

ξ ) + δm−1
ξ IB, um

ξ , [0, tmξ − tm−1
ξ ]

))
> r1/2

for m = 0, 1, . . . ,Mξ − 1, while

sup ω
(
φ

(
xξ(t

Mξ−1
ξ ) + δ

Mξ−1
ξ IB, u

Mξ

ξ , t
Mξ

ξ − tM−1
ξ

))
< r1.

Since R0 is compact, one can find ξ1, ξ2, . . . , ξL0 ∈ R0 so that

L0⋃
l=1

ξl + ε0ξl
int IB ⊃ R0.
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For l = 1, 2, . . . , L0, m = 1, 2, . . . ,Mξl
, define the control values

u0,l,m = um
ξl

and sets
Θ0,l,m = φ

(
xξl

(tm−1
ξl

) + εm−1
ξl

IB, um
ξl

, [tm−1
ξl

, tmξl
]
)

Θ′
0,l,m = φ

(
xξl

(tm−1
ξl

) + δm−1
ξl

IB, um
ξl

, [tm−1
ξl

, tmξl
]
)

.

Note that they are compact and such that Θ0,l,m is a subset of the interior of
Θ′

0,l,m. Note also that since ξl + ε0ξl
IB ⊂ Θ0,l,1, the sets Θ0,l,m (and thus also

the sets Θ′
0,l,m) form a covering of R0.

Now proceed inductively. Given rk+2 and rk+1, k = −1,−2,−3, . . . , controls
uk,l,m, and sets Θk,l,m, Θ′

k,l,m, l = 1, 2, . . . , Lk, m = 1, 2, . . . ,Mξl
, pick rk so

that rk > 2rk+1 and

rk > max ω

Lk+1⋃
l=1

Mξl⋃
m=1

Θ′
k+1,l,m


and define Rk := {ξ ∈ O | rk+1 ≤ ω(ξ) ≤ rk}. Repeat the construction (car-
ried out above for R0) for Rk, starting by finding, for each ξ ∈ Rk, a piece-
wise constant uξ : [0, Tξ] → U such that the resulting trajectory xξ satisfies
ω(x(Tξ)) < rk+1 while for t ∈ [0, Tξ], ω(x(t)) > rk+1/2.

Similarly, given rk and rk−1, k = 1, 2, 3, . . . , pick rk+1 so that rk+1 < rk/2
and for any ξ ∈ O with ω(ξ) ≤ rk+1 (and any γ > 0) one can find uξ : [0, Tξ] → U
so that the resulting trajectory xξ is such that ω(xξ(t)) < rk for all t ∈ [0, Tξ].
Define Rk := {ξ ∈ O | rk+1 ≤ ω(ξ) ≤ rk}. Repeat the construction (carried out
above for R0) for Rk, starting by finding, for each ξ ∈ Rk, a piecewise constant
uξ : [0, Tξ] → U such that the resulting trajectory xξ satisfies ω(x(Tξ)) < rk+1

while for t ∈ [0, Tξ], ω(x(t)) > rk+1/2.
In this fashion, one obtains numbers rk, k ∈ Z, such that rk < rk−1/2

and a family of controls uk,l,m and sets Θk,l,m, Θ′
k,l,m, k ∈ Z, l = 1, 2, . . . , Lk,

m = 1, 2, . . . ,Mξl
, such that, in particular,

rk+2 < rk+1/2 < ω
(
Θ′

k,l,m

)
< rk−1 (5)

and thus the covering of O by sets Θ′
k,l,m (and thus also by the sets Θk,l,m) is

locally finite.
Let Q′ be the (countable) family of triples k, l,m, k ∈ Z, l = 1, 2, . . . , Lk,

m = 1, 2, . . . ,Mξl
, ordered as follows: if q = (k, l,m) and q′ = (k′, l′,m′), then

q � q′ if k > k′ or k = k′, l > l′ or k = k′, l = l′,m > m′. (6)

Let Q ⊂ Q′ be the set of those q for which Θ′
q \

⋃
q′�q Θq′ 6= ∅.
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Define the hybrid feedback as follows: for each q ∈ Q, let

Cq = Θ′
q \

⋃
q′�q

Θq′ , Dq =

 ⋃
q′�q

Θq′

 ∪ O \Θ′
q

kq(ξ) = uq

Gq(ξ) =
{

{q′ ∈ Q | ξ ∈ Θq′} ξ ∈ O \Θ′
q

{q′ ∈ Q | ξ ∈ Θq′ , q
′ � q} ξ ∈

⋃
q′�q Θq′

(7)

In closed loop with (1), this feedback leads to a hybrid system given by Cq, Dq,
Gq as above and Fq given by Fq(ξ) = f(ξ, uq).

4.2 Properties of the hybrid system and of the solutions

We now make several observations about the structure of the constructed hybrid
feedback (7) and the resulting closed-loop hybrid system (2).

By construction, given q = (k, l,m) ∈ Q′, we have Θ′
k,l,m ⊂ Rk−1∪Rk∪Rk+1.

Since for each k there is finitely many q = (k, l,m) ∈ Q′, only finitely many
sets Θ′

q intersect each Rk, which in turn implies that each compact subset of O
intersects finitely many Θ′

q. The same conclusion holds for Θq’s, as Θq ⊂ Θ′
q.

By construction, for each ξ ∈ O there exists some Θq such that ξ ∈ Θq. (In
fact, if ξ ∈ Rk, for some l such that (k, l, 1) ∈ Q′ we have ξ ∈ Θ(k,l,1).) So,
{Θq}q∈Q and also {Θ′

q}q∈Q form locally finite coverings of O. Consequently, for
each ξ ∈ O there exists “the largest” index q such that ξ ∈ Θq; we’ll write

q∗(ξ) := max{q ∈ Q | ξ ∈ Θq}.

Thus for any ξ ∈ O,

ξ ∈ Θq∗(ξ) \
⋃

q�q∗(ξ)

Θq ⊂ Θ′
q∗(ξ) \

⋃
q�q∗(ξ)

Θq ⊂ Cq∗(ξ)

This means that {Cq}q∈Q covers O. That it is a locally finite covering follows
from the fact that Cq ⊂ Θ′

q, and the covering by Θ′
q’s is locally finite.

Lemma 4.1 The hybrid feedback (7) is strongly regular.

Proof. By construction, Q ⊂ Z3, and Q is totally ordered by (6). For each
q ∈ Q, Θq and Θ′

q are closed (not just relatively closed) subsets of O, and thus
Cq and Dq are closed (not just relatively closed) subsets of O. Mappings kq

are constant by definition. Mappings Gq map to {q′ ∈ Q | ξ ∈ Θq′}, and thus
are locally bounded uniformly in q, since the covering of O by Θq′ ’s is locally
finite. That Θq′ ’s actually cover O implies that Gq(ξ) is nonempty when ξ ∈ Dq.
To see that each Gq is outer semicontinuous on O, take a convergent sequence
ξi ∈ Dq and a convergent (and hence eventually constant) sequence qi ∈ Gq(ξi).
Let the corresponding limits be, respectively, ξ and q′. Then for all large enough
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i, ξi ∈ Θq′ , and since Θq′ is closed, ξ ∈ Θq′ . This implies that q′ ∈ Gq(ξ) if
ξ ∈ O \Θ′

q. If ξ 6∈ O \Θ′
q, then ξi 6∈ O \Θ′

q for all large enough i, and thus
q′ � q. This now yields that q′ ∈ Gq(ξ). In the paragraph above the Lemma,
we have already argued that Cq’s form a locally finite covering of O. Finally, it
is straightforward to verify that Cq ∪Dq = O.

Since for each q ∈ Q, Cq ∪Dq = O, nontrivial solutions to (2) exist for any
initial point, and each maximal solution (x, q) (that is, a solution that cannot
be extended) is either complete (that is, has unbounded domain), “blows up”
in finite hybrid time, or approaches the boundary of O×Q in finite hybrid time
(which means that it is either complete, or for (a finite) (T, J) = sup dom(x, q),
|x(t, J)| diverges to ∞ or x(t, J) approaches the boundary of O as t → T ). See
[6]. Since the covering of O by Cq’s is locally finite, the finite time “blow up” or
approaching the boundary of O implies that (x, q) jumps infinitely many times,
and thus is complete anyway. Consequently, each maximal solution (x, q) is
complete. (This does not mean that x exists on [0,∞), in fact, it may happen
that x reaches A in finite time.)

Note that each maximal solution jumps at least once (and thus infinitely
many times). Indeed, otherwise there exists a complete solution (i.e. x is
defined on [0,∞)) to ẋ(t) = f(x(t), uq), x(t) ∈ Cq, for some q ∈ Q. However,
by construction, each solution to ẋ(t) = f(x(t), uq) starting in Cq (and so in
Θ′

k,l,m for some triple k, l,m) in finite time reaches a point, say ξ, in the interior
of either Θk,l,m+1 or of some Θk+1,l′,0. Either way, q∗(ξ) � q, and such a
solution enters the interior of Θq′ for some q′ � q, and thus leaves Cq. This is
a contradiction.

Finally, note that the set⋃
q∈Q

Θq \
⋃

q′�q

Θq′ × {q} (8)

is forward invariant, and that each solution to (2) enters that set after its first
jump. Indeed, a solution x to ẋ(t) = (f(x(t), uq), x(t) ∈ Cq starting in Θq

remains in Θq (since this set was defined as a reachable set) until it reaches⋃
q′�q Θq′ . Also, for any q ∈ Q and ξ ∈ Dq, (ξ, Gq(ξ)) is a subset of the set (8),

by the definition of Gq. A particular consequence of the invariance is that, after
the first jump, the discrete variable of any solution is increasing at each jump.
Thus, by the local finiteness of the covering by Θq’s, there are no instantaneous
Zeno solutions (solutions with domains given by 0× N).

4.3 Asymptotic stability

The properties of the solutions to the hybrid system (2), described in Section
4.2, are now employed to deduce that A is asymptotically stable for (2).

Stability. Let (x, q) be a solution with ω(x(0, 0)) ≤ ri for some i ∈ Z.
Suppose (0, 1) ∈ dom(x, q) and let q(0, 1) = (k, l,m). Then x(0, 0) ∈ Θk,l,m and
so k ≥ i − 1 by (5). Since q is nondecreasing “after the first jump”, as argued
following (8), q(t, j) = (k′, l′,m′) satisfies k′ ≥ i−1 for all (t, j) ∈ dom(x, q), j ≥
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1. As for all such (t, j), x(t, j) ∈ Θq(t,j), inequality (5) implies that ω(x(t, j)) ≤
ri−2. Now suppose that (t, 0) ∈ dom(x, q). Then ω(x(t, 0)) ≤ ri−1 for all t such
that (t, 0) ∈ dom(x, q), by the construction of ri−1. Arguments given above, for
the case of (0, 1) ∈ dom(x, q) can be now applied “after the first jump”. Then
ω(x(t, j)) ≤ rr−3 for all (t, j) ∈ dom(x, q).

Attractivity. Any maximal solution (x, q) jumps infinitely many times, as
argued above (8), and after the first jump, q increases at each jump. This, the
finiteness of the covering of O by Θq’s, and stability shown above, implies that
x(t, j) → A as (t, j) → sup dom(x, q).

This concludes the proof of Theorem 3.1.

5 Relation to patchy feedback

In [1], under stronger assumptions, it was shown that the nonlinear system (1)
can be stabilized with a patchy feedback. (Technically, [1] deals with the case
of Õ = Rn and A = {0}; an extension to the more general case of any open Õ
and compact A ⊂ Õ is straightforward, as noted in [9].) A patchy feedback is a
mapping Φ : O → U that can be written as

Φ(ξ) = uα, if ξ ∈ Ωα \
⋃

β�α

Ωβ

where indices α (and β) are in some totally ordered index set, uα ∈ U , sets
Ωα form a locally finite covering of O, and each of these sets is a patch (which
entails Ωα being open, and that solutions to ẋ = f(x, uα) from the boundary
of Ωα immediately flow into Ωα). Solutions to the resulting closed-loop system
ẋ = f(x,Φ(x)) are understood in the Caratheodory sense (and the system is
a continuous-time differential equation with discontinuous right-hand side, not
a hybrid system). Patchy feedbacks of [1] are robust to external disturbances,
and in a semiglobal practical sense, to measurement error of bounded variation,
as shown in [2]. They can be made hybrid to achieve robustness to general
measurement error; this was done in [9].

Here, as a byproduct of the construction of a hybrid feedback, we can also
construct a “patchy-like” feedback, leading to a continuous-time closed-loop sys-
tem with a discontinuous right-hand side. However, that “patchy-like” feedback
does not enjoy the good properties of the patchy feedback of [1]. More specifi-
cally, given the (closed) sets Θq, q ∈ Q, as constructed in Section 4.1, consider
Ψ : O → U given by

Ψ(ξ) = uq, if ξ ∈ Θq \
⋃

q′�q

Θq′ .

Arguments very similar to those in Sections 4.2 and 4.3 can be used to show
that Ψ renders A asymptotically stable. Several desired properties present for
the patchy feedback Φ are not enjoyed by Ψ. For example, pointwise limits
of solutions to ẋ = f(x,Φ(x)) need not be solutions to that system: one can

10



envision a situation where a sequence of solutions in a set Θq converge to an
arc in Θq′ , and the limiting arc fails to be a solution (this is caused by Θq’s
being closed, in contrast to open patches Ωα). Similarly, uniform limits of Eu-
ler solutions generated with decreasing initial measurement noise and external
disturbances need not yield solutions to the system. Finally, arbitrarily small
external disturbances can destroy the asymptotic stability: for example, small
disturbances can cause solutions to flow out of Θq before they reach

⋃
q′�q Θq′ .

In summary, the hybrid patchy feedback constructed in this paper has better
robustness properties than the patchy feedback of [1]. While it can be obtained
by making the patchy feedback of [1] hybrid, as was done in [9], we construct it
here directly, without the intermediate step of obtaining a patchy feedback first.
The direct construction does lead, as a byproduct, to a “patchy-like” feedback,
but that feedback does not have any robustness properties.
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